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Abstract 

The interaction between proteins is a fundamental event for cellular life that is generally mediated by specialized pro‑
tein domains or modules. PDZ domains are the largest class of protein–protein interaction modules, involved in sev‑
eral cellular pathways such as signal transduction, cell–cell junctions, cell polarity and adhesion, and protein traffick‑
ing. Because of that, dysregulation of PDZ domain function often causes the onset of pathologies, thus making this 
family of domains an interesting pharmaceutical target. In this review article we provide an overview of the structural 
and functional features of PDZ domains and their involvement in the cellular and molecular pathways at the basis of 
different human pathologies. We also discuss some of the strategies that have been developed with the final goal to 
hijack or inhibit the interaction of PDZ domains with their ligands. Because of the generally low binding selectivity 
of PDZ domain and the scarce efficiency of small molecules in inhibiting PDZ binding, this task resulted particularly 
difficult to pursue and still demands increasing experimental efforts in order to become completely feasible and suc‑
cessful in vivo.
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Introduction
Proteins take part in almost all biological processes, and 
exert their functions in different ways, ranging from 
enzyme catalysis to mediating the recognition of other 
molecules, such as small ligands, or binding nucleic acids 
or other proteins. Protein–protein interactions (PPIs) 
represent a key event for several physiological cellular 
pathways of living organisms including gene expression, 

cell growth, proliferation, nutrient uptake, metabolism, 
morphology, motility, intercellular communication and 
apoptosis.

PPIs are mediated by structural domains with the 
function to recognize and bind specific sequences on 
other proteins. These interaction domains are grouped 
into families and classes, based on structural fea-
tures, sequence homology and the ability to recognize 
and interact with specific motifs and sequences [1, 2]. 
For example, phosphotyrosine containing motifs are 
mainly recognized by SH2 and PTB domains [3–5], 
while phosphoserine/threonine containing sequences 
by 14-3-3 proteins, FHA domains, WW domains and 
WD40 domains [6]. Acetylated or methylated lysine resi-
dues are specifically recognized by Bromo and Chromo 
domains, respectively [7–9]. Other domains that do not 
bind post-translationally modified sequences, recognize 
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peptide motifs carrying other features. For instance, SH3, 
WW, EWH1 domains recognize proline-rich sequences 
[10–12]. Furthermore, other interaction domains so far 
known mediate specific cellular physiological functions, 
such as apoptosis (DD, DED, CARD, BH 1-4 domains) 
[13–16], vesicle trafficking (GYF, Snare, VHS domains) 
[17–19] and dimerization (SAM domain) [20].

Among PPIs modules, PDZ domains are the larg-
est class in the human proteome, with around 274 PDZ 
domains identified in 155 proteins [21]. PDZ domains are 
often present in multidomain scaffold and anchoring pro-
teins, involved in the formation of transient complexes 
that support several cellular processes such as protein 
trafficking, signal transduction, cell–cell junctions, and 
cell polarity and adhesion. Hence, due to their relevant 
physiological role, whether interactions mediated by 
PDZ domains are dysregulated, a pathological state often 
occurs in the cell.

Given these premises, the modulation and inhibition of 
PDZ domains-mediated protein interactions are attrac-
tive targets in the field of drug discovery. Overall, the 
knowledge about different PPIs and domains involved 
in protein interaction is essential not only to understand 
molecular mechanisms at the basis of the cellular pro-
cesses, but it is also important to clarify the development 
of disease states in which PPIs are implicated. Notewor-
thy, different strategies are applied to develop inhibi-
tors directed against certain PPIs whose function can be 
altered in certain pathological conditions. In this review 
work, we recapitulate the implication of PDZ domains 
in diseases such as cancer, cystic fibrosis, neurological 
disorders and viral infections. In particular, the atten-
tion will be focused on those PDZ domains identified as 
potential therapeutic targets and on the strategies con-
ceived to hijack their dysregulated interactions.

PDZ domains structure and function
PDZ domains are small protein modules containing 
approximately 80–110 amino acids folded in a compact 
tertiary arrangement, typically consisting of six antiparal-
lel β-strands and two α-helices, with few exceptions. They 
take their name from Postsynaptic density-95, Disks-
large and Zonula occludens-1 proteins, in which they 
were identified for the first time in the early 1990s [22–
24]. Usually, PDZ domains bind the C-terminal sequence 
of their cognate partners. Ligand binding occurs in a 
groove formed by the α2 helix and the β2 strand, and 
the chain of the C-terminal residue of the ligand engages 
into a hydrophobic pocket on the surface of the domain 
[25, 26] (as shown in Fig. 1). The binding groove is char-
acterized by the presence of a highly conserved lysine or 
arginine residue that interacts with the carboxylate group 
at the end of the peptide. In addition to this electrostatic 

interaction, three main-chain amide protons of the Gly-
Leu-Gly-Phe motif form hydrogen bonds with the C-ter-
minal region of the peptide leading to the more general 
binding signature R/K-XXX-GLGF.

Conventionally, the C-terminal amino acid of the 
ligand is numbered as position 0 and the rest of the 
residues are named in reverse order as position -1, -2, 
-3 etc. Based on the PDZ binding motif (PBM) of the 
ligand, three major binding classes have been identified, 
although lately it has been further expanded into a total 
of 16. Even if PDZ domains recognize more than 5 resi-
dues upstream of the C-terminal residue, the P0 and P-2 
positions are particularly significant for specificity. Posi-
tion 0 is frequently a hydrophobic residue, according to 
differences in shape and size of the PDZ binding pocket, 
as in the case of PDZ1 and the PDZ2 of PSD-95, able to 
recognize sequences ending with valine, leucine and iso-
leucine [25, 27]. Position -2 is crucial for binding speci-
ficity and determines the basis of the entire classification. 
Class I is characterized by the presence of a serine or a 
threonine at position -2, with the formation of a hydro-
gen bond with the N3 of an histidine residue which is 
highly conserved in the PDZ α2 helix. Class II presents 
hydrophobic residues at the position -2. Class III recog-
nizes a tyrosine in the PDZ binding groove, establishing 
a hydrogen bond with the aspartate carboxylic group of 
the ligand. PBMs can also occur in internal sequences, 
and membrane phospholipids can be recognized by PDZ 
domains [28, 29]. As for example, neuronal nitric oxide 
synthase (nNOS) and the PDZ domain of syntrophin [30] 
interact through a nonterminal hairpin turn of nNOS in 
an unusual head-to-tail arrangement.

Role of PDZ‑containing proteins in human diseases
PPIs mediated by PDZ domains have a critical role in 
the regulation of a broad variety of biological processes. 
PDZ domains are crucial in the assembly of the molecu-
lar machinery of different transduction pathways being 
often found in multidomain scaffold proteins implicated 
in the regulation of pre- and post-synaptic signalling in 
neuronal cells, maintenance of cell–cell junction commu-
nication and ion-channel trafficking regulation. Dysregu-
lation of such processes is at the basis of several disorders 
and diseases highlighting PDZ domains as promising 
drug targets.

Cancer
PDZ domains are present in proteins involved in for-
mation of cellular polarity and signalling complexes as 
well as in the binding to receptors and in localization of 
channels and enzymes. Thereby they are mainly located 
at level of the cellular membranes and cytoskeleton and 
play a central role in processes requiring cell–cell or 
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protein–protein contacts [31], thus orchestrating para- 
and intra-cellular pathways. As a consequence, dysfunc-
tional PDZ-containing proteins influence development 
and progression of cancer diseases by determining loss 
of cell polarity, cell–cell contacts signaling pathways and 
controlling proliferation, differentiation and apoptosis 
[32, 33]. Several tumours such as breast, cervical, colon, 
prostate, liver cancers and glioblastoma often see the 
involvement of PDZ domains [34].

PDZ domains involved in cell polarity
Cell polarity is a key feature of specialized cells, finely 
regulated and tuned, both spatially and temporarily,  by 
several PDZ-containing proteins. In general, it relies on 
the asymmetric distribution of macromolecules, like pro-
teins, lipids and RNA of the plasma membranes of epi-
thelial and endothelial cells and neurons, pinpointing 
defined regions (namely basal, apical, basolateral) with 
specific structural and functional features [33].

Cell polarity and communications between adjacent 
cells are ensured by specific structures named adherent 
junctions (AJs) and tight junctions (TJs). AJs are preva-
lently found at the basolateral region and regulate cell–
cell adhesion through transmembrane proteins named 

nectins and cadherins. Tight junctions (TJs) determine 
the membrane polarity by the action of membrane pro-
teins named occludin and claudin [35], localizing com-
ponents across the different sides of the membranes 
and regulating ions and solutes transport among cells. 
TJs and AJs play a key role in the maintenance of tissue 
integrity and regulate essential cellular functions, such as 
proliferation, apoptosis, metabolism, differentiation, and 
motility.

The link between cell polarity and tumor proliferation 
processes has been identified for the first time in Dros-
ophila [36]. Most polarity complexes forming TJs and 
AJs are composed by several PDZ-containing proteins: (i) 
PAR (partitioning-defective) complex generating TJs are 
formed by interaction between Par3 and Par6 with the 
atypical protein kinase C (aPKC) and cell division con-
trol protein (CDC42); (ii) CRUMBS polarity complex is 
composed by the transmembrane protein CRUMBS and 
the scaffolding PDZ-containing proteins PALS1 e PATJ; 
(iii) SCRIBBLE complex generating AJs are composed of 
e-cadherin and Scrib, interacting with DISCS large pro-
teins (Dlg) and Lethal-2-giant larvae proteins (Lgl) [33]. 
Furthermore, the AJs and TJs are physically linked by 
the zonula occludens proteins (ZO), and include other 

Fig. 1  Structure of a PDZ domain (in grey) in complex with a generic C-terminus of a ligand (in orange). The ligand is embedded between the α2 
and the β2 of the PDZ binding groove. PDZ Binding Motif positions are highlighted as 0, -1, -2, -3 and -4. The conventional three binding classes are 
shown in the table in which X corresponds to an unspecified amino acid and Φ to a hydrophobic residue
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PDZ domain-containing proteins as signaling molecules 
and actin cytoskeletal modifiers [37]. Several of these 
PDZ proteins belong to the MAGUK family, scaffold-
ing proteins recruiting cellular receptors and signaling 
molecules.

Since AJ and TJ are distinctive of specialized differen-
tiated cells, disturbances of these complexes were found 
to be strongly correlated to cancer [33]. In particular, loss 
of tissue integrity and subsequent increased tendency to 
invasion and metastasis of cancer cells [38] have been 
ascribed to dysfunction of Scrib [39], Magi [40, 41], Dlg-5 
[42, 43], Patj, Lin7, Par3 and Par6 [44], ZO1 [45], ZO2 
[34, 46, 47], and Dlg1 [48]. The latter, being part of the 
Scribble polarity complex, leads to uncontrolled epithe-
lial cell proliferation and neoplastic transformation.

PDZ domains mediate signalling complexes formation
The role played by PDZ domains in recruiting proteins 
involved in molecular signal transduction complexes 
implied in cell survival, apoptosis, proliferation and dif-
ferentiation makes them important pharmacological tar-
gets in cancer. The oncosuppressor Pten is able to bind 
the PDZ domains of the Par3, NHERF and Magi-1 pro-
teins. In particular, the binding of Magi-1 to Pten pro-
tects it from degradation [40, 49, 50], down-regulates of 
the PI3K/Akt pathway [51] and exerts an oncosuppressor 
activity. Interestingly, in acute lymphoblastic leukemia 
[52] and in colon cancer the expression of Magi-1 is com-
monly found downregulated.

Another important example is represented by the 
PDZ-containing protein Syntenin, also named melanoma 
differentiation-associated gene-9 (MDA-9). Syntenin 
expression is increased in metastatic and invasive cells 
[53, 54]. Numerous studies have shown that syntenin is 
involved in the formation of metastasis, cell migration 
and cytoskeletal rearrangement through the activation of 
the nuclear factor-kappa B (NF-kB) pathway (Fig. 2) [55, 
56] which regulates the expression of genes involved in 
cell motility and invasion [57]. From a structural perspec-
tive, Syntenin comprises a tandem of two PDZ domains 
mediating its activity. Liu and coauthors designed a 
dimeric ligand binding both PDZ1 and PDZ2 domains 
with high affinity [58], preventing the interaction with 
cellular targets. The dimeric inhibitor is based on two 
sequences naturally interacting with Sytentin PDZ 
domains, connected each other through a PEG3 (trieth-
ylene glycol) linker and modified at positions -2 and -1 
with the amino acid naphthyl-alanine. In  vitro experi-
ments conducted by Liu and co-workers reported high 
affinity (KD = 0.21 ± 0.01 µM), together with the ability to 
reduce cellular migration by downregulating ERK/MAPK 
pathway in cellula (58).

A recent work by Haugaard-Kedström and co-workers 
reported the design of new monomeric peptides (KLS-
128018, KSL-128114) able to bind PDZ1 of Syntenin in 
a non-canonical way with high affinity. These Peptides 
showed a promising effect against highly aggressive can-
cer forms, such as glioblastoma (GBM) [59].

PDZ domains bind G protein coupled receptors
G protein coupled receptors (GPCR) are a family of 
receptors that regulate numerous physiological functions. 
Several GPCRs are reported as binders of PDZ domains 
through their PDZ binding motifs (PBMs) [60]. Since the 
main pathways triggered by GPCRs, PKA and PLC sign-
aling pathways, regulate cell survival, growth, migration 
and differentiation [61, 62], alterations of the binding 
between PDZs and GPCRs are often tumorigenic.

A typical example is represented by the Frizzled recep-
tor (Frz). It is involved in the activation of the Wnt signal 
pathway through the interaction of its C-terminal PBM 
with the PDZ-containing protein Disheveled (Dvl) [63]. 
Dvl triggers the activation of two signaling pathways: 
the canonical pathway activating the β-catenin depend-
ent cell proliferation [64] and the non-canonical pathway 
regulating cytoskeletal remodeling and cell migration 
[65]. Both pathways are involved in tumorigenesis [66, 
67]. Given the importance of this signalling pathway in 
the onset of cancer, targeting the PDZ domain of Dvl 
protein represents a promising antitumor strategy, espe-
cially by inhibiting the interaction with Frizzled proteins.

In particular, Frizzled 7 (Frz7) is a receptor subtype 
highly expressed in a broad range of tumours, exerting its 
oncogenic activity through Wnt pathway activation. The 
disruption of this interaction can be selectively addressed 
by designing inhibitors with peculiar characteristics. Fujii 
and coworkers [68] proposed a small molecule, called 
FJ9, which was reported to inhibit the binding between 
Frz7 and the PDZ domain of Dvl. This inhibition lowered 
cytosolic level of β-catenin in a dose-dependent manner, 
downregulating the canonical Wnt pathway in cells and 
inducing apoptosis in human lung cancer and melanoma 
cells.

In another work from Mahindroo et  al. [69] a small 
molecule was successfully designed to disrupt the inter-
action between Frz7 and PDZ of Dvl. The molecule, an 
indole-2-amide compound, was able to bind the PDZ 
domain by mimicking the side chains of the second and 
fourth amino acid residues of the endogenous ligand 
through the substituents at positions 2 and 3 of the 
indole. The compound was found to interact with Frz7 
and exert an apoptotic effect by down-regulating Dvl-
driven Tcf activation of transcription.

Zhang and coauthors have elegantly designed, through 
phage-display, short peptides mimicking internal ligands 
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binding the isoform 2 of Dvl (Dvl2) able to inhibit the 
Wnt/β-catenin pathway. Among these peptides (called 
pepN1, pepN2 and pepN3), pepN3 inhibited the Wnt/
b-catenin pathway in a dose-dependent manner with 
potency (IC50 of 11 ± 4 µM) superior to FJ9 (see above in 
the paragraph) and was atoxic for the cells at active con-
centrations [70].

Several other proteins, such as LARG-Rho [34], CAR11 
[71], GIPC1 [72], NHERF1-2 [73], PREX1 [74], TIAM1 
[34], show interaction with GPCRs and are associated to 

cancer, an aspect reinforcing the view that targeting PDZ 
mediated protein–protein interactions may be a powerful 
strategy aimed to develop effective antitumor pharmaco-
logical strategies.

Cystic fibrosis
Cystic fibrosis is a genetic disorder caused by mutations 
in the CFTR gene encoding Cystic Fibrosis Transmem-
brane Conductance Regulator (CFTR). CFTR protein 
is a chloride channel activated by local cAMP that is 

Fig. 2  General representation of the cellular localization of the PDZ domains controlling signaling pathways involved in cancer development and 
progression. (1) Tight junction and Scribble polarity complex. In epithelial cells this complex negatively regulates cell proliferation by inhibiting the 
expression of the key cell cycle regulator, Cyclin E, and it promotes apoptosis by blocking expression of the apoptosis inhibitor DIAP1. (2) In detail: 
the Frizzled receptor binds the PDZ domain of Dvl promoting the activation of Wnt signalling, with consequent activation of β-catenin dependent 
cell proliferation regulating cytoskeletal remodeling and cell migration. As detailed in the text, different inhibitors of Frz-7 and PDZ domain of 
Dvl interaction were identified and tested. (3) The principal event in tumorigenic activity of E6 protein from High-Risk Human Papillomaviruses 
derives from its ability to inactivate tumor suppressor p53 protein. The carcinogenic activity of high-risk HPVs is achieved through the interaction 
between E6 and PDZ domain of SAP-97 and Scribble proteins (4) Syntenin is a PDZ containing protein comprising a tandem of two PDZ domains, 
involved in cell migration, cytoskeletal rearrangement and metastasis formation. It activates the nuclear factor-kappa B (NF-kB) pathway regulating 
the expression of genes involved in cell motility and invasion. Monomeric peptide named KSL-128018 is reported as example of inhibitor of PDZ 
domains of syntenin (see details in the text). (Figure designed through BioRender.com online tool)
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located in the apical membrane of epithelial cells. The 
activity of CFTR contributes to maintaining the correct 
state of hydration on the epithelial surface by regulating 
the flux of ions and fluid through the plasma membrane 
[75–77]. CFTR is expressed in different organs including 
lung, intestine, pancreas and kidney. Given its impor-
tant physiological role, dysregulation of CFTR signaling 
causes severe defects in these organs. The impairment in 
the transport of ions through the epithelial membrane 
leads to an accumulation of thick mucus in the lung that 
obstructs the airways [78–80].

Several PDZ proteins are involved in the regulation of 
CFTR. In particular, CAL (CFTR associated ligand) has 
been identified as an important regulator of CFTR endo-
cytic trafficking and lysosomal degradation [81]. CAL is 
a protein of 461 residues that is ubiquitously expressed. 
Its structure consists of unstructured (unfolded) N- and 
C-terminal regions, a coiled-coil domain and a PDZ 
domain (Fig. 3). The PDZ domain of CAL contains a His 
residue at the N-terminal of α2 helix which allows it to 
bind preferentially PBMs of class I. The recognition of a 
PBM in CFTR and the PDZ domain of CAL promotes 
the degradation of CFTR in lysosomes, with consequent 
reduction of the levels of CFTR on the plasma mem-
brane surface [82–84]. Other two PDZ-domain proteins, 

the two isoforms of Na+/H+ exchanger regulatory fac-
tor (NHERF 1 and 2), have been identified as positive 
regulators of CFTR. NHERF 1 and NHERF 2 recognize 
the cytoplasmic tail of CFTR through their two PDZ 
domains, stabilizing its localization at the plasma mem-
brane and thus regulating its activity [85].

The most common mutation occurring on CFTR gene 
and causing CF is the deletion of the Phe508 residue 
(∆F508) [79]. This mutation causes an inefficient fold-
ing of the protein and a decreased channel activity, as 
well as a rapid degradation mediated by the interaction 
between CFTR PBM and the PDZ domain of CAL [82, 
86, 87]. Examples of molecules identified as inhibitors of 
PDZ-domain mediated interactions involved in the cystic 
fibrosis will be discussed.

Inhibitors of PDZ‑domains mediated interactions 
for the treatment of cystic fibrosis
Small molecules have been designed to induce correct 
folding and channel activity of ∆F508 CFTR [88, 89]. 
However, due to the rapid degradation in the cell of the 
protein mediated by CAL, this approach could be applied 
only in in vitro experiments. In a different work [90], by 
knocking down CAL in a bronchial epithelial cell line 
derived from a CF patient ∆F508, CFTR expression and 

Fig. 3  A Airway epithelial cells in normal conditions (red) and cystic fibrosis (light blue). Interaction of NHERF and CAL with CFTR mediated by 
the PDZ domains is shown. In normal condition, NHERF stabilizes CFTR to the plasma membrane, while CAL promotes the CFTR degradation in 
lysosomes. In cistic fibrosis the ΔF508A mutation in CFTR causes its rapid degradation mediated by CAL, with consequent absence of the CFTR at 
the plasma membrane. Inhibitors of the interaction of CAL with CFTR could restore the presence of CFTR at the plasma membrane. B 3D structure 
of the complex formed by iCAL36 10 (in orange) and PDZ CAL (in green). The box shows the hydrogen bonds between the main chain functional 
groups of the peptide with the β2 strand of PDZ CAL. (Figure designed through BioRender.com online tool)
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channel activity has been restored. This result suggested 
that the inhibition of the interaction between the PDZ 
domain of CAL and CFTR could represent a potential 
treatment for cystic fibrosis.

Since both CAL and NHERF proteins recognize CFTR, 
a specific inhibitor of CAL PDZ – CFTR interaction 
was designed [91]. Through a combination of library 
screening and different steps of optimization, a deca-
meric peptidyl inhibitor called iCAL3610 was produced 
(Fig.  3). This molecule showed high affinity for CAL 
PDZ (Ki = 17.3 ± 4.3  µM) and low affinity for the PDZ-
domains of NHERF proteins (Ki > 5000 µM for the PDZ1 
and PDZ2 of NHERF1; Ki > 5000 µM and Ki > 3000 µM for 
PDZ1 and PDZ2 of NHERF2, respectively). Experiments 
conducted in airway epithelial cell lines from CF patients 
demonstrated that iCAL3610 was able to increase the 
half-time of CFTR at the plasma membrane and to 
enhance the activity of the channel [92].

The use of peptides targeting the PDZ domain of CAL 
to inhibit its interaction with CFTR resulted as an effec-
tive strategy, with some limitations due to low cell-per-
meability and metabolic stability. In a recent study [93] 
a peptide called PGD97 was designed to overcome these 
difficulties. It presents two distinctive regions, a cell-
penetrating peptide (CPP) and a binding sequence for 
CAL PDZ, which forms as a disulfide-cyclized macrocy-
cle and becomes linear in the intracellular environment. 
In cellula experiments demonstrated that PGD97 is able 
to stabilize ∆F508 CFTR and improve CFTR functions 
[93], representing a potential novel treatment for cystic 
fibrosis.

Nervous system disorders
Neuronal network is finely regulated during synaptic 
transmission. In the synapses, neurotransmitter trans-
porters and receptor complexes are localized in the pre-
synaptic and postsynaptic region respectively, and a fine 
regulated control is necessary to guarantee the correct 
propagation of the signal [94]. Abnormal synaptic trans-
missions are at the origin of a plethora of different patho-
logical conditions. In this scenario, receptor complexes 
represent the site of action of almost 40% approved 
drugs, highlighting the importance of these proteins as 
pharmacological targets [95, 96].

Among the others, PDZ-containing proteins are par-
ticularly important for the formation, function and local-
ization of postsynaptic receptor complexes [97, 98]. PDZ 
proteins can interact not only with membrane proteins 
but also with cytoplasmic proteins producing a large vari-
ety of signalling complexes [99, 100]. Remarkably, PDZ-
containing proteins are also involved in the regulation of 
synaptic adhesion and maturation of excitatory synapses, 
as exemplified by the case of PSD-95 [97, 101, 102]. Their 

abundance and crucial role in the regulation of different 
neurological processes, establish a close link between 
PDZ dysfunction and the onset of different pathological 
conditions. In this paragraph we will focus our attention 
on the role of PDZ domains in the onset of different neu-
rological pathologies [103].

Autism spectrum disorder (ASD)
ASD is a neurodevelopmental condition that affects 
childhood population on average 1 in 68 [104]. Autistic 
patients are characterized by behavioural abnormali-
ties such as reduced vocal communication, aberrant 
social interactions and repetition [104, 105], caused 
mainly by impairments in synaptic plasticity and synaptic 
processing.

Synaptic plasticity is mainly controlled at the level of 
the postsynaptic density (PSD) region [106]. PSD-95 
is one of the major components of PSD and it is com-
posed of three N-terminal PDZ domains and an SH3-
GK module [107–109]. It is able to interact, through its 
PDZ domains, with NMDA receptor subunits, NR2A 
and NR2B, and with AMPA receptor accessory proteins 
[107], and it plays a key role in regulating plasticity of 
glutamatergic synapses (schematized in Fig.  4) during 
neurodevelopment [105]. As a prevalent component of 
the postsynaptic density region, the disruption of PSD-
95 physiological interactions has been correlated with the 
onset of ASD [105, 110–112].

Additional evidence of aberrant interactions between 
PSD-95 and PDZ-containing SHANK family proteins 
corroborates the link between PSD-95 and ASD [105, 
113]. SHANK proteins are scaffolding proteins involved 
in the formation of large complexes crucial for synap-
tic development and function. An increasing amount of 
data indicate that mutations in the genes that encode for 
SHANK proteins may be correlated with several behav-
ioural abnormalities in mice models, some of which are 
considered ASD-like behaviours [113–118]. This evi-
dence points the attention on PDZ-containing proteins 
as targets to develop pharmacological strategies against 
ASD.

Alzheimer’s disease (AD)
AD is a neurodegenerative condition that is becoming 
dramatically relevant in terms of health care and welfare 
in the modern world [119, 120]. A peculiar characteris-
tic of AD is the accumulation of protein aggregates (or 
plaques) in the brain tissue [120–122]. Principal com-
ponents of AD plaques are the Amyloid beta (Aβ) pep-
tides, natural products of amyloid precursor protein 
(APP) metabolism [121]. APP is a transmembrane pro-
tein of 695–770 amino acids, cleaved by the action of β- 
and γ-secretases that generate Aβ fragments of various 
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lengths. The Aβ1-42 variant displays a high propensity to 
form insoluble aggregates.

One of the major interactors of APP is Munc18-inter-
acting proteins (Mints or X11s) [123–125]. Mint proteins 
present a variable N-terminal region, and a conserved 
C-terminal region that contains a phosphotyrosine bind-
ing (PTB) domain and two PDZ domains. Interestingly, 
PDZ domains of Mint are regulated by an intramolecular 
mechanism, in which the highly conserved C-terminal 
tail of Mint is able to inhibit the binding of the construct 
[126]. The PTB domain binds the conserved YENPTY 
motif of APP controlling its trafficking and regulating Aβ 
fragments production [127, 128]. Additional evidence 
about the involvement of Mint in the onset of AD derives 

from the description of the interaction between its PDZ 
domains and Presenilin-1 [129–131], the catalytic subu-
nit of the γ-secretase complex. The interaction between 
the PDZ domains of Mint with Presenilin-1 promotes 
APP/Presenilin-1 colocalization regulating Aβ fragments 
formation. Altogether, these findings indicate that APP/
Mint/Presilin-1 interaction is of great interest for poten-
tial treatment of AD, with PDZ modulation as a feasible 
therapeutic target.

Parkinson’s disease (PD)
PD is a neurodegenerative disorder affecting 2–3% 
of the population over 65  years old. PD is the most 
common neurodegenerative movement disease, 

Fig. 4  The main PDZ-containing proteins of a glutamatergic synapse are highlighted. PDZ domains are indicated by yellow circles while SH3 
and GK domains are represented as orange squares and green rhombuses, respectively. All the other proteins are shown as simple shapes and 
are labelled. A subset of known protein–protein interactions is illustrated. Ca Ch, calcium channel; nNOS, neuronal nitric oxide synthase; GKAP, 
guanylate kinase-associated protein; K Ch, potassium channel; SHANK, SH3 and ankyrin repeat-containing protein; IP3R, IP3 receptor; SER, smooth 
endoplasmic reticulum; PSD-95, postsynaptic density protein 95; NMDAR, NMDA (N-methyl-D-aspartate) receptor; AKAP79, A-kinase anchor protein. 
(Figure designed through BioRender.com online tool)
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characterized by a loss of dopaminergic neurons in the 
substantia nigra and the accumulation of protein aggre-
gates called Lewy bodies [132, 133]. The main constitu-
ent of Lewy bodies is α-synuclein protein, which tends 
to form aggregate as a consequence of misfolding [120, 
134].

The molecular mechanism of α-synuclein misfold-
ing has been extensively investigated, but still poorly 
understood. One of the prevalent causes of protein mis-
folding is the exposure of cells to internal and exter-
nal stress which cells tend to contrast through different 
strategies. An example is represented by the oligomeric 
HtrA protease family [135]. HtrA protease contains one 
or two C-terminal PDZ domains, which bind misfolded 
proteins, triggering the activation of the trypsin-like 
protease domain for degradation [135–137]. A direct 
correlation between the mammalian HtrA2 inactivation 
and the onset of PD has been established in different 
studies [138–140], and PD patients have been identified 
through missense mutations in the gene encoding for 
HtrA [138, 139]. Interestingly, one of these mutations, 
p.G399S, affects one of the PDZ domains of HtrA2 [139]. 
Other studies performed on HtrA2 deficient mice exhib-
iting neurodegeneration and a parkisonian phenotype 
[140, 141] report additional evidence of the correlation 
between HtrA2 inactivation and the onset of PD.

Hearing and vision diseases
Hearing and vision mechanisms control is mainly 
achieved by clustering signaling proteins in large molec-
ular complexes, the organization of which foresees the 
action of many PDZ-containing proteins.

Usher syndrome (USH) is a syndrome affecting hear-
ing, vision and body balance, and represents the most 
common form of hearing and vision loss [142]. PDZ 
domains play a pivotal role in the onset of this pathol-
ogy. Two pioneering works by Verpy and colleagues and 
Bitner-Glindzicz and colleagues described mutations in 
a gene encoding the PDZ-containing protein Harmonin 
[143] that lead to Usher type 1C (USH1C) disease [144].

Usher syndrome can occur in three distinct forms 
with USH type 2 (USH2) as the most common. Among 
the others there are three genes that are recognized 
to cause USH2 named USH2A, GPR98, and WHRN, 
whereas a fourth gene, PDZD7, is a modifier gene found 
in USH2 patients [145, 146]. Two of these genes, WHRN 
and PDZD7, codify for PDZ-containing proteins able to 
mediate the formation of a quaternary complex with the 
other two proteins codified by USH2A and GPR98 [145]. 
Inactivation and mutations in the PDZ domains of Whir-
lin and PDZD7 proteins have been associated directly to 
the manifestation of USH2 [143, 145, 147].

Ischemic stroke
Ischemic stroke represents the leading cause of dis-
ability and the second cause of death worldwide, with an 
urgent need for pharmacological therapies able to relieve 
neuronal damages [148]. The interaction between the 
PDZ domains of PSD-95 and the N-methyl-D-aspartate 
(NMDA) receptor is a key step in the onset of stroke. In 
particular, this interaction causes an overproduction of 
nitric oxide and consequent neuronal death [149]. On 
these bases, a suitable candidate for the treatment of 
neuronal damage after stroke is represented by hijacking 
the interaction between the PDZ domains of PSD-95 and 
NMDA.

Targeting PDZ domains as potential neurological treatment
PDZ domains represent an extremely interesting candi-
date for novel neurological treatments. A peculiar fea-
ture of PDZ domains is their presence as tandem repeats 
[150–152]. Interfering with multiple PDZ domains simul-
taneously can enhance both affinity and selectivity of a 
putative inhibitor and the design of multivalent ligands to 
target protein–protein interactions is a promising strat-
egy for the treatment of neurological disorders.

An important example is NA-1 (now in phase 3 of the 
clinical trial NCT04462536) which targets PDZ domains 
of MAGUK family proteins (PSD-95, PSD-93, SAP-97 
and SAP-102) [153]. The MAGUK structural architec-
ture is generally composed by a tandem repeat of PDZ 
domains followed by a SH3 and a GK domain. MAGUK 
proteins are responsible for the formation of post-syn-
aptic protein complexes and are potential drug targets 
for the treatment of different neurological pathologies. 
Since the interaction between PSD-95 and N-methyl-
D-aspartate receptor (NMDA) and neuronal NO syn-
thase (nNOS) is mediated by PSD-95 PDZ domains, 
Nissen et  al. designed and produced a trimeric ligand 
able to bind simultaneously PDZ1-2–3 domains of PSD-
95. NA-1 showed high binding affinity towards these 
MAGUK proteins, confirming the therapeutic impor-
tance of this PDZ-protein interaction.

Another example of a potential treatment of dysfunc-
tional neurological conditions obtained by inhibiting 
PDZ domain-mediated interaction is the Tat-P4-(C5)2 
peptide, studied in  vivo by Christensen and coworkers 
[154]. To avoid direct targeting and inhibition of NMDA 
and AMPA receptors, which could lead to significant side 
effects, a peptide with the ability to interfere with synap-
tic PDZ domain-scaffold protein PICK1 was developed. 
PICK1 regulates the expression and activity of AMPA 
receptors and mediates important membrane protein 
interactions, including those with the GluA2 subunit of 
AMPA. Tat-P4-(C5)2 resulted in being able to block two 



Page 10 of 21Nardella et al. Biol Direct           (2021) 16:15 

different regions of the PICK1 PDZ domain, leading to 
the disruption of the interaction with AMPARs, and con-
sequently, limiting the dysfunctional synaptic plasticity 
associated with correlated neurological disorders, such as 
neuropathic pain.

Viral proteins targeting PDZ domains
A large number of PDZ-containing proteins possess a 
fundamental role in maintaining the correct physiology 
of the cell and in determining key aspects of specialized 
cells, as for example cell polarity in epithelial and neu-
ronal cells. Under this light, it is not surprising that sev-
eral viral pathogens have evolved PDZ-binding motifs in 
their proteins to target host cell PDZ domains and dis-
rupt physiological interactions to favor viral replication 
and disease progression.

At the end of 1990s, the first PBMs in viral proteins 
were identified in HTLV-1 Tax protein [155], high-risk 
HPV E6 oncoproteins [156], and adenovirus E4 onco-
protein [157]. Since then, many other viral proteins 
were found to present PBMs in their sequence and the 
evolutionary strategy of viral pathogens to target these 
protein–protein interactions became clearer. In fact, a 
wide range of pathologies may arise from viruses that 
developed the ability to target PDZ protein functions 
and many well-established PDZ targeting viral proteins 
have been pinpointed and characterized [155, 158–163] 
reinforcing the evidence on how PDZ domains represent 
fundamental pharmacological targets in the struggle to 
prevent and cure several viral diseases.

PBM of Coronaviruses Envelope protein
A typical example of viral protein targeting PDZ domains 
upon infection is represented by coronaviruses MERS-
CoV, SARS-CoV, and SARS-CoV-2 Envelope (E) mem-
brane proteins. The genome of coronaviruses typically 
encodes for four major structural proteins, including 
spike (S), nucleocapsid (N), membrane (M), and envelope 
(E) proteins. The E protein is a tiny integral membrane 
protein that is poorly present in the mature virus, while 
being highly expressed in the host cell, where it forms, 
through interaction of their transmembrane domain, 
pentameric ion channels mainly involved in virion matu-
ration and trafficking [164].

E proteins from SARS-CoV and SARS-CoV-2 pos-
sess a PBM at their C-terminus which allows them to 
interact with PDZ-containing proteins in the host cell. 
Their primary structures have 98% sequence identity. 
The few variations appreciable between the two protein 
sequences occur at their C-terminal domain and do not 
affect the PBM. Although the exact role of these inter-
actions is not well established, there is evidence about 
SARS-CoV E protein PBM as virulence factor [165]. 

In cellula experiments reported that the removal of the 
PBM from SARS-CoV E protein resulted in attenuated 
virulence. Furthermore, the acquisition of new alterna-
tive PBMs after a number of cell passages confirmed the 
key importance of the binding with PDZ proteins for the 
virus activity. Interaction occurring between SARS-CoV 
E protein and PDZ domains of PALS1 and syntenin [166] 
as well as with other PDZ-containing proteins such as 
TJP1-2, PTPN13, HTRA1, MLLT4, PARD3, LNX2, rec-
ognizing the PBM of SARS-CoV E protein, and NHERF1, 
MAST2, RADIL, SNX27 as specific interactors of SARS-
CoV-2 E protein [167] has been reported.

The interaction of E protein with PALS1 is of particular 
importance. PALS1 is a member of MAGUK superfam-
ily and it is the human homologue of D. melanogaster 
Stardust protein. It is composed of two N-terminal L27 
domains, followed by a PDZ domain, a SH3 domain 
and a guanylate kinase domain (GUK). PALS1 pos-
sesses a central role in determining the Crumbs polarity 
complex, which, in its entirety, is composed of a trans-
membrane protein (Crumbs) and two cytoplasmic scaf-
folding proteins, PATJ and PALS1. The association of 
PALS1 with Crumbs is mediated by PDZ, SH3 and GUK 
domain supramodular structure [168], determining the 
apical portion of epithelial cells, together with the inter-
action with PATJ and MUPP1 [169, 170]. The interac-
tion between PALS1 PDZ domain and the E protein of 
SARS-CoV (and SARS-CoV-2) is suggested to be at the 
basis of lung epithelial damage [163, 165], retaining the 
protein in Golgi vesicles after synthesis, and preventing 
the correct formation of tight junctions. As a result, a dif-
fuse damage of lung epithelial tissue occurs, representing 
one of the most dramatic and fatal outcomes of corona-
virus infections. Given these premises, reinforced by the 
global health emergency due to SARS-CoV-2 spread and 
the severity of COVID-19 pandemic, the PDZ domain of 
PALS1 represents a strategic site to be pharmacologically 
targeted.

The three dimensional structure of the PALS1:E 
protein complex has been recently resolved [171] 
and outlined a synergistic mechanism of ligand rec-
ognition exerted by PDZ and SH3 domains. Recent 
studies showed a higher affinity of E protein from 
SARS-CoV-2 compared to SARS-CoV for the isolated 
PDZ domain of PALS1 [172, 173]. Molecular Dynam-
ics simulations highlighted the SARS-CoV-2 Arginine 
69 as key residue responsible of the improved affin-
ity to PALS1 compared to the SARS-CoV homologue, 
in particular by enhancing polar interactions with 
negatively charged pockets of PALS1 PDZ domain, 
resulting in significantly reduced mobility of the viral 
protein. These data supported the hypothesis that 
the typical virulence of SARS-CoV-2 may rely on the 
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improved binding of E protein with PALS1 and rep-
resent a first step in understanding the mechanistic 
details of this important interaction, which should be 
further investigated to develop potential SARS-CoV-2 
antiviral strategies.

Oncogenic viral PDZ domain interacting proteins
As detailed in paragraph 2.1, a large number of PDZ-
containing proteins possess key roles in the mainte-
nance of the correct physiology of the cell at different 
levels, ranging from transcription factors to scaffold-
ing proteins and to polarity determination of special-
ized cells. Consequently, viruses expressing proteins 
able to target PDZ domains are often correlated with 
the onset of cancer pathologies.

There are several examples of viruses exerting their 
oncogenic activity by targeting PDZ containing pro-
teins, as for example Hepatitis C virus [158], Hepatitis 
B virus [159, 160] and Human T Cell Leukemia Virus 
1 [155, 161]. However, one of the most studied and 
characterized PDZ interacting viral proteins is the E6 
protein from HPV (Human Papillomavirus) (Fig.  2). 
Despite over 200 different strains of Papillomaviruses 
being identified, only a small subset (around 30) of 
them are reported as carcinogenic, denoted as high-
risk HPVs. Interestingly, only high-risk HPVs contain 
a PDZ-binding motif at the C-terminus of their E6 
protein, highlighting the importance of PDZ medi-
ated interaction in the tumorigenic progress of these 
viruses infection.

The principal event in tumorigenic activity of E6 is 
its ability to inactivate tumor suppressor p53 protein 
[174, 175]. Furthermore, many PDZ proteins with key 
roles in cell proliferation, cell growth, cell polarity 
and protein degradation are reported as interactors of 
E6 high-risk HPVs [176]. For such reasons, a number 
of studies have focused on understanding the bind-
ing process of E6 proteins with PDZ domains and the 
molecular details of this interaction [176]. In general, 
carcinogenic activity of high-risk HPVs is achieved 
through the interaction between E6 and PDZ domain 
of SAP-97 and Scribble proteins. Recently, the ability 
of high-risk HPV-16 and HPV-18 E6 proteins to target 
the PDZ domain of NHERF2 has been reported [177]. 
NHERF2 is a tumor suppressor protein which, among 
other functions in the cell, regulates endothelial pro-
liferation. Since in transformed cells apoptosis is pre-
vented only as long as the expression of E6 and E7 are 
sustained in the host cell, PDZ domains interacting 
with E6 proteins represent promising drug targets to 
contrast the tumorigenic activity of high-risk HPVs.

Protein‑Engineering optimized PDZ domain 
as pharmacological strategy
With the final goal to bind and sequester E6 protein from 
high-risk HPV18 and prevent it to interact with host cell 
targets, a recombinant optimized PDZ domain was con-
ceived and produced (named "PDZbody") by designing 
a chimeric domain composed of a strategically mutated 
PDZ domain fused with an extra alpha helix from E6AP 
(E6-associated protein), a different interactor of E6 pro-
tein in the host cell [178]. This engineered PDZbody 
allowed to target two different sites of the E6 proteins, 
with an increased affinity compared to its natural inter-
actors [178]. This strategy reported promising results 
both in in  vitro and in cellula experiments, confirming 
the ability of PDZbody to trap E6 protein from interact-
ing with host cell proteins. By following an analogous 
approach, a protein chimera composed of the PDZ2 
domain of the tight-junction protein MAGI1 and the 
LxxLL motif of E6AP was designed to disrupt E6 inter-
actions in the host cells [179]. Although these strategies 
represent an important starting point in the attempt 
to hijack the oncogenic activity of high-risk HPVs, the 
diversity of sequences of E6 proteins among the high-
risk HPVs family and the several PDZ domains involved 
in the pathogenic pathways makes an arduous effort to 
develop focused pharmacological therapies and further 
experimental efforts are demanded in order to step for-
ward to this goal.

PDZ Inhibitors
The crucial role played by PDZ domain in the spread-
ing of cellular signals and their aberrant activations in 
many human diseases makes the PDZ domains very 
attractive targets for drug discovery (a summarizing list 
of PDZ-containing proteins involved in human patholo-
gies is reported in Table 1). Thus, the discovery of small 
molecules able to impar the protein–protein interactions 
in which PDZs are involved, proved to be very profit-
able, rather than targeting entire signaling cascades, as 
typically achieved by receptor antagonists. Efforts in 
the identification of modulators of the PDZ signals has 
widely increased in the last years. Since 1996, when it 
was reported the first peptide able to bind a PDZ domain 
[180] more than 600 papers about PDZ inhibitors were 
published (source SciFinder). Among them, many 
remarkable results were reported such as the PDZ inhibi-
tors of PSD-95 [181], Synthenin [59] and Dvl [69, 70]. 
More than 600 crystal structures of human PDZ domains 
available at the protein data bank (ww.rcsb.org) have 
brought significant insight into the rational design of 
PDZ modulators. This structural information encouraged 
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Table 1  A list of major PDZ-containing proteins involved in human cancer diseases (light red), cystic fibrosis (yellow), nervous system 
disorders (light violet), viral infections and cancer induced by viruses (light green)

PDZ-containing protein Disease-related function References

CAR11 binding to G protein coupled receptor [71]

Disheveled (Dvl) activation of Wnt signal pathway [63]

Dlg proteins member of SCRIBBLE polarity complex [33]

GIPC1 binding to G protein coupled receptor [72]

LARG-Rho binding to G protein coupled receptor [34]

Magi proteins scaffolding protein involved in cell polarity [40,41]

NHERF1-2 binding to G protein coupled receptor [73]

PALS1 (MPP5) member of CRUMBS polarity complex [33]

Par3 (PARD3) member of PAR polarity complex [33,44]

Par6 (PARD6) member of PAR polarity complex [33,44]

PATJ (INADL) member of CRUMBS polarity complex [33]

PREX1 binding to G protein coupled receptor [74]

Scrib member of SCRIBBLE polarity complex [33,39]

Synthenin (SDCB) activation of NF-kB pathway [55,56]

TIAM1 binding to G protein coupled receptor [34]

ZO1, ZO2 scaffolding proteins at the cell-cell junctions [34,45–47]

CAL regulation of CFTR trafficking and degradation [81]

NHERF1-2 positive regulation of CFTR activity [85]

Harmonin (USH1C) scaffolding protein involved in development and maintenance of 
cochlear hair cell bundles [143]

HtrA protease family binding to misfolded proteins, activation of protein degradation [135]

Mints (APBA1, X11) major interactor of amyloid precursor protein (APP) [123,125]
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Table 1  (continued)

PDZD7 member of the USH2 complex in hair cells of the inner ear [145–147]

PICK1 synaptic scaffolding protein, regulation of AMPA receptors [198]

PSD-95 (Dlg4) postsynaptic scaffolding protein [107,109]

SHANK proteins
(SHAN1, SHAN2, SHAN3) scaffolding proteins involved in synaptic development and function [105,113]

WHRN member of USH2 complex involved in hearing and vision [145–147]

Htra1 interaction with SARS-CoV E protein [166]

LNX2 interaction with SARS-CoV E protein [166]

MAST2 specific interaction with SARS-CoV-2 E protein [167]

MLLT4 (AFAD) interaction with SARS-CoV E protein [166]

NHERF-1 specific interaction with SARS-CoV-2 E protein [167]

NHERF-2 interaction with E6 protein from high-risk HPV-16 and HPV-18 [177]

PALS1 (MPP5) interaction with SARS-CoV E protein [166]

PARD3 interaction with SARS-CoV E protein [166]

PTPN13 (PTEN13) interaction with SARS-CoV E protein [166]

RADIL specific interaction with SARS-CoV-2 E protein [167]

Sap97 (Dlg-1) interaction with E6 protein from HPVs [176]

Scribble proteins interactions with E6 protein from HPVs [176]

SNX27 specific interaction with SARS-CoV-2 E protein [167]

Syntenin (SDCB) interaction with SARS-CoV E protein [166]

TJP1-2 (ZO1-2) interaction with SARS-CoV E protein [166]
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the use of molecular modelling studies. Virtual screen-
ing is highly used to identify PDZ inhibitors; indeed, it is 
possible to use the cognate substrate of the targeted PDZ 
to design a pharmacophore model by which selecting the 
studied compounds [182–184].

Despite the promising results, at the state of the art, 
no small molecules are in clinical or preclinical phase. 
It may be due to: (i) the wider surface of the binding 
pocket, making difficult to reach with high affinity the 
binding site by a small molecule [71, 185]; (ii) the prom-
iscuity of the PDZ domains making selectivity a big 
concern [186]; and (iii) the post translational modifica-
tions, such as phosphorylation, which have shown to be 
potent modifiers of binding affinities to PDZ domains 
and can either decrease or enhance affinity [186]. On 
the other hand, a large number of peptides and pepti-
domimetics have been evaluated as PDZ modulators. 
The most successful story is about NA-1. It is a peptide 
inhibitor of the PDS-95 PDZ2 with Ki of 4.4 μM. [149]. 
NA-1 (NH2-YGRKKRRQRRRKLSSIESDV-COOH) was 
designed as a fusion peptide bearing a PDZ binding 
sequence obtained from the cognate substrate GluN2B 
NMDAR and a Tat peptide to increase the cell perme-
ability. In phase II clinical studies, NA-1 reduced the 
number of heart attacks in patients at risk of embolic 
stroke [187]. Worthy of note, the studies about PSD-95 
led to a new paradigm in the design of PDZ inhibitors. 
The very similar structures of PDZ1 and PDZ2 suggested 
the development of a tandem binder. Starting from the 
cognate substrate GluN2B, a pentapeptide (IETAV) was 
identified which dimerized through a PEG linker leading 
to derivative AVLX-125, with 145-fold improved binding 
affinity compared with the monomer. and a Ki of 10 nM 
[188]. Later, the same authors reported a trimeric pep-
tide by adding another branch to AVLX-125. The added 
peptide (YKQTSV) was different from the previous one, 

because the PSD-95 PDZ3 had a lower homology with 
the other PDZ domains. The tripeptide showed a higher 
affinity compared to the dimer with a Ki close to 3  nM 
[153] (Fig. 5).

The crucial role played by DVL in the cancer devel-
opment, progression, metastasis and chemotherapy 
resistance [189] prompted great effort in the develop-
ment of small molecules able to impair this aberrant 
PDZ dependent activity. As a result, a large number of 
DVL small molecule inhibitors were synthesized. The 
first one, NSC6680036 reported in 2005 [190], was dis-
covered by a structure based virtual screening and the 
mechanism of action was confirmed by NMR studies 
[190]. NSC6680036 derivatives were not further devel-
oped because of their peptidomimetic rather than small 
molecule strcuture. Later, the same authors reported 
derivative J01-017a, identified by virtual screening and 
3D QSAR methods, with improved binding affinity (Kd 
1.5 μM) [191] and FJ9 (DVL3 Kd 26 μM) [68]. The latter 
derivative had an indole/indene-carboxylic acid scaffold 
which was conserved, with minor modification, in many 
DVL PDZ inhibitors, such as the non steroidal antinflam-
matory drug sulindac (Kd 11  μM) and KY02061 (IC50 
24 μM) [192]. In general, nonsteroidal anti-inflammatory 
compounds showed the ability to suppress the Wnt path-
way in breast, colon and lung cancers [192]. KY02061 
identified by virtual screening approach, impaired the 
Dvl–CXXC5 interaction by binding the PDZ domain, and 
increased of the β-catenin nuclear concentration favoring 
the bone anabolic activity [193]. Mahindroo et  al. [69] 
reported an indole based DVL PDZ inhibitor designed 
by mimicking the peptide sequence of the substrate. The 
most active compound, 6e, an indole-2-carboxamide-
5-carboxylic acid derivative, showed IC50 values of 23 and 
49 μM for DVL3 and DVL1, respectively (Fig. 6).

AVLX-125; PDZ1-2 Ki 10 nM [188] Trimeric peptide; PDZ1-2-3 Ki 3 nM [153]
Fig. 5  Chemical structures of AVLX-125 inhibitor molecule and its trimeric peptide derivative targeting PSD-95 PDZ domains
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Benzofused heterocycles were reported as privileged 
scaffolds for the inhibition of PDZ of the DVL: indole 
and indazole with Kd in the one-digit micromolar range 
for DVL1 by Kandem (https://​doi.​org/​10.​5194/​mr-2-​
355-​2021), and benzothiophenone derivatives (i.e. 
BMD4602 with Kd of 11 μM) by Choi [182]. The indole 
ring seems to fit well in the binding pocket of the PDZ. 
Generally speaking, the benzofused scaffold (benzene 
plus a 5-menber heterocyclic ring) allows to generate 
a variety of diverse compound libraries with potential 

high binding affinity and selectivity towards the PDZ 
family. Indole derivatives were also reported as inhibi-
tors of some other PDZ domains [183]. Representa-
tive examples are reported in a series of papers by Fujii 
et al. By docking analysis the authors identified an irre-
versible inhibitor of membrane-associated guanylate 
kinase 3 (MAGI3) PDZ2. The biological activity of this 
inhibitor assayed in HTC116 cells and the binding was 
confirmed by mass spectrometry experiments [196]. 
Introduction of appropriate substituents at position(s) 

Fig. 6  Chemical structures of different DVL proteins inhibitors

Fig. 7  Chemical structures of chemical compounds targeting MAGI3, DVL and NHERF1

https://doi.org/10.5194/mr-2-355-2021
https://doi.org/10.5194/mr-2-355-2021
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1, 2 and 3 of the indole ring shifted the targeted PDZ 
from MAGI3 to DVLs (6e) [69] (for examples, see 
Figs. 6 and 7). A derivative with different substituent at 
the indole showed high binding affinity for both PDZ 
domain of NHERF1 in the micromolar range [194]. This 
example well illustrates the possibility to modulate the 
desired biological activity by changing substituents of 
the core skeleton. At the same time, it rises a not neg-
ligible problem of selectivity among the PDZ domains.

The growing interest for PDZ modulators over the 
past years is due to their vast therapeutic potential 
(Table  2). However, despite several hit-compounds 
have been discovered, none of them entered the clinic 
stages, suggesting that the optimization of initial hit-
compounds is not trivial. Overall, the drug discovery 
community have the opportunity to step up to the chal-
lenge posed by the development of PDZ inhibitors as 
new treatments for still unsolved diseases.

Conclusions
PDZ domains are the most diffused structural and 
functional protein modules mediating protein–protein 
interactions, and they serve as fundamental elements 
in the construction of the cellular molecular machin-
ery. Because of their importance in several molecu-
lar and physiological pathways, misregulation of 
PDZ-mediated interactions causes the onset of many 
pathologies. Thus, PDZ domains represent interesting 
drug targets and the inhibition of their interactions is 
an important pharmacological strategy to treat those 
pathologies.

A continuously increasing effort from the scien-
tific community allowed the development of brilliant 
experimental strategies aimed to target PDZ domains. 
However, difficulties arose during the years to achieve 
this goal, ranging from the generally low binding selec-
tivity of PDZ domains, which prevented the targeting 
of a specific PDZ domain, to the scarce efficiency of 
small molecules in inhibiting PDZ binding. As already 
described in paragraph 1.1 PDZ domains can be gen-
erally classified in three classes based on their bind-
ing specificity, depending on the sequence of the 
recognized protein. However, a proteomic analysis con-
ducted on mouse PDZ domains demonstrated this clas-
sification to be superficial, specificity of PDZ domains 
being particularly broad [197], multiple residues, prob-
ably arranged in the binding pocket, driving selectivity. 
In particular, residues 0 and -2 were shown to possess 
key role in determining affinity, while residues -4, -3, 
-2 and -1 seem to orchestrate the selectivity of the rec-
ognition [197] with overlapping consensus sequences 
among the domain family. As an illustrative exam-
ple of the complexity of successful inhibition of PDZ 
domains, in order to improve affinity and selectivity in 
targeting PDZ domain of CAL and avoid cross-reac-
tivity, the design of a selective inhibitor of CFTR-CAL 
binding (showed in Fig.  3), required not just a “C-ter-
minal core” (-4, -3, -2, -1, 0) to be taken into account, 
but also residues upstream (-9,-8,-7,-6,-5) were found 
to be fundamental [91].

Under this light, it appears clear that achieving a con-
trolled selectivity in targeting of PDZ domain appears 
to be a difficult but crucial task, in order to decrease 
cross-reactivity and improve efficacy in therapies 
based on the inhibition of PDZ-containing proteins. 
Nevertheless, given the importance of PDZ domains 
in several human pathologies, further theoretical and 
experimental investigations are required in order to 
develop feasible and efficient drugs able to regulate and 
inhibit PDZ mediated interactions.
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