Skip to main content
. 2021 Sep 15;13(9):9950–9973.

Table 8.

The Effects of the metabolic interventions on the epithelial ovarian cancer chemoresistant cell lines and the metabolic interventions that alter the chemosensitization properties: reports from in vitro studies

Human Ovarian Cell Types Intervention (Dose/Duration) Major findings Interpretation References

Glycolytic-related findings OXPHOS-related findings Oncological outcomes



Glycolytic enzymes Lactate Basal ECAR Others OXPHOS enzymes Basal OCR ROS Others Proliferation Apoptosis Viability
-Chemoresistant ovarian carcinoma (C200) -Glucose-free media (48 h) ↑↑ ↑↑ glycolytic capacity ↑↑ ↑↑ max. respiration ↑↑ -Chemoresistant cells had higher metabolic state than chemosensitive cells, and could shift toward OXPHOS or glycolysis under stress conditions. [51]
↑↑ ATP
-Chemosensitive ovarian carcinoma (A2780) (control) -Glucose-free media + pyruvate (1 mM, 48 h) ↑↑ ↑↑ glycolytic capacity ↑↑ ↑↑ max. respiration ↑↑
↑↑ ATP
-Glucose supplement (10 mM, 48 h) ↑↑ ↔ glycolytic capacity ↑↑ ↑↑ max. respiration
↑ ATP
-2-DG (100-200 mM, 48 h) ↑↑
-Oligomycin (0.1-2 µM, 48 h)
-Chemosensitive ovarian carcinoma (A2780) -2-DG (6.25, 25, 100 mM, 48 h) ↓↓ ↑↑ glycolytic capacity ↑↑ max. respiration -Chemosensitive cells might use glycolysis as the main pathway and could increase the metabolic state when using non-toxic concentration of cisplatin.
-Oligomycin (0.31-1.25 µM, 48 h) ↑↑ ↓↓
-Cisplatin (1 µM, 24-48 h) ↑↑ ↑↑
-Chemoresistant HGSC (PEO4) -Cisplatin (10 mM, 48 h) + oligomycin (0.1 mM, 48 h) ↓↓ -Resistant cells had the ability to shift metabolism type, and decreased viability when exposed to a combined OXPHOS inhibitor with cisplatin.
-Cisplatin (control)
-Cisplatin (10 mM, 48 h) + 2-DG (100 mM, 48 h) ↓↓
-Cisplatin (control)
-Chemoresistant serous ovarian carcinoma (C200) -2-DG (6.25, 25, 100 mM, 48 h) ↓↓ ↑↑
-Oligomycin (0.31-1.25 µM, 48 h) ↑↑ ↓↓
-Cisplatin (10 mM, 48 h) + oligomycin (0.1 mM, 48 h) ↓↓
-Cisplatin (control)
-Cisplatin (10 mM, 48 h) + 2-DG (100 mM, 48 h)
-Cisplatin (control)
-Platinum resistant HGSC (PEA2) -PEA2 and PEA1 in low-glucose medium (glucose 1 g/L, 72 h) -Platinum-resistant cells were more tolerate to glucose deprivation. [36]
-Platinum sensitive HGSC (PEA1) (control)
-Platinum sensitive HGSC (PEA1) -TRAP1 silencing (siRNA transfection, 72 h) ↔ PFK ↔ glycolytic capacity ↑ BEC index -Increasing OXPHOS by TRAP1 silencing or OXPHOS inducer could induce platinum resistant in platinum sensitive HGSC.
-Cisplatin (20 µM, 24 h) ↑↑
-Cisplatin + OXPHOS inducer (FCCP 1.2 µM, 24 h) ↑↑
-Cisplatin (control)
-Cisplatin + TRAP1 silencing
-Cisplatin (control)
-Cisplatin + TRAP1 silencing + metformin
-Cisplatin + TRAP1 silencing (control)
-Platinum resistant HGSC (PEA2) -TRAP1 silencing (siRNA transfection, 72 h) ↔ BEC index -Using complex I inhibitor, metformin, could induce chemosensitivity in platinum resistant HGSC.
-Cisplatin (40 µM, 24 h)
-Metformin (10 mM, 24 h)
-Cisplatin + metformin ↓↓
-Cisplatin resistant carcinoma (SKOV3/DDP) -2-DG (10 mM, 24 h) -Cisplatin resistant cells had higher OXPHOS, were less sensitive to glucose deprivation, but use of glycolysis or anti-apoptotic inhibitors could increase cell apoptosis. [52]
-Cisplatin sensitive carcinoma (SKOV3) (control) -OXPHOS inducer (FCCP 2.5 µM, 24 h) ↑ respiratory reserve
-Cisplatin sensitive ovarian carcinoma (SKOV3) -Glucose-free media (24 h)
-Bcl-2 inhibitor (ABT737 10 µM, 24 h) ↓ HIF-1α ↔ ATP
-Cisplatin (6 µg/mL, 24 h) ↓↓ ↓↓ ATP ↑↑
-Bcl-2 inhibitor + cisplatin ↓↓ ATP ↑↑
-Cisplatin resistant ovarian carcinoma (SKOV3/DDP) -Glucose deprivation (glucose-free medium)
-Glucose deprivation + 2-DG (10 mM, 24 h)
-Glucose deprivation (control)
-Bcl-2 inhibitor (ABT737 10 µM, 24 h) ↓ HIF-1α ↓↓ ATP ↑↑
-Cisplatin (6 µg/mL, 24 h) ↓↓ ATP ↑↑
-Bcl-2 inhibitor + cisplatin ↓↓ ↓↓ ATP ↑↑
-Bcl-2 inhibitor + 2-DG ↓ HK2 ↓ Glut1 ↓ PDHB
↓ HIF-1α ↓ IDH1
-Chemosensitive ovarian carcinoma (HeyA8, OV2008) -PFKFB3 inhibitor (PFK158, 10-15 µM, 30 min) ↓ glucose uptake -Inhibition of PFKFB3 could resensitize chemoresistant cells. [19]
-PFKFB3 inhibitor (PFK158, 10 µM, 24 h)
-CBP (77 µM, 24 h) or PTX (0.2 µM, 24 h)
-PFKFB3 inhibitor + CBP or PTX ↑↑
-Chemoresistant ovarian carcinoma (C13, HeyA8MDR) -PFKFB3 inhibitor (PFK158, 10-15 µM, 30 min) ↓ glucose uptake
-PFKFB3 inhibitor (PFK158, 10 µM, 24 h)
-CBP (453 µM, 24 h) or PTX (3.59 µM, 24 h)
-PFKFB3 inhibitor + CBP or PTX ↑↑
-Ovarian carcinoma (SKOV3, OVCAR3) -MPC1 inhibitor (20 µM, 1 week ↑ glucose uptake ↓ mt-pyruvate -MPC1 knockout promoted glycolysis and induced chemoresistance. [48]
↓ ATP
-MPC1 inhibitor + docetaxel (10 nM, 2 weeks)
-Ovarian carcinoma (SKOV3, COC1) -BM-MSC-CM (miR-1180 abundant 24 h) ↑ HK2 ↑ PDK1 ↑ ATP -MiR-1180 induced glycolysis and chemoresistance. [17]
-Standard medium (control) ↑ PKM2
↑ LDHA
-Glycolytic inducer (oligomycin 2 mg/mL, 24 h)
-BM-MSC-CM + cisplatin (0.5 mg/L, 24 h)
-Cisplatin (control)
-Cisplatin (0.5 mg/L, 24 h) + oligomycin (2 mg/mL, 24 h)
-Cisplatin (control)
-Anti-miR-1180 in BM-MSC-CM + cisplatin (0.5 mg/L, 40 min for ECAR, 5 days for proliferation) ↓ ATP
-control miRNA in BM-MSC-CM + cisplatin (control)
-Ovarian carcinoma (433, A2780, SKOV3, OVCAR3) -Pim1 overexpression (72 h) ↓ PGK1, PGAM1, ENO1, PKM, LDHA ↓ GLUT1 -Inhibition of Pim1 reduced glycolysis and induced chemosensitization to cisplatin. [65]
-Pim1 silencing (shPim1/siPim1 transfection, 72 h) ↔ HIF-1α
-Pim1 inhibitor (4 nM) + cisplatin (1 µM), 48 h
-Cisplatin alone (control)
-Ovarian carcinoma (CP90, OV90) -MICU1 silencing (siRNA transfection, 48-96 h) ↓ p-PDH ↑ complex III -Silencing MICU1 induced OXPHOS and enhanced cytotoxic effects of cisplatin in ovarian cancer cells. [45]
-MICU1 silencing + cisplatin (10-20 µM)/topotecan (5-10 µM)/PTX (10-25 µM)/doxorubicin (1-2 µM), 48 h ↑ PDH
-Cisplatin/topotecan/paclitaxel/doxorubicin (control) ↑ PDH
-Normal ovarian epithelial cells (OSE) -MICU overexpression (1 µg) ↑ p-PDH -MICU overexpression induced glycolysis and chemoresistance in normal ovarian cells. [45]
-MICU overexpression (1 µg) + cisplatin (2.5 µM), 48 h ↓ PDH
-Cisplatin (control)
-OCCC (RMG2, JHOC5) -Knockdown HNF1ß (sh-HNF1ß transfection) ↓ HK1 ↑ 3-PG ↑ citrate, 2-oxoglutarate -Silencing HNF-1ß caused OCCC cells impaired adaptation to hypoxic conditions, increased resistance to glucose deprivation, and enhanced cytotoxicity of cisplatin in hypoxic conditions. [33]
↓ LDHA ↑ PEP ↔ ATP
↑ pyruvate ↓ fumarate, malate
↓ MCT4
-Hypoxic condition (2% O2, 24/48 h)
-Knockdown HNF-1ß + Hypoxic condition
-Control + hypoxic condition
-Knockdown HNF-1ß + glucose-free medium (24/48 h)
-Cisplatin (20-80 µM + sh-HNF1ß in hypoxic condition ↓↓
-Cisplatin treated in control cells in hypoxic condition
-Cisplatin sensitive serous carcinoma (A2780, PEO1) -Cisplatin (50 µM, 24 h) ↓ HIF-1α -Cisplatin downregulated HIF-1α and induced apoptosis only in cisplatin sensitive cells. [54]
-NAC (5 mM, 24 h) + cisplatin (20 µM, 72 h)
-Cisplatin (control) -HIF-1α knockdown could resensitize cisplatin-resistant cells.
-Cisplatin resistant serous carcinoma (A2780/CP, PEO4) -Cisplatin (50 µM, 24 h) ↓ LDHA ↔ HIF-1α
-HIF-1α silencing (siHIF1 transfection, 72 h) + cisplatin (20 µM, 24 h)
-Cisplatin (control)

The arrow ↑ or ↓ denotes a significant increase or decrease in the metabolic-related finding or oncological activities with a P value <0.05. The arrow ↑↑ or ↓↓ denotes a significant increase or decrease in the metabolic-related finding or oncological activities with a P value <0.01. Abbreviations: 3-PG; 3-phosphoglycerate, BEC index; BioEnergetic Cellular index, BM-MSC-CM; Condition media of bone marrow-derived mesenchymal stem cells, CBP; carboplatin, ECAR; extracellular acidification rate, ENO; enolase, FCCP; carbonilcyanide p-triflouromethoxyphenylhydrazone, HGSC; high grade serous adenocarcinoma, HIF-1α; hypoxia-induced transcription factor, HK2; Hexokinase 2, HNF-1ß; Hepatocyte nuclear factor 1ß, IDH; isocitrate dehydrogenase, LDH; lactate dehydrogenase, MCT4; Monocarboxylate transporter 4, MICU1; Mitochondrial calcium uptake 1, miR; microRNA, MPC; mitochondrial pyruvate carrier, mt-; mitochondrial, NAC; N-acetyl cysteine, OCCC; Ovarian clear cell carcinoma, OCR; oxygen consumption rate, OXPHOS; oxidative phosphorylation, p-PDH; Phosphorylated-pyruvate dehydrogenase, PDH; pyruvate dehydrogenase, PDK; pyruvate dehydrogenase kinase, PEP; phosphoenolpyruvate, PFK; Phosphofructokinase, PFKFB3; 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, PGAM; phosphoglycerate mutase, PGK; phosphoglycerate kinase, PKM2; Pyruvate kinase M2, PTX; paclitaxel, ROS; Reactive oxygen species, TRAP-1; Tumor necrosis factor receptor-associated protein 1.