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Background
For men, prostate cancer is the second most common cancer and the fifth most deadly 
cancer worldwide [1], which has been a long-term threat to men’s health. Because early-
stage prostate cancer has no symptom, it is often found at an advanced stage. Therefore, 
the main goal of prostate screening is to identify disease at a curable stage [2]. Prostate 
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specific antigen (PSA) is a protein produced by prostate gland and based on elevated 
blood PSA level in prostate cancer patients, PSA screening was developed. Several stud-
ies in 1990s showed PSA screening could improve localized prostate cancer detection 
and had the potential to decrease disease mortality [3, 4]. However, the improvement by 
PSA screening is not without cost. Because several abnormal conditions of prostate can 
elevate PSA level, high over-diagnosis rate of PSA test varying from 1.7% to 67% were 
reported [5]. In recent guidelines issued by the United States Preventive Medicine Task 
Force (USPSTF), PSA screening was not recommended for men over 70 years old, and 
regular PSA screening required caution and discussion with clinician for men between 
55 and 69 years old [6].

DNA methylation is one of the main epigenetic modifications with great potential for 
biomarker development [7]. Many genes were found as potential biomarkers based on 
their methylation status for risk prediction, diagnosis, prognosis and treatment response 
in various cancer types [8]. Although a large number of differentially methylated genes 
were identified, only 14 of them have been translated into clinical tests [9], highlighting 
the urgent need for further development of methylation biomarkers.

In this study, we aimed to identify prostate cancer specific biomarkers with the ability 
to separate between non-aggressive and aggressive prostate tumors based on their DNA 
methylation levels. By taking advantage of the methylation data from public databases, 
such as TCGA and GEO, we identified a panel of DNA methylation biomarkers specific 
for prostate tumor, which have potential diagnosis value.

Methods
All critical R scripts were in Additional file 7.

Data collection

All cancer types with more than 5 normal samples and metastatic information were 
selected from TCGA (https://​portal.​gdc.​cancer.​gov/). DNA Methylation data (Illumina 
Human Methylation 450) for 16 main cancer subtypes were downloaded for this study: 
bladder urothelial carcinoma (BLCA), breast invasive ductal carcinoma (D_BRCA), 
breast invasive lobular carcinoma (L_BRCA), colon adenocarcinoma (COAD), esopha-
geal adenocarcinoma (ESCA), head and neck squamous cell carcinoma (HNSC), renal 
clear cell carcinoma (KIRC), renal papillary cell carcinoma (KIRP), hepatocellular car-
cinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), 
pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), rectal adeno-
carcinoma (READ), follicular thyroid carcinoma (F_THCA) and papillary thyroid carci-
noma (P_THCA).

The probe annotation file was downloaded from GEO (GPL13534, HumanMethyla-
tion450_15017482, Illumina Inc.). Clinical data were downloaded from cBioPortal for 
Cancer Genomics (http://​www.​cbiop​ortal.​org/) [10] by its web API.

Data processing

In AJCC CANCER STAGING MANUAL, tumor node metastasis (TNM) system is used 
as a general criterion to classify cancers by size and extent of the primary tumor (T), 
involvement of regional lymph node (N), and presence or absence of distant metastases 

https://portal.gdc.cancer.gov/
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(M) [11]. Based on TNM system, tumor samples in our study were classified into two 
main groups based on their metastasis state: localized tumors (N0 and M0: No regional 
lymph node metastases and No distant metastases), metastatic tumors (Regional lymph 
node metastases or Distant metastases or both). All NM information we referred to were 
pathological ones (stage at sample collection), except for PRAD which only had clinical 
M (stage at diagnosis).

Methylation levels were measured as β values for all 485,577 sites. β value, calculated 
as the ratio of methylated probe signal and total probe signal, ranges from 0 (entirely 
unmethylated) to 1 (entirely methylated). M value, calculated as log2 ratio of methylated 
probe signal and unmethylated probe signal, can be transferred from β value by Eq. (1). 
M values were found to provide better performance in differential methylation analyses 
[12] and thus were used in our methylation analyses and model construction.

For each cancer type, probes with missing data in normal or tumor samples were 
removed. Meanwhile, cross-reactive probes (probes that hybridize to alternate 
sequences) [13], probes with certain genomic factors (e.g. SNPs and INDELs) [14] and 
probes located on sex chromosomes were also removed.

Data analysis and pan‑cancer biomarker selection

R package ‘limma’ (3.30.13) [15] was used to compare among normal samples (N), local-
ized tumor samples (LT) and metastatic tumor samples (MT) for all 16 cancer types 
respectively based on their M values. Potential biomarkers for each cancer type were 
selected based on the significance of difference between N and LT (FDR < 0.05) and 
between N and MT (FDR < 0.05). The potential pan-cancer biomarkers were defined as 
biomarkers existing among more than half of cancer types (> 8) and exhibiting the same 
variation trend from N to LT and from N to MT. Results of this part were in Additional 
file 1: Table S1.

Prostate cancer specific biomarker selection

All 484 PRAD samples were classified into five groups based on Gleason scores. Poten-
tial PRAD specific biomarkers were identified based on the following criteria:

•	 Significant methylation difference between normal and all PRAD Gleason groups 
(FDR < 0.05);

•	 Significant methylation difference among PRAD Gleason groups (FDR < 0.05);
•	 Significant methylation difference between prostate cancer samples and whole set 

of urinary system related samples (normal prostate, normal bladder, normal kidney, 
BLCA, KIRC, KIRP) (FDR < 0.05) and detectable mean β difference (> 0.1);

From potential PRAD specific biomarkers, we further excluded pan-cancer biomark-
ers. As for biomarkers with similar methylation profile, we randomly selected one to 
keep the Pearson correlation coefficient (R) of all biomarker pairs lower than 0.8. Main 

(1)M = log 2

(

β

1− β

)
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results of this part were in Additional file  2: Table  S2, Additional file  3: Table  S3 and 
Additional file 4: Table S4.

LASSO selection and model construction

R package ‘lars’ (1.2) was used to further refine the list of potential biomarkers by LASSO 
penalization. In order to obtain reliable results, bootstrap method was performed: each 
time, a dataset with the same sample size as the original one was randomly selected with 
replacement to build a LASSO model. Within all bootstrapped datasets, sites with non-
zero coefficients in more than 99% LASSO models were kept. Results of this part were in 
Additional file 5: Table S5.

To measure the predictive ability of biomarkers in separating multiple groups of sam-
ples, generalized linear models were constructed based on PRAD dataset from TCGA. 
We repeated the following process 1000 times and calculated the area under the curve 
(AUC) of receiver operating characteristic curve (ROC): randomly selected methylation 
data (M values) of 70% samples to train a model and the rest 30% samples for validation. 
Results of this part were in Additional file 6: Table S6.

Four datasets from GEO were downloaded and used for in-silico validation: GSE47915, 
GSE76938, GSE112047 and GSE52955. All four GEO datasets were based on the same 
platform (Illumina Human Methylation 450) and sample compositions were as follows: 
GSE47915 (4 Gleason-6 prostate tumors and 4 benign prostate tissues), GSE76938 (63 
normal tissues and 73 PRAD), GSE112047 (16 normal tissues and 31 PRAD), GSE52955 
(Kidney: 6 normal and 17 tumor samples; Bladder: 5 normal and 25 tumor samples; 
Prostate: 5 normal and 25 tumor samples). Generalized linear models were constructed 
based on the whole PRAD dataset from TCGA and validated by GEO datasets. In order 
to construct an effective model using the least critical biomarkers, we selected the model 
with the lowest Akaike Information Criterion (AIC).

Results
Identification of pan‑cancer biomarkers

In order to select prostate cancer specific biomarkers, we first identify pan-cancer bio-
markers for further exclusion. We took advantage of tumor node metastasis (TNM) 
information and divided the samples into localized and metastatic tumors. The localized 
tumors here were defined as tumors with neither regional lymph node metastases nor 
distant metastases. The metastatic tumors here were defined as tumors from primary 
sites which have regional lymph node metastases or distant metastases. We then per-
formed a multi-comparison for normal tissues, localized tumors and metastatic tumors 
based on a linear model. Genomic sites with significant methylation difference between 
normal tissues and localized tumors (FDR < 0.05), and also between normal tissues and 
metastatic tumors (FDR < 0.05) were considered as the candidate biomarkers. We identi-
fied a large list of methylation biomarkers for each cancer type. The number of biomark-
ers varied from 16,595 for LIHC to 186,944 for LUSC. After combining the biomarkers 
from all cancers, we finally identified 17,969 hyper-methylated (methylation level of 
tumors higher than normal tissues) and 16,527 hypo-methylated pan-cancer biomark-
ers. The pan-cancer biomarker selection procedure was summarized in Fig. 1.
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Identification of prostate cancer specific biomarkers

For prostate cancer, Gleason scores is one commonly used system to grade prostate 
cancer by the histological appearance of carcinoma cells [16]. Given the prognosis dif-
ference between Gleason score 3 + 4 and 4 + 3, a five-grade new system was proposed 
[17]. Therefore, we first divided all prostate tumors from TCGA into five groups (Glea-
son score 6, Gleason score 3 + 4, Gleason score 4 + 3, Gleason score 8, Gleason scores 
9–10). After multi-comparison between normal and tumors from all five groups, only 

Fig. 1  Flowchart of our biomarker identification and preliminary validation
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one significantly differential methylation site between Gleason 6 and 3 + 4 (cg18554116, 
FDR = 0.023) and one between Gleason 4 + 3 and 8 (cg13614962, FDR = 0.039) were 
identified. Therefore, we merged groups with similar methylation profile and reclassi-
fied prostate tumors into three Gleason groups (GL 1: Gleason score = 6 and 3 + 4, GL 
2: Gleason score 4 + 3 and 8, GL 3: Gleason scores 9 and 10). A total of 3542 potential 
sites were identified with significant differences (FDR < 0.05) between normal tissues and 
three GL groups, and more importantly, among all three GL groups. We further applied 
the selection criteria described in Methods, and finally identified a total of 263 prostate 
tumor specific biomarkers.

To avoid the redundancy introduced by the highly similar methylation profiles, we 
performed a correlation analysis between all site pairs. We finally selected 233 sites (out 
of 263) to keep the Pearson correlation coefficient (R) among all site pairs lower than 0.8. 
Heatmaps of selected sites’ methylation level (M values) indicated their ability in sepa-
rating normal versus PRAD (Fig. 2a) and PRAD versus urinary samples (Fig. 2b).

LASSO penalization was further applied to select a panel of most valuable sites. 1000 
bootstrapped datasets were produced by TCGA PRAD dataset (each time a dataset 
with the same sample size as the original one was randomly selected with replacement) 
to build a LASSO model. 8 sites (cg04633600, cg05219445, cg05796128, cg10834205, 
cg16736826, cg23523811, cg23881697, cg24755931) with non-zero coefficients in > 99% 
LASSO models were selected as our final PRAD specific biomarkers (Fig.  3). 6 out of 
these 8 sites were located within 6 gene regions (SLCO4C1, TBC1D1, EDN2, GUCY2C, 
EHD1, CDC42BPB) respectively. The whole biomarker selection procedure was summa-
rized in Fig. 1.

Predictive ability of the prostate cancer specific biomarkers

Based on LASSO penalization and bootstrap method, a total of 8 biomark-
ers (cg04633600, cg05219445, cg05796128, cg10834205, cg16736826, cg23523811, 
cg23881697, cg24755931) were identified with the potential to separate multiple Glea-
son prostate tumors, normal versus prostate tumors and prostate tumors versus urinary 
system samples.

(1)	 Ability of separating multiple Gleason prostate tumors

	 Due to the lack of Gleason information of public available dataset, random sam-
pling validation method was used to evaluate the model. To detect early-stage 
prostate cancer before metastasis and with the notice of similar methylation pro-
files between Gleason 6 and Gleason 3 + 4 samples, we classified tumor samples 
into three groups (GL1: Gleason score = 6, GL2: Gleason score = 3 + 4, GL3: higher 
Gleason score prostate tumors). For 1000 times, 70% data was randomly used to 
construct a generalized linear model and the rest 30% data for validation. In order 
to test the predictive ability of our biomarkers, we tested models built by three 
types of information: (1) 8 sites + PSA + age; (2) 8 sites; (3) PSA + age. Using the 
above method, we tested the ability of our model in predicting GL1 versus GL2 
(Fig. 4a) and GL1 versus GL3 (Fig. 4b). As we expected, models had higher predic-
tive ability in GL1 versus GL3 than GL1 versus GL2. Although GL1 and GL2 had 
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similar methylation profiles, the model built by methylation level of 8 sites with/
without extra information still performed significantly better than model only 
based on PSA and age (p < 0.0001). Our analysis unexpectedly showed that model 
built by 8 sites without PSA and age information had significant higher AUC than 
model with such information (p < 0.0001).

(2)	 Ability of separating normal tissues and prostate tumors
	 Based on our biomarker panel, we used the whole TCGA PRAD datasets to build 

a generalized linear model by 5 biomarkers with the lowest AIC to separate nor-
mal tissues and PRAD samples, 0.878 * cg04633600 − 0.722 * cg05796128 − 0.853 
* cg23523811 − 1.524 * cg23881697 − 0.964 * cg24755931 + 13.851. To validate the 

Fig. 2  Methylation level (M values) of 233 prostate cancer specific biomarkers in TCGA datasets. a M values 
of 233 biomarkers in 533 prostate related samples (PRAD and normal samples). b M values of 233 biomarkers 
in 1749 samples. ‘Normal’ includes normal samples from bladder, kidney and prostate. ‘Urinary.tumor’ includes 
BLCA, KIRC and KIRP
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discriminatory power of the model in distinguishing prostate tumors from nor-
mal tissues in-silico, three GEO datasets were included (GSE47915: 4 Gleason-6 
prostate tumors and 4 benign prostate tissues; GSE76938: 63 normal and 73 PRAD; 
GSE112047:16 normal and 31 PRAD) to draw the ROC (Fig. 4c). It turned out that 
our model can effectively separate normal tissues with prostate tumors (AUC rang-
ing from 0.88 to 0.92).

(3)	 Ability of separating prostate tumors and other urinary samples
	 Clinical relevant biomarkers are expected to be prostate cancer specific, especially 

among other urinary related cancers. Therefore, we built a generalized linear model 
for two groups of samples, PRAD and urinary samples (BLCA, KIRC, KIRP, nor-
mal bladder, normal kidney and normal prostate). Based on significant differences 
between PRAD and other urinary samples, a model using 6 biomarkers, −0.745 * c
g04633600 − 0.864 * cg05219445 + 1.818 * cg05796128 + 0.899 * cg23523811 − 1.355 
* cg23881697 + 0.518 * cg24755931 − 7.394, could completely separate the prostate 
tumors from other urinary related samples in GSE52955 (Kidney: 6 normal and 17 
tumor samples; Bladder: 5 normal and 25 tumor samples; Prostate: 5 normal and 25 
tumor samples) with AUC = 1 (Fig. 4d).

Discussion
While a large number of differentially methylated genes were identified, in prostate 
cancer the only commercially available methylation-based test is ‘ConfirmMDx’ (MDx-
Health, Inc, Irvine, CA), which relies on the methylation status of three genes (GSTP1, 
APC and RASSF1) from biopsy tissues to avoid unnecessary repeat biopsies [18]. In 
addition to ConfirmMDx, numerous publications also identified differentially methyl-
ated genes from public databases [19–21]. With HumanMethylation450 array data from 
public databases, we are able to analyze methylation profile of both intragenic and inter-
genic regions. In all 485,577 sites tested by HumanMethylation450 array, there are about 
25% sites in intergenic region. In order to identify the undiscovered biomarkers, our 

Fig. 3  Methylation levels (M values) of all 8 selected PRAD-specific biomarkers. M values of normal tissues 
and five Gleason groups are shown (N: normal tissues, GL1: Gleason 6 prostate tumors, GL2: Gleason 3 + 4 
prostate tumors, GL3: Gleason 4 + 3 prostate tumors, GL4: Gleason 8 prostate tumors, GL5: Gleason 9–10 
prostate tumors)
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analysis took intergenic sites into account and identified genome-wide methylation sites 
as the potential biomarkers.

Public databases like TCGA provided a great opportunity for multi-cancer analysis. 
Most of the peer-reviewed literatures simply divided the patient samples into normal tis-
sues and tumors and identified the genes with different methylation level between those 
two groups as potential biomarkers [22–25]. Due to the dynamic features of methyla-
tion profile in cancer stages [26], in our pan-cancer biomarker selection, we innovatively 
divided the TCGA tumor samples into localized tumors and metastatic tumors based 
on TNM information. After comparing the DNA methylation status between normal 
prostate tissues and prostate adenocarcinoma (PRAD) samples within different Gleason 
groups, we identified 8 potential biomarkers which could separate PRAD within differ-
ent Gleason groups. 6 out of 8 biomarkers located in gene regions. As we expected, all 6 
related genes have not been identified as biomarker before which was mainly due to our 

Fig. 4  Model construction results of prostate cancer specific biomarkers. a AUC distribution of models in 
separating Gleason 6 and Gleason 3 + 4 prostate tumors. Models built by 8 biomarkers + PSA + age resulted 
in AUCs 0.57 ± 0.005. Models built by 8 biomarkers resulted in AUCs 0.63 ± 0.004. Models built only by 
PSA + age resulted in AUCs 0.46 ± 0.005. b AUC distribution of models in separating Gleason 6 with Gleason 
4 + 3 and 8–10 prostate tumors. Models built by 8 biomarkers + PSA + age resulted in AUCs 0.84 ± 0.003. 
Models built by 8 biomarkers resulted in AUCs 0.87 ± 0.002. Models built only by PSA + age resulted in 
AUCs 0.67 ± 0.004. c ROC of three validating GEO datasets in separating normal tissue and prostate tumors: 
GSE47915 in black (AUC = 0.88), GSE76938 in blue (AUC = 0.89), GSE112047 in red (AUC = 0.92). D) ROC of 
one GEO dataset in separating prostate tumors and other urinary related samples: GSE52955 (AUC = 1)
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selection procedure. In our study, we no longer treated differential methylation level of 
whole gene or whole CpG island as marker. Instead, we zoomed in to analyze the meth-
ylation level of CpG sites. Therefore, by our method, we were able to identify sites within 
genes that are not differentially methylated.

Due to similar methylation profiles between Gleason 6 and Gleason 3 + 4 prostate 
tumors, the predictive ability of our biomarker panel was not high. However, our panel 
of biomarkers still performed significantly better than PSA screening. Together with 
the results that our biomarkers can effectively separate Gleason 6 with Gleason 4 + 3 
and 8–10 prostate tumors, our biomarkers were still very promising in separating non-
aggressive with aggressive prostate tumors.

Urine has been reported as a perfect medium to detect the molecular biomarker for 
prostate cancer. For example, O’reilly et al. combined a DNA methylation panel of pre-
viously reported genes (GSTP1, SFRP2, IGFBP3, IGFBP7, APC, and PTGS2) to detect 
high-risk prostate tumors by urine samples [27]. Similarly, Zhao et al. developed a uri-
nary methylation assay based on methylation level of two genes (HOXD3 and GSTP1) 
[28] and Bakavicius et  al. combined PSA test and urinary methylation tests of three 
genes (RARB, RASSF1, GSTP1) [29]. However, the technique of qMSP, which is com-
monly used in previous studies to measure the general methylation of gene region, 
requires aberrant methylation in CpG islands [30]. In our current study, we identified 
the methylation sites within both CpG islands and non-CpG islands regions. Therefore, 
pyrosequencing [31], a technique to quantify single loci methylation level, could warrant 
our results for future clinical application. Indeed Yao et al. demonstrated pyrosequenc-
ing could effectively detect the methylation difference of loci cg05163709 in patient 
urine samples [32]. Together with the ability of our biomarkers in separating PRAD 
with other urinary samples, our panel of biomarkers showed great potential in urine test 
development.

Conclusions
In summary, this study identified and in-silico validated 8 methylation-based biomarkers 
which were valuable for aggressive prostate cancer detection.
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