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Abstract

Background: Microbiome-metabolome studies of the human gut have been gaining popularity in recent years,
mostly due to accumulating evidence of the interplay between gut microbes, metabolites, and host health.
Statistical and machine learning-based methods have been widely applied to analyze such paired microbiome-
metabolome data, in the hope of identifying metabolites that are governed by the composition of the microbiome.
Such metabolites can be likely modulated by microbiome-based interventions, offering a route for promoting gut
metabolic health. Yet, to date, it remains unclear whether findings of microbially associated metabolites in any
single study carry over to other studies or cohorts, and how robust and universal are microbiome-metabolites links.

Results: In this study, we addressed this challenge by performing a comprehensive meta-analysis to identify human
gut metabolites that can be predicted based on the composition of the gut microbiome across multiple studies.
We term such metabolites “robustly well-predicted”. To this end, we processed data from 1733 samples from 10
independent human gut microbiome-metabolome studies, focusing initially on healthy subjects, and implemented
a machine learning pipeline to predict metabolite levels in each dataset based on the composition of the
microbiome. Comparing the predictability of each metabolite across datasets, we found 97 robustly well-predicted
metabolites. These include metabolites involved in important microbial pathways such as bile acid transformations
and polyamines metabolism. Importantly, however, other metabolites exhibited large variation in predictability
across datasets, suggesting a cohort- or study-specific relationship between the microbiome and the metabolite.
Comparing taxonomic contributors to different models, we found that some robustly well-predicted metabolites
were predicted by markedly different sets of taxa across datasets, suggesting that some microbially associated
metabolites may be governed by different members of the microbiome in different cohorts. We finally examined
whether models trained on a control group of a given study successfully predicted the metabolite’s level in the
disease group of the same study, identifying several metabolites where the model was not transferable, indicating a
shift in microbial metabolism in disease-associated dysbiosis.

Conclusions: Combined, our findings provide a better understanding of the link between the microbiome and
metabolites and allow researchers to put identified microbially associated metabolites within the context of other
studies.
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Background
The microbial communities that reside in the human gut
wield a multitude of activities with pervasive effect on hu-
man health and disease. Among these activities, perhaps
the most important and clinically relevant one is the
microbiota’s metabolic activity. Indeed, metabolites of mi-
crobial origin or metabolites that undergo microbial trans-
formation have been implicated in various host processes,
including immune system development and activity, host
metabolism, and even brain function [1–4]. Several recent
studies have also established a causal link between micro-
bially produced metabolites and various medical condi-
tions (or benefits). One well-known example is that of
trimethylamine N-oxide (TMAO), a product of microbial
metabolism of nutrients found in eggs and red meat,
which accelerates atherosclerotic cardiovascular diseases
[5, 6]. Other examples include imidazole propionate, a
metabolite over-produced by Type 2 Diabetes-associated
bacteria, which was found to impair glucose tolerance [7],
Akkermansia muciniphila-associated nicotinamide, which
was shown to improve motor symptoms in a mouse
model of ALS [8], and microbially produced short-chain
fatty acids (SCFAs), which have a protective role against
intestinal inflammation [9]. Other microbial metabolites
protect from influenza [10] and even improve mental
quality of life [11]. Moreover, microbiome-associated me-
tabolites such as the organic acid taurine or some SCFAs
have been studied as potential novel therapeutic agents,
intended to “correct” negative effects of microbial dysbio-
sis [12].
This appreciation for the metabolic role of the gut

microbiome in maintaining host health or promoting
disease calls for a better understanding of which gut me-
tabolites are governed by the microbiota, and specifically
by which members of the microbiota. To address this
challenge, in vitro culturing of common gut strains [13,
14], in vivo experiments comparing germ-free mice to
humanized mice [15], as well as bioinformatic analyses
of bacterial genomes [16], have all been applied in an at-
tempt to map the metabolic potential of the human gut
microbiota. However, additional factors shaping the hu-
man gut metabolome, including host genetics, diet, med-
ications, as well as other exogenous factors, render an
extremely complex system in which the exact role of the
microbiota remains challenging to untangle [3, 17].
One promising approach for systematically evaluating

microbe-metabolite links in the human gut relies on in-
tegrative data analysis of paired microbiome and metab-
olome profiles [18–32]. Such studies, referred to here as
‘microbiome-metabolome’ studies, typically apply high-
throughput sequencing and metabolomics technologies
to a set of fecal samples from a cohort of interest, and
then utilize various statistical and computational
methods to identify potential links between the obtained

microbiome and metabolome profiles. Such analyses
commonly involve correlation- and linear regression-
based methods, aiming to estimate relations between
specific metabolites and specific microbes or between
specific metabolites and the entire microbial community.
More recently, classic machine learning and deep learn-
ing models have also been applied to predict metabolite
levels based on microbiome data and to highlight the
main taxa associated with each metabolite [33–35]. Mel-
onnPan, for example, uses an elastic net model to pre-
dict metabolite levels based on functional profiles of
microbiome samples, and was shown to well-predict 107
out of 466 identified metabolites, including sphingoli-
pids, fatty acids, and B-group vitamins [33].
Such microbiome-metabolite associations reported in

individual studies of the human gut, however, raise sev-
eral questions. First, it remains unclear what do such as-
sociations mean biologically, and whether or not they
reflect underlying mechanisms. In fact, our lab has re-
cently shown that microbe-metabolite correlations have
extremely high false positive rates in predicting mechan-
istic links in simulated data [36]. Second, in the context
of case-control studies, it is often unclear how the asso-
ciation is related to the phenotype/disease that is under
study and how to interpret findings of associations that
exist in one study group but not the other vs those that
exist in both groups. Third, it is unclear how
generalizable are such associations, given that they were
identified in a specific cohort, often using a specific
computational method and a specific metagenomics/
metabolomics processing protocol. Put differently, it is
often not known how replicable are reported associa-
tions in other human gut datasets of varying geograph-
ies, ages, sample processing protocols, and profiling
platforms [37, 38]. Moreover, even when analyzing large
cohorts, the transferability of microbiome-based metab-
olite predictions to new cohorts is not guaranteed, as re-
cently demonstrated on serum metabolites [35].
In this study, we focus primarily on the third question

above and attempt to characterize the landscape of gut me-
tabolites that are consistently well-predicted by the gut
microbiome, as captured in fecal microbiome-metabolome
datasets. We hypothesize that some of the reported
microbiome-associated metabolites are biologically meaning-
ful, representing metabolites that are universally governed by
the microbiome across different cohorts and biological back-
grounds, and are robust to the variation in the technical set-
tings used in each study. We accordingly aim to identify a
set of gut microbiome-metabolite associations, consistent
across multiple cohorts and settings, and explore the specific
genera contributing to the predictability of each such metab-
olite. To this end, we obtained multiple paired fecal
microbiome-metabolome datasets and focused on the
healthy individuals in each dataset. For each dataset, we then
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trained and evaluated a machine learning model per metab-
olite, aiming to predict the metabolite level in each sample
based on microbiota composition. We examined which me-
tabolites were consistently well-predicted across multiple
datasets, using rigorous statistical methods inspired by trad-
itional meta-analysis techniques to define “robustly well-
predicted” metabolites. Lastly, we analyze which genera con-
tribute most to the predictability of each robustly well-
predicted metabolite, and whether these too are consistent
across datasets and in healthy vs. disease cohorts. We believe
that this cross-study perspective on suspected microbial-
governed metabolites in the human gut is crucial for priori-
tizing further research hypotheses and for enhancing inter-
pretations of future microbiome-metabolome studies by
providing relevant context.

Results
A unified human fecal microbiome-metabolome multi-
study dataset collection
We collected and processed data from 10 different hu-
man gut microbiome-metabolome studies, totaling 779
samples from 629 individuals in ‘healthy’ (‘control’)
groups and 954 samples from 729 individuals in 7 ‘dis-
ease’ (‘case’) groups (Table 1, Fig. 1A, Additional file 1:
Table S1). Notably, these studies spanned various ages,
geographies, health conditions, metagenomics/metabolo-
mics platforms, and 16S rRNA gene hypervariable re-
gions, all of which are expected to introduce
heterogeneity between datasets, as demonstrated in

previous microbiome and metabolome meta-analysis
studies in various fields [44–46]. Importantly, in case-
control studies, we treated healthy and disease sub-
groups separately (considering only study groups with ≥
40 samples) to avoid the confounding impact of the dis-
ease state on both the microbiome and metabolome
compositions. Moreover, to first focus on robustly well-
predicted metabolites in general population-like cohorts,
in our analysis below we initially considered only the
healthy datasets (Fig. 2A).
Microbiome data was processed to obtain genus-level

profiles, providing more comparable taxonomic profiles
across 16S rRNA gene sequencing and whole genome
shotgun sequencing (WGSS) datasets at the expense of
sensitivity and resolution (Fig. 1B), as done in several re-
cent microbiome-related meta-analysis studies [44, 47].
Specifically, when possible, 16S rRNA gene sequencing
raw data were re-processed using QIIME2 [48] to obtain
genus-level relative abundances and MetaPhlAn2 tables
were collapsed to genus-level profiles (see full details in
Additional file 1: Table S2). Metabolite identifications
were unified by converting the identifications given in
each dataset to the Human Metabolome Database
(HMDB) metabolite identifiers [49]. Further processing
details, statistics, and study-specific required adjustments
are detailed in the “Methods” section and in Additional
file 1: Tables S2–S4.
Clearly, the set of detected features in both micro-

biome and metabolome profiles (i.e., genera and

Table 1 Studies included in the main analysis (additional details provided in Additional file 1: Table S1)

Dataset ID
[abbreviation] 1

Reference # samples – control2 # samples – cases
(disease/condition)2

Microbiome data
description

Metabolome data
description

# metabolites3

KIM_ADENOMAS [KI] [27] 102 138 (Colorectal adenomas
and CRC)

16S, V3-V5 Untargeted, MS 410

YACHIDA_CRC [YA] [39] 127 220 (CRC) WGSS Targeted, MS 387

FRANZOSA_IBD [FR] [22] 56 157 (IBD) WGSS Untargeted, MS 294

HE_INFANTS [HE] [40] 68 – 16S, V4 Targeted, NMR 113

iHMP_IBD [iH] [19] 72 [26] 212 [79] (IBD) WGSS Untargeted, MS 504

JACOBS_IBD_RELATIVES
[JA]

[21] 54 –5 16S, V4 Untargeted, MS 45

MARS_IBS [MA] [41] 70 [24] 143 [51] (IBS) WGSS Targeted, NMR, and
MS

40

POYET_BIO_ML [PO] [26] 141 [83] – 16S4, V4 Untargeted, MS 313

SINHA_CRC [SI] [42] 89 42 (CRC) 16S, V3-V4 Untargeted, MS 351

ERAWIJANTARI_GC [ER] [43] –5 42 (History of gastrectomy
for GC)

WGSS Untargeted, MS 342

1The “Dataset ID” is formatted as follows: <First author/cohort name>_<Short cohort description>. The 2 letter abbreviations are used for plotting purposes
2Sample numbers refer only to samples included in the analysis herein. In cases of temporal datasets with multiple samples per individual, the number of
individuals is noted in square brackets
3Number of HMDB-annotated metabolites. See “Methods” section
4WGSS data was also available but not used in the analysis herein
5This study group was not used
CRC colorectal cancer, MS mass spectrometry, 16S 16S rRNA gene sequencing, WGSS whole genome shotgun sequencing, IBD inflammatory bowel disease, IBS
irritable bowel syndrome, GC gastric cancer
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metabolites, respectively) are expected to differ between
studies due to both technical [2, 50, 51] and biological
factors [20, 52, 53]. This limited overlap across datasets
hinders in and of itself our ability to carry microbiome-
metabolite links over different studies, and is discussed
further in the “Discussion” section below. Here, in order
to detect consistently well-predicted metabolites, we first
examined which gut metabolites are shared between
datasets, limiting our analysis to those that appear in 3
or more datasets. Out of 951 unique, non-rare, HMDB
compound IDs found across all datasets, 273 (29%) were
shared among 3 or more datasets (Additional file 3: Fig-
ure S1A). We additionally examined which genera are
shared between datasets, to facilitate specific analysis of
contributors to well-predicted metabolites. Out of 85
unique, none-rare genera found across all datasets, 55
(65%) were shared between 3 or more datasets (Add-
itional file 3: Figure S1B). Pairwise comparisons be-
tween studies in terms of overlap in microbial and
metabolic features further demonstrate the large vari-
ability and often limited overlap (Additional file 3:
Figure S1C-D).

Predictability of metabolite levels based on microbiome
data
We implemented a machine learning pipeline to estimate
how well genus-level profiles can predict metabolite levels
in each dataset and for each metabolite (Fig. 1C). Specific-
ally, for each HMDB-annotated metabolite that appeared
in 3 or more datasets, we trained a random forest regres-
sion model to predict metabolite levels based on genera
relative abundances. Alternative pipelines with either a
different machine learning model or a different hyperpara-
meter tuning process were examined as well (see Add-
itional file 2: Supplementary Note 1). We evaluated each
model’s performance using leave-one-out cross validation
by calculating the Spearman’s correlation coefficient, ρ,
between actual vs predicted left out metabolite levels.
Spearman’s correlation P value was also recorded, and
FDR-correction was applied to all metabolite-models in
each dataset (see “Methods” section). Metabolites with a
predictability of ρ > 0.3 and an FDR < 0.1 were referred to
as ‘well-predicted’ metabolites.
Overall, 1255 metabolite predictor models (i.e., for a

specific metabolite in a specific dataset) were trained,

Fig. 1 Analysis scheme. A We collected data from multiple studies that included both microbiome and metabolome profiles from human fecal
samples. Data from case-control studies were split into two datasets: “healthy” and “disease”. B We implemented a processing pipeline for both
the microbiome and the metabolome data. For the microbiome, we collapsed MetaPhlAn-based or 16S rRNA gene-based profiles into genus-
level profiles with unified names. For the metabolome, we retained only metabolites for which HMDB-IDs were identified, imputed missing
values, and scaled log values to zero-mean unit-variance (see “Methods” section). C For each metabolite in each dataset, we trained a random
forest regression model (see “Methods” section). Models were only trained for metabolites that appeared in 3 or more datasets. We identified the
well-predicted metabolites in each dataset, i.e., metabolites that can be successfully predicted by genus-level profiles of the gut microbiota
(Spearman’s ρ > 0.3 and FDR-corrected P value < 0.1 on out-of-fold predictions). D We next applied meta-analysis random-effects models to
compare metabolite predictability results across datasets and identify metabolites which are consistently well-predicted by the microbiota’s
composition. E To further evaluate whether robustly well-predicted metabolites also demonstrate similar dynamics in relation to the microbiome
across datasets, we analyzed how well metabolite models trained on one dataset perform on another dataset, using only shared genera features.
F We additionally identified the main genera contributors to the model and again compared contributors across datasets to evaluate the
similarity between models trained on different datasets for the same metabolite, and identify consistent contributors. G Lastly, we identified
metabolites for which genera contributors change in disease
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covering 273 unique metabolites in 9 healthy datasets.
Of these, 418 models were able to successfully predict
the metabolite level (with ρ > 0.3 and FDR < 0.1), and
accordingly defined as well-predicted. In each individual
dataset, 0–53% of the analyzed metabolites were well-
predicted (Fig. 2B). Of the 273 unique metabolites, 219,
125, and 49 metabolites were well-predicted in at least 1,
2, or 3 datasets, respectively, while 54 were never well-
predicted (Fig. 2C, D). Full predictability results for each
metabolite in each dataset are provided in Additional file
1: Table S5.
We further validated that these predictability results

cannot be attributed to statistical noise or other artifacts
in the data by comparing the fraction of well-predicted
metabolites in each dataset to the fraction of well-

predicated metabolites obtained in a shuffled dataset
(see “Methods” section). We found that in such shuffled
datasets only 0.3% of the metabolites in each dataset
were well-predicted on average, compared to 29.1% well-
predicted metabolites in the real data. As an additional in-
dependent validation for our machine-learning pipeline,
we confirmed that our set of well-predicted metabolites in
one specific dataset exhibits marked overlap with the set
of predictable metabolites found by another study that an-
alyzed this same dataset (see Additional file 2: Supplemen-
tary Note 2 and Additional file 3: Figure S2A).

Robustness of metabolite predictability
While the results reported above already demonstrate
intriguing variation in predictability and highlight several

Fig. 2 Identification of metabolites well-predicted by the microbiome using machine learning. A Number of samples per dataset. Colored portions of each bar
represent samples from the healthy/control study group. B The number of well-predicted metabolites in each dataset. Black diamonds represent the total
number of metabolites analyzed per dataset (with the percentage labels indicating the percent of analyzed metabolites that were well-predicted in each
dataset). C The number of datasets each metabolite was well-predicted in, stratified by the number of datasets each metabolite appeared in. D Examples of
predictability results for 30 metabolites. Each heatmap row represents a dataset and each column denotes a specific metabolite. Cell colors and labels represent
predictability levels (Spearman’s ρ on out-of-fold predictions and FDR-corrected P values: *FDR < 0.05; **FDR < 0.01; ***FDR < 0.001). White cells indicate that
the metabolite was not available in that dataset. The examples presented here include metabolites never well-predicted (leftmost panel), well-predicted in only
one dataset (center panel), and well-predicted in several datasets (rightmost panel)
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metabolites that appear to be well-predicted across mul-
tiple datasets, we next applied a more rigorous statistical
approach for synthesizing and combining the predict-
ability results obtained for each dataset independently
and for quantifying how robustly well-predicted is each
metabolite. Specifically, we used random-effects models
(REM)—a common meta-analysis statistical framework
for integrating effect sizes from multiple studies with dif-
ferent sample sizes and study designs, and for calculating
an estimate for the mean effect across studies and its as-
sociated P value [54] (see “Methods” section). We applied
this framework to the predictability results obtained above
for each metabolite, using the level of predictability (scored
by Spearman’s ρ) as the measured effect size in each dataset.
The resulting REM for each metabolite thus provides an es-
timation of the mean predictability of that metabolite across
datasets, with an associated P value (that was FDR-corrected
to account for multiple REMs). Finally, we defined metabo-
lites with a REM predictability score > 0.3 and FDR < 0.1 as
‘robustly well-predicted’, resulting in a total of 97 robustly
well-predicted metabolites (Fig. 3A, B and Additional file 1:
Table S6). For comparison, only 87.7 ± 5.5 metabolites met
the above threshold on average when applying our pipeline
to datasets where metabolite labels were shuffled (see
“Methods” section), suggesting that the number of robustly
well-predicted metabolites in the original dataset is some-
what higher than expected by chance (P = 0.053).
Examining the resulting robustly well-predicted me-

tabolites, we found that they span multiple metabolite
classes including amino acids, carbohydrates, and bile
acids, and are significantly enriched in the “fatty acids
and conjugates” class (FDR-corrected P value: 0.026,
Fisher’s exact test, Additional file 3: Figure S3A-B). Im-
portantly, our set of robustly well-predicted metabolites
included multiple metabolites that take part in clinically
important pathways known to involve the gut micro-
biome. For example, this set highlights the microbiota’s
known essential role in the transformation of primary
bile acids to secondary bile acids and the metabolism of
other bile components [55] (Fig. 3C). Additional path-
ways in which multiple metabolites were robustly well-
predicted by the microbiome included trimethylamine
N-oxide (TMAO) metabolism, tryptophan, and indole
derivatives metabolism (Additional file 3: Figure S3C),
polyamine biosynthesis (Fig. 3D), poly-unsaturated fatty
acids (PUFAs), specifically omega-3 and omega-6 acids
pathways (Additional file 3: Figure S3D-E), L-proline bio-
synthesis, sugars metabolism, and metabolites involved
in the gut-brain axis, all of which are known to involve
the gut microbiota. We additionally found that robustly
well-predicted metabolites tend to have a larger propor-
tion of their variance explained by the microbiome, as
estimated by an independent study of the largest
microbiome-metabolome dataset collected to date [20]

(see Additional file 2: Supplementary Note 2 and Add-
itional file 3: Figure S2B).
Interestingly, we also found several robustly well-

predicted metabolites that are only rarely considered in
the context of the gut microbiota. One such example is
medium-chain fatty acids (MCFAs), including specific-
ally caproic acid (HMDB0000535), pentadecanoic acid
(HMDB0000826), and heptanoic acid (HMDB0000666).
MCFAs are highly abundant components in dairy foods
and have an essential physiological role as efficient cell
energy sources [56]. A recent study demonstrated a sig-
nificant association between dairy foods intake and the
microbiota’s composition, suggesting an intriguing inter-
action between gut microbes and these MCFAs [57].
Another example is dicarboxylic acids, including specif-
ically malonic acid (HMDB0000691), undecanedioic acid
(HMDB0000888), pimelic acid (HMDB0000857), suberic
acid (HMDB0000893), sebacic acid (HMDB0000792),
azelaic acid (HMDB0000784), and dodecanedioic acid
(HMDB0000623). The clinical relevance of both metab-
olite classes, specifically in the context of type 2 diabetes
[58, 59], and their relatively unexplored relation with the
gut microbiome, suggest interesting directions for future
research. Additional file 2: Supplementary Note 3 details
additional intriguing information concerning the set of
robustly well-predicted metabolites, their biological
roles, and previously reported links to the microbiome.

Similarity and variation between metabolite models from
different datasets
So far, we have identified metabolites that are consist-
ently well-predicted by the composition of the human
gut microbiota across multiple datasets. We next sought
out to examine whether the models trained for predict-
ing these metabolites across the different datasets are in
fact similar to one another. To this end, we first esti-
mated the contribution of each genus feature to each
model using the permutation-based approach from Alt-
man et al. (2010) to assign a P value for each feature in
each model (“Methods” section and Additional file 1:
Table S7). We refer to genera with P < 0.1 as significant
contributors. Comparing models trained on different
datasets for the same metabolite, we observed substantial
variation in the numbers of shared significant contribu-
tors (Fig. 4 and Additional file 3: Figure S4), suggesting
that even robustly well-predicted metabolites may not
necessarily be predicted by the same microbiota features
in different datasets.
To further examine the similarity between models, we

also looked at cross-predictability, i.e., how well does a
metabolite model trained on one dataset predict the
levels of the metabolite in samples from another dataset
(considering only shared genus features; see “Methods”
section). Mirroring our findings above, for some
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Fig. 3 (See legend on next page.)
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metabolites such as beta-alanine, sebacic acid, taurine,
and N-acetylputrescine, models were successfully trans-
ferred between most dataset pairs (Fig. 4B, C, Additional
file 3: Figure S4A-B), whereas for other metabolites, such
as L-tyrosine and xanthine, models were not transferable
between any pair of studies (Fig. 4D, Additional file 3:
Figure S4C).
Importantly, model comparisons, either by comparison

of shared contributors or by cross-predictability analysis,
are somewhat impeded by technical variation between
studies, and specifically by differences in the microbiome
profiling technology used (16S rRNA gene vs. WGSS).
Indeed, dataset pairs that used the same metagenomic
technology have a significantly higher number of shared
features in comparison with dataset pairs that used dif-
ferent technologies (29.6 vs. 22.3 on average; Mann-
Whitney P value < 0.0001), which in turn affects the
number of shared significant contributors (1.4 vs. 0.6, P
value < 0.0001). Yet, we did find examples where despite
a large overlap in available features, models still mark-
edly differed in the set of detected significant contribu-
tors, as was the case, for example, for L-tyrosine and
cholic acid and when comparing the models obtained
for the datasets YACHIDA_CRC_HEALTHY (YA) vs
FRANZOSA_IBD_HEALTHY (FR) (Fig. 4D, Additional
file 3: Figure S4D).
Notably, comparing the set of significant contributors

across models and datasets can further provide intri-
guing and valuable insights. For example, we defined
genera that contributed to over 50% of the metabolite
models they participated in, “consistent contributors” to
that metabolite (“Methods” section; Additional file 1:
Table S8), and found that often such genus-metabolite
links coincide with known metabolic capacities of cer-
tain gut bacteria. Bacteroides, for example, consistently
contributed to models of several bile components,
whereas Alistipes consistently contributed to various
polyamine models, both in agreement with experimental
findings [55, 60, 61] (see Additional file 2: Supplemen-
tary Note 3 for additional examples). We also note that
even though genera more abundant in the gut were
more likely to significantly contribute to more

metabolite models (Spearman’s correlation 0.45, P value
< 0.0001), some genera strongly contributed to the pre-
dictability of multiple gut metabolites even though their
abundance in the gut is typically low. Odoribacter, for
example, a member of the Bacteroidetes phylum whose
mean relative abundance in our data was 0.4%, was a
significant contributor in 94 of 223 models it partici-
pated in. This genus was also a consistent contributor to
models of multiple bioactive metabolites such as L-
phenylalanine, pimelic acid, linoleoyl ethanolamide, and
L-tryptophan. Similarly, Haemophilus (mean relative
abundance in our data of 0.4%), from the Proteobacteria
phylum, was a significant contributor in 49 of 126
models. Finally, we note that the average number of sig-
nificant contributors per metabolite ranged from 5.6 (L-
Arginine) to 10.6 (Cholic acid and Dihomo-gamma-
linolenic acid), suggesting an association with multiple
different genera.

Metabolite predictability in health vs. disease
We eventually sought to determine whether various pat-
terns identified above for the healthy datasets also hold
in disease. To this end, we additionally considered the 7
disease datasets obtained from the same studies as de-
scribed above (Table 1). These included 3 datasets of pa-
tients with colorectal adenomas or cancer, 2 of patients
with inflammatory bowel disease (IBD), 1 of patients
with a history of gastric cancer, and 1 of patients with ir-
ritable bowel syndrome (IBS), totaling 954 samples
(Table 1, Additional file 1: Table S1).
We first examined whether robustly well-predicted

metabolites were also consistently well-predicted in
the disease datasets. We accordingly used an expan-
sion of REMs (termed subgroup meta-analysis) that
considers studies from two or more different cohort
types (here: healthy and disease) and estimates both
the mean effect within each subgroup of studies, as
well as the between-subgroup differences (see
“Methods” section). Out of 97 robustly well-predicted
metabolites identified above, 81 were also present in
at least 3 disease datasets, and of these 57 (70%) were
also robustly well-predicted in disease datasets using

(See figure on previous page.)
Fig. 3 Robustly well-predicted metabolites. A Top 20 robustly well-predicted metabolites. Diamonds’ centers represent the random-effects
model’s estimated mean effect size (mean predictability) and diamonds’ widths represent the mean’s 95% confidence interval. The numbers in
square brackets represent the number of datasets in which the metabolite was available. A star beside the number of datasets indicates that in
one or more of the datasets, this metabolite was annotated with low confidence (see “Methods” section). The red dashed line represents a
Spearman’s correlation of 0.3, which we defined as the threshold for a successful predictive model. B Forest plots of 3 robustly well-predicted
metabolites. Yellow boxes represent predictability estimates from each dataset, with box sizes proportional to the number of samples and
horizontal lines denoting the 95% confidence interval for each estimate. The diamonds and red dashed line are as above. Prediction intervals
(dark red interval) further indicate the predicted range of the effect in 95% of unobserved studies [54]. C An illustration of a part of the bile
metabolism pathway (including primary bile acids, secondary bile acids, and other bile components). Colored circles indicate whether the
metabolite was robustly well-predicted by the gut microbiome (green), not robustly well-predicted (gray), or not included in the analysis (white).
D An illustration of parts of the polyamines metabolic pathways. Color coding is as in panel C.
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Fig. 4 (See legend on next page.)
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the same thresholds as before (Additional file 1: Table
S9, Additional file 3: Figure S5). Importantly, even
though the remaining 24 metabolites did not meet
our criteria, none exhibited a significantly different ef-
fect than the one observed in the healthy datasets (as
estimated by the Q statistic), suggesting that statistical
power was insufficient in these cases.
Finally, we examined whether metabolites that are

well-predicted in both the healthy and disease datasets
of a specific study, are well-predicted by similar models.
As before, we compared models both by comparing their
significant contributors and by testing how well the
healthy-trained model transfers to the pertaining disease
dataset. Notably, here we analyzed each case-control
study independently, allowing us to eliminate potential
heterogeneity between datasets, and focus on model-
differences associated with the disease. Overall, we per-
formed healthy vs. disease comparisons for 128 metabo-
lites over 5 studies in which both healthy and disease
datasets were available (covering 83 distinct metabolites).
We observed that many metabolite models transferred
well from healthy to disease in different studies, suggest-
ing that microbiome-metabolite dynamics in these cases
are not substantially altered in the disease state. Docosa-
pentaenoic acid (22n-6), 12,13-DHOME, and phyto-
sphingosine, for example, transferred well from healthy
to disease in both an IBD cohort and a colorectal aden-
omas cohort. N-acetylputrescine, pimelic acid, taurine,
and tryptamine similarly transferred well in two different
colorectal adenomas/cancer cohorts, and sebacic acid
transferred well in all 3 datasets analyzed (Additional file
3: Figure S6). In some of these cases, we additionally ob-
served a substantial overlap in significant contributors
between the healthy and disease models (Additional file
3: Figure S7). In contrast, several metabolite models did
not transfer well even though the metabolite was well-
predicted in both the healthy dataset and linked dis-
ease dataset independently, potentially indicating a
shift in microbiome metabolism in disease (Additional
file 3: Figure S6; Additional file 3: Figure S7). The full
catalog of significant contributors to both the healthy
and the disease models can be found in Additional
file 1: Table S7.

Methods
Data acquisition
In this study, we acquired data from several published
studies of the human gut microbiome and metabo-
lome. We focused on studies that included at least 40
individuals in each study group (or total, in non-case-
control studies), for which both the microbiome and
the metabolome were profiled from fecal samples. In
case-control studies, cases and controls were treated
as separate datasets to avoid the confounding impact
of the disease state on the composition of both the
microbiome and metabolome. Metabolomic datasets
with only metabolite m/z info and without identifica-
tion by name, KEGG IDs [62], or HMDB IDs [49]
were discarded. For microbiome data, we considered
both 16S rRNA gene sequencing and WGSS datasets.
For 16S rRNA gene studies, we obtained raw fastq
files and for WGSS datasets we obtained MetaPhlAn2
tables (see Additional file 1: Table S2 for additional
information). For longitudinal datasets, where multiple
samples were collected from each participant over
time, we randomly chose up to 3 samples per subject,
to avoid having a few subjects potentially dominating
the dataset. Datasets were either downloaded from
public repositories (e.g. NCBI Sequence Read Archive,
Qiita [63]) or shared by the corresponding authors.
As to June 2020, we identified over 70 published
microbiome-metabolome studies of the human gut
(reflected by fecal samples specifically), approximately
40 of which contained a sufficient number of samples
as noted above. Of these, we were able to obtain the
necessary data and metadata from only 10 datasets
(either from online repositories or through the au-
thors). Table 1 and Additional file 1: Table S1 de-
scribe the included datasets in detail and reference
their corresponding publications. Since the difference
between infants’ and adults’ microbiomes may intro-
duce a particularly prominent source of heterogeneity,
we also conducted a supplementary analysis, exclud-
ing the one infant dataset included in our study (the
HE dataset). Overall, this exclusion did not markedly
impact our findings and its results are reported in
Additional file 2: Supplementary Note 4.

(See figure on previous page.)
Fig. 4 Comparisons of metabolite models between datasets. A An overview of pairwise model comparisons for each robustly well-predicted metabolite. For
each metabolite, we compared the number of shared features (i.e., genera; grey points) and the number of shared significant contributors (purple points) for
every pair of models trained on two different datasets. For each metabolite we additionally note the average number of significant contributors over all models
trained for that metabolite (turquoise points). Error bars represent standard deviations. B A detailed comparison of models for predicting beta-alanine levels. Left
panel: contributors comparison. Each row represents a dataset in which the metabolite was well-predicted by the microbiome and each column represents a
genus feature (only features significantly contributing to at least one model are included). Purple-colored cells denote the significance of the specific feature in
the specific model (P < 0.1). White cells indicate that the feature was not available in the specific dataset. Right panel: Cross-predictability analysis. Matrix
columns indicate the dataset used for training and matrix rows indicate the dataset used for testing. Numbers in cells indicate Spearman’s correlation between
predicted and actual metabolite levels in the test dataset. Red cells denote cases where the model was well transferred from the column-dataset to the row-
dataset. C. D include similar plots as B, for sebacic acid and L-tyrosine metabolites, respectively. *P < 0.05; **P < 0.01; ***P < 0.001; CP cross predictability
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Pre-processing of metabolomics datasets
We obtained processed metabolomics datasets from
each study. As metabolomics technology, processing
method, and output differed substantially between stud-
ies (see Additional file 1: Table S1 and S4), we pre-
processed the metabolome datasets to allow comparison
of metabolite-related findings across datasets. Import-
antly, we focused on unifying metabolite identifiers, and
did not attempt to unify the measured values themselves.
Specifically, we mapped metabolite identifications in
each dataset to HMDB IDs. In many datasets, metabo-
lites in the obtained data were identified by their names
only, and we mapped metabolites to HMDB identifiers
using MetaboAnalyst’s compound ID conversion utility
[64]. Additional manual curation was performed in order
to map metabolite names that were not identified by
MetaboAnalyst (due to, for example, typos or special
characters in the name, or in cases where MetaboAna-
lyst found more than one match). In datasets where me-
tabolite masses were available, manual curation of such
metabolites was also validated by mass.
To track cases where metabolite mappings to HMDB

identifiers could not be done with high-confidence, we
flagged metabolite annotations as “representative” in any
of the following cases: Metabolites were marked as “rep-
resentative” or “low-confidence annotation” in the ori-
ginal data; Annotation was ambiguous (e.g., due to mass
spectrometry inability to differentiate two or more me-
tabolites with the same mass and retention time); When
the mapping was not automatic by MetaboAnalyst due
to some uncertainty (e.g., when the metabolite name was
listed with a different spelling); Or when there was some
conflict between MetaboAnalyst mappings and original
mappings. These “representative” annotations are
marked in the supplementary tables and in Fig. 3A to in-
dicate lower confidence.
Finally, metabolites present in 10 or fewer samples in

each cohort were discarded, missing or zero values were
replaced with 90% of the minimal metabolite concentra-
tion observed across all other samples, and metabolite
values were log-transformed and scaled to zero-mean
and unit-variance, as commonly accepted for such data
[65]. Additional file 1: Table S4 details which data was
available in each dataset and how the mapping was
conducted.

Pre-processing of 16S datasets
16S rRNA gene sequencing raw data was processed
using QIIME2 version 2019-1 [48] as follows. When raw
data was multiplexed, we demultiplexed the data using
QIIME2’s demux plugin. We applied DADA2 [66] in
order to denoise the data and extract amplicon sequence
variants (ASVs). Whenever a sufficient high-quality
overlap of forward and reverse reads was available,

DADA2 was also used for merging paired end reads. We
trimmed reads in each dataset to the first position with a
median quality score under 30. In cases where this re-
sulted in reads shorter than 100 base pairs, reads were
trimmed according to the original publication.
To assign ASVs to taxonomy, we trained a Naive

Bayes classifier per dataset using QIIME2’s feature-
classifier plugin [67]. Classifiers were trained on reads
extracted from the SILVA 99-OTU database [68], ac-
cording to the specific 16S rRNA gene hypervariable re-
gion used in each dataset. We then collapsed the ASV
table to genus-level counts, joining all reads without a
genus-level annotation to an “Unclassified” category.
This step was performed in order to make genera “en-
tities” as comparable as possible between 16S-based and
WGSS-based taxonomic profiles, given the substantial
methodological gaps. In each dataset, samples with less
than 1000 reads were removed. Read counts were nor-
malized to sum to 1 in each sample, resulting in a table
of relative abundances. Lastly, we removed rare genera,
defined by either less than 25% non-zero values, or less
than 10 non-zero values, or a mean relative abundance
over samples of less than 0.1%. Further study-specific
parameters and details about the 16S rRNA gene data
processing of each dataset are detailed in Additional file
1: Table S2.

Pre-processing of WGSS datasets
For WGSS datasets, we obtained taxonomic relative
abundance tables precomputed by MetaPhlAn2 [69],
with one exception where another detailed taxonomic
profile was available (see Additional file 1: Table S2). In
order to unify the WGSS and 16S rRNA-based taxo-
nomic profiles, non-bacteria entities were discarded, all
data was collapsed to genus-level relative abundances,
and genera names were translated when necessary to the
genera names used in the 16S rRNA gene processed
data. Rare genera were removed from each dataset using
the same criteria described above. All downstream ana-
lyses were performed on this unified genus-level relative
abundance data. Further dataset-specific details about
the processing of each WGSS data and unification of
genus-level taxonomic annotations are detailed in Add-
itional file 1: Tables S2 and S3.

Implementation of a machine learning pipeline for
predicting metabolite levels based on genus abundances
We implemented a machine learning pipeline to esti-
mate how well genus-level profiles can predict metabol-
ite levels in each dataset and for each metabolite. We
specifically tried 4 pipeline settings: Random forest (RF)
regression with default hyperparameters, RF regression
with hyperparameters tuning, elastic net (ENet) with de-
fault hyperparameters (effectively making it a lasso
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regression), and ENet with hyperparameters tuning. We
intentionally focused on relatively simple and commonly
used machine learning models (as opposed to top-
performing and much more complex models such as
XGBoost [70]) to avoid the risk of increased overfitting.
A comparison of pipeline results and further details are
presented in Additional file 2: Supplementary Note 1.
We eventually focused on results from the first pipeline,
as it yielded the overall highest number of well-predicted
metabolites.
RF regressors were trained for each HMDB-annotated

metabolite in each dataset, as long as the metabolite ap-
peared in 3 or more datasets overall. The performance of
each such model was estimated using leave-one-out cross
validation (LOOCV) to maximize the amount of data for
training. In datasets where multiple samples existed per
subject, we used a leave-one-subject-out approach and es-
timated performance using only a single sample from each
out-of-fold subject. We calculated the RMSE, R2, and
Spearman’s correlation coefficient, ρ, between actual me-
tabolite levels and predicted ones for out-of-fold samples.
Spearman’s correlation P value was also recorded, and
FDR was applied to all metabolite-models in each dataset
separately. Due to the randomness introduced by the RF
models, we ran the entire pipeline 5 times per metabolite,
verified that results are sufficiently stable (see Additional
file 2: Supplementary Note 1), and reported performance
metrics that were averaged over these 5 independent runs.
We defined metabolites with a Spearman’s ρ > 0.3 and an
FDR < 0.1 as “well-predicted”metabolites, similar to previ-
ous related works [33]. Lastly, we compared the number
of well-predicted metabolites in each dataset to the num-
ber of well-predicted metabolites in a shuffled dataset,
where metabolite values were shuffled across samples.
The above pipeline was implemented in R using the

“tidymodels” package suite [71]. Specifically, we used “ran-
ger” for RF [72] algorithm and “glmnet” for ENet [73].

Defining robustly well-predicted metabolites
Meta-analysis is a well-established statistical framework
for synthesizing results from multiple studies addressing
the same topic [54]. Here, in order to synthesize results
(correlation coefficients of predicted vs. actual metabolite
levels) from multiple datasets, we adopted a classic meta-
analysis statistical method, namely, random-effects models
(REMs). REMs consider the effect sizes from each study,
weighed proportionally to the study’s sample size, and as-
sume that in addition to within-study variance, there is
true heterogeneity between trials (i.e., between-study vari-
ance), likely resulting from differences in study settings
and cohort characteristics. True effects are further as-
sumed to follow a normal distribution, with an average ef-
fect μ and variation τ2. In our case, we chose REMs as we
assumed that multiple factors may be affecting the

predictive power of microbiota composition on metabolite
levels, ranging from technical factors such as sample col-
lection, storage, sequencing, or metabolomics instruments
and processing, to cohort characteristics such as ages, di-
ets, geographic locations, health status, and others.
Specifically, for each of the metabolites that appeared

in 3 or more datasets, we used a REM to estimate the
distribution of “true effects”, i.e., the predictability level
of that metabolite based on genus-level profiles of the
microbiota. We used the DerSimonian-Laird (DL) esti-
mator for between-study variance, as implemented in
the “meta” R package [74]. From each REM we then re-
corded the estimated average effect μ, its confidence
interval, and its associated P value. The estimated aver-
age effect of a specific REM can be roughly interpreted
as the average predictability of this metabolite over a
new set of microbiome-metabolome studies. Smaller P
values indicate higher confidence that the mean effect is
indeed robust across a wide range of studies and co-
horts. FDR correction was applied to all REM P values.
Following our definition of “well-predicted” for a specific
metabolite in a specific study above, we defined metabo-
lites with a REM average effect > 0.3 and FDR < 0.1 as
“robustly well-predicted” by the microbiome. Notably,
different estimators for between-study variance (i.e., al-
ternatives to the DL estimator) result in slightly different
lists of robustly well-predicted metabolites. Additional
file 1: Table S6 includes the full DL-based REM results,
as well as information about which metabolites are ro-
bustly well-predicted when using alternative estimators.
Finally, to assess the obtained overall number of ro-

bustly well-predicted metabolites, we shuffled metabolite
labels within each dataset 1000 times. For each shuffled
dataset, we then ran the REM pipeline described above
and re-computed the number of robustly well-predicted
metabolites.
All REM computations were conducted using the

“meta” [74] and “metafor” [75] R packages.

Comparison of metabolite models in healthy datasets
For each robustly well-predicted metabolite that was also
well-predicted independently in 3 or more datasets, to-
taling 41 metabolites, we used two analysis approaches
to explore how similar are metabolite models trained on
different datasets. For all of the below analyses, we only
considered datasets in which the metabolite was well-
predicted according to the definitions above.
In the first approach, we calculated permutation-based

feature importance scores for each genus feature in each
model using R’s ranger package [72]. We additionally ap-
plied the method introduced by Altman et al. (2010) to
compute a P value for each feature in each model [76],
and considered features with a P value below 0.1 as
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significant contributors. We then compared pairs of
models by examining the number of shared significant
contributors.
In the second analysis for assessing similarity between

datasets, we tested how well a model trained on one
dataset predicts metabolite levels in another dataset and
vice versa, following previous microbiome-related meta-
analysis studies [25, 77, 78]. We refer to this analysis as
“cross-predictability analysis”. To overcome the differ-
ences between each pair of studies, we kept only genus
features shared between both datasets, and additionally
down-sampled the larger dataset to meet the sample size
of the smaller dataset. After taking only the shared fea-
tures, we re-normalized genus profiles to relative abun-
dances. We then re-trained a RF regression model for
the examined metabolite using the first dataset and
evaluate its performance using LOOCV. If, due to down-
sampling, the metabolite was no longer considered
“well-predicted” by the new model, we discarded the
specific comparison. Otherwise, we evaluated how well
does the model perform on the second dataset and
whether the performance meets the “well-predicted me-
tabolite” definition used previously (i.e., the model trans-
fers well). Due to the randomness presented by the
down-sampling procedure and the RF itself, the final
performance measures we report are averaged over 10
independent runs of the pipeline.

Analysis of consistent genus contributors to metabolite
models
We identified genera that consistently contributed to the
models of a specific metabolite by calculating the num-
ber of models in which a genus was a significant con-
tributor (as previously defined). If a genus significantly
contributed to over half of the metabolite models it ap-
peared in, we referred to the genus as a consistent con-
tributor to that metabolite.

Subgroup meta-analysis of healthy vs. disease datasets
Subgroup analysis is the process of comparing an effect
(here, predictability of a metabolite) between two or
more cohort “variants”. It is often used when some effect
is suspected to differ between population subgroups
(e.g., children vs. adults). Importantly, while large-scale
studies often analyze these differences inherently, sub-
group meta-analysis allows comparison of effect sizes
between subgroups in smaller-scale studies and even
when these subgroups appear in separate studies [54].
Here, we analyzed all metabolites with at least 3 healthy
datasets and 3 disease datasets. We specifically used a
REM for computing the average effect within subgroups
and a fixed-effects model for estimating the between-
subgroup differences. For each subgroup meta-analysis,
we then recorded the mean predictability (and associated

P value) within healthy datasets (as before), mean pre-
dictability (and associated P value) within disease data-
sets, and the Q statistic and P value for differences
between subgroups. Sub-group meta-analysis was con-
ducted using the “meta” [74] R package, based on code
from the “dmetar” [79] package.

Comparison of metabolite models in case-control
datasets
As described before for comparison of models across
healthy datasets, we used two analysis approaches to ex-
plore how similar are metabolite models trained on
healthy vs. disease datasets from the same study. First,
we compared significant contributors as previously de-
scribed. Second, we performed a cross-predictability
analysis to examine how well the healthy-model predicts
metabolite levels in the pertaining disease dataset. To ac-
count for different study group sizes, the larger group
was down-sampled to match the size of the smaller
group. If, due to down-sampling, the metabolite was no
longer well-predicted in the healthy group, we discarded
that specific comparison. We limited our analysis to 5
case-control datasets that also had at least 1 well-
predicted metabolite, and ran the entire analysis pipeline
10 times, averaging the results over these runs.

Discussion
Understanding how the gut microbiome shapes the gut
metabolome is without a doubt crucial for any investiga-
tion of microbiota-related mechanisms affecting the host’s
health and of microbiome-based therapy. Yet, the inter-
action between gut microbes and metabolites remains
largely uncharacterized for various technical and meth-
odological reasons [3, 13]. Microbiome-metabolome stud-
ies of the human gut aim to characterize these
interactions using a data-driven approach, but the
generalizability of reported associations is unclear given
the substantial differences between studies and cohorts.
Here we perform a first large-scale meta-analysis of

paired fecal microbiome-metabolome datasets. We spe-
cifically evaluated the robustness of human gut
microbiome-metabolite associations in 9 datasets of
healthy individuals totaling 779 samples. We imple-
mented a bioinformatic pipeline for processing these
paired microbiome-metabolome datasets, used machine
learning to predict metabolite levels in each dataset
based on microbiome composition, and leveraged classic
meta-analysis techniques to identify metabolites that are
consistently well-predicted by the microbiome. Overall
we found 97 such “robustly well-predicted” metabolites,
spanning several known microbiome-related metabolic
pathways such as bile acids [55], tryptophan metabolites
[80], polyamines [81], and polyunsaturated fatty acids
[82]. Several other metabolites, such as certain MCFAs
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and dicarboxylic acids, however, were barely reported in
the context of the gut microbiota to date, and may sug-
gest interesting and clinically relevant future research
directions.
We further analyzed how similar are metabolite

models across different datasets, both by comparing sig-
nificant microbiota contributors in each model and by
examining cross-predictability. We found that for some
metabolites models were highly similar, yet for others,
models exhibited low similarity across datasets and poor
transferability. Lastly, we performed a similar analysis
comparing the healthy datasets to 7 additional disease
datasets and found that the overall predictability of most
metabolites remained similar in disease.
Notably, the datasets included in this meta-analysis dif-

fer from one another in multiple aspects, both technical
and biological. Technical factors include sample handling,
sequencing/metabolomics methods, and bioinformatic
methods for processing raw data, all of which were previ-
ously shown to contribute to artefactual differences in de-
tected species or metabolites [2, 50, 51, 83, 84].
Metabolome profiling is particularly sensitive to technical
variation in the profiling procedure, where the number of
quantified metabolites can range from a few dozens to
tens of thousands depending on whether a targeted or
untargeted approach was taken and the exact instrumental
setup used [2]. In our meta-analysis, the biases of each
processing pipeline are potentially reflected in microbes
and metabolites missing from the data, mislabeled, or in
skewed abundance values. This sort of “noise”, however, is
expected to mostly conceal associations, rather than to
produce false ones. The second class of inter-study differ-
ences, i.e., those that stem from biological factors, include
cohort characteristics such as age, geography, gender,
medical background, and diet, all of which potentially
introduce additional variation between datasets both in
microbiome and metabolome compositions, and in
microbiome-metabolome-host interactions [28, 51, 53, 85,
86]. Still, the goal of our study was to quantify variation in
microbiome-metabolite associations that arise from all
types of heterogeneity, and accordingly, to highlight those
specific associations that seem to be consistent over all
such heterogeneity-introducing factors. With the collec-
tion and publication of many additional microbiome-
metabolome datasets, stratified analyses efforts could po-
tentially reveal more robust associations while controlling
for a specific factor of interest.
Beyond the findings reported in this study, our work

calls attention to several important topics concerning
microbiome-metabolome studies. First, the difficulties in
processing and converting the different datasets into a
unified format highlights a challenging first hurdle in
any attempt to generalize findings across microbiome-
metabolome studies. These difficulties arise both from

the large variation in data formats, especially for meta-
bolomics data, and from the substantial differences in
detected microbiome/metabolome features in each study
as discussed above. Indeed, previous meta-analyses stud-
ies have discussed these challenges in the context of
microbiome or metabolome independently [47, 87–89]
and non-surprisingly these challenges further exacerbate
here in this multi-omic meta-analysis. Improved
standardization in collecting, processing, cataloging, and
storing both microbiome and metabolome data (and
maybe even specific standards for microbiome-
metabolome datasets) is therefore key for future progress
in this field.
We also note that in the context of case-control studies,

where researchers attempt to detect microbiome-metabolite
links characteristic of a specific disease, there may be a few
different types of potential disease-relevant patterns. First, a
metabolite may be strongly linked to the overall microbial
composition (e.g., well-predicted) in both the case and the
control study groups, but enriched or depleted in one of the
groups. Such a pattern (especially if this microbiome-
metabolite link is found also in many other studies) may sug-
gest that this specific association reflects a part of the basic
“house-keeping” metabolic machinery of the microbiome
and that the shift in the metabolite level in disease may be at-
tributed to a dysbiotic microbiome. Second, a metabolite
may be well-predicted by the microbiome in both groups
but with different taxa contributors in each group, suggesting
again an altered composition or an altered metabolic activity
of community members in disease. Lastly, a metabolite may
be well-predicted in one group (e.g., control), but not the
other. In this case, that metabolite’s level in individuals with
the disease is potentially controlled more by other disease-
related factors. Overall, this suggests that the robustness of
microbiome-metabolite links, both across studies and across
study groups, should be taken into consideration when inter-
preting disease-associated shifts and calls for a better theory
and methodology for distinguishing between clinically rele-
vant and non-relevant cross-omic interactions.
Most microbiome-metabolome studies conduct some

sort of an association-based analysis, using either corre-
lations or simple linear regressions to identify specific
microbes whose abundances across samples strongly
correlate with the concentration of a specific metabolite.
A smaller subset of such studies further apply machine
learning techniques for this purpose, and new machine
learning-based tools have been recently introduced [20,
33, 34, 41, 90, 91]. In this work, we intentionally opted
for this less common, machine learning-based approach,
treating the ability to predict a metabolite level based on
the composition of the microbiome as a quantifiable
proxy for metabolite-microbiota associations. The mo-
tivation for this choice was two-fold: first, machine
learning enables to detect non-linear and complex
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associations that may involve multiple different factors
and that may be missed in a simpler, correlation-based
approach; second, by considering the entire microbial
community, rather than a specific taxon abundance, we
were able to identify metabolites consistently associated
with the microbiota (or a sub-population of it) as a
whole while overcoming the substantial differences be-
tween studies in terms of taxonomic resolution and ac-
curacy that potentially prevent meaningful taxon-specific
comparisons. Still, as both machine learning and univari-
ate methods ultimately capture statistical dependencies
in the data, we believe that many of the insights reported
in our study are relevant for other statistical methods
such as correlation.
Importantly, though, high predictability of a metabolite

does not necessarily indicate a direct mechanistic inter-
action between the microbes that contribute toward this
prediction and the metabolite, just as a microbe-
metabolite correlation does not necessarily indicate a
direct relation of consumption or production [36].
Nonetheless, these statistical associations reveal poten-
tially intriguing structures and dependencies in the data
and so their robustness and generalizability are key. We
hypothesize that the metabolites found here as robustly
well-predicted are strongly tied to the gut microbiota
composition even in the presence of other influencing
factors, and hence that changes in the microbial com-
position will most likely cause changes in metabolite
levels, making such metabolites a prime target for
microbiome-based interventions.
Our analysis clearly faced several important caveats.

One major challenge of this study and of the need to
unify data from multiple different studies is that we had
to limit our analysis to metabolites with a shared anno-
tation (here, HMDB identifiers) and that are present in
multiple studies (using potentially different metabolomic
approaches). With these limitations, we effectively fo-
cused on 273 metabolites out of approximately 97,000
(non-unique) raw metabolites identified in the 9 healthy
datasets. These 273 metabolites constitute only a tiny
fraction of gut metabolites, as most gut metabolites, and
specifically those of microbial origin, are largely uniden-
tified and poorly represented in metabolic databases [3,
17, 92]. Moreover, though for the main part of the ana-
lysis, we did not directly compare genus-level statistics
between cohorts, a similar limitation is applicable for the
microbiome data. Collapsing the taxonomic data into
genus level profiles somewhat mitigated this problem,
but also constrained our ability to capture associations
at the species and strain level [93–95]. Our observation
that some genera are consistently associated with metab-
olites while others demonstrate inconsistent patterns, for
example, may be affected by the extent of metabolic di-
versification within each genera, which is known to vary

dramatically [96]. This meta-analysis was also clearly
limited by the number of cohorts included. Future work
including significantly more cohorts could not only sub-
stantially expand the pool of analyzed metabolites but
could also better account for technical and biological
differences between studies, as noted above. Further-
more, expanding the analysis to multiple “disease” co-
horts, perhaps even of the same disease, could uncover
additional insights related to consistent shifts in meta-
bolic activity of dysbiotic microbiota. This calls for both
additional high-quality microbiome-metabolome studies
and improved availability and standardization of such
datasets.

Conclusions
The network of host-microbiota-metabolome interactions
in the human gut is extremely complex and requires mul-
tiple research efforts in multiple complementary direc-
tions in order to be fully deciphered and characterized.
Here, we identified metabolites consistently associated
with the microbiota across diverse studies and cohorts,
thus distinguishing between study-specific and robust or
universal links. Our findings provide a better understand-
ing of microbiome-metabolome interactions and allow re-
searchers to put newly identified microbially associated
metabolites within the context of other studies.
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disease metabolite models. Figure S8. Comparison of different machine
learning pipelines.
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