
Let Me Upgrade You: Impact of Mobile Genetic Elements on
Enterococcal Adaptation and Evolution

Cydney N. Johnson,a Emma K. Sheriff,a Breck A. Duerkop,a Anushila Chatterjeea

aDepartment of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA

ABSTRACT Enterococci are Gram-positive bacteria that have evolved to thrive as both
commensals and pathogens, largely due to their accumulation of mobile genetic elements
via horizontal gene transfer (HGT). Common agents of HGT include plasmids, transposable
elements, and temperate bacteriophages. These vehicles of HGT have facilitated the evolu-
tion of the enterococci, specifically Enterococcus faecalis and Enterococcus faecium, into
multidrug-resistant hospital-acquired pathogens. On the other hand, commensal strains of
Enterococcus harbor CRISPR-Cas systems that prevent the acquisition of foreign DNA,
restricting the accumulation of mobile genetic elements. In this review, we discuss entero-
coccal mobile genetic elements by highlighting their contributions to bacterial fitness,
examine the impact of CRISPR-Cas on their acquisition, and identify key areas of research
that can improve our understanding of enterococcal evolution and ecology.
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Enterococci, commensal bacteria that make up less than 0.1% of the healthy intestinal
microbiota (1), have continuously faced selective pressure for genes that provide

beneficial adaptations, facilitating coevolution with eukaryotes since the early Paleozoic
era (2). Around the 1960s, it was discovered that, in addition to being resident members
of the human microbiota (3, 4), the enterococci colonize the gastrointestinal (GI) tracts
and guts of other animals and insects (5, 6), and are members of food (7), plant (8), soil
(9), and water ecosystems (10). Since the 1980s, enterococci have emerged as opportun-
istic pathogens, causing hospital-acquired urinary tract, wound, endocarditis, and blood-
stream infections (11, 12). Antibiotic therapies can cause multidrug-resistant (MDR)
enterococcal expansion in the intestine as other resident microbes are depleted, result-
ing in life-threatening infections due to enterococcal translocation across the intestinal
barrier into the bloodstream (13, 14). MDR enterococci, including vancomycin-resistant
enterococci (VRE), cause over 54,000 infections in the United States annually (15).

Studies on enterococcal epidemiology (discussed comprehensively in reference 16)
reflect that enterococci emerged as a major cause of nosocomial infections in two dis-
tinct phases. During the late 1970s, Enterococcus faecalis strains dominated the clinical
isolate pool (17). Since the early 2000s, however, vancomycin-resistant Enterococcus
faecium isolates became more prevalent than E. faecalis (18, 19). Recently, health care
systems of many countries, including those in North America and Europe, have wit-
nessed increasing levels of VRE infections (20). According to the surveillance data from
the National Healthcare Safety Network, VRE are responsible for 3% of all reported
nosocomial infections (21). Several reports indicate that the risk of VRE infections is
particularly high among intensive care unit (ICU) and immunocompromised patients
(20). Further, mortality rates due to VRE-mediated bacteremia are notably higher than
those caused by vancomycin-susceptible enterococci (20).

Excessive exposure to antimicrobials used to sterilize hospital surfaces and broad-spec-
trum antibiotics has resulted in the rise of MDR E. faecalis and E. faecium (22). These
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accessory resistance genes complement the enterococci’s intrinsic resistance to cephalo-
sporins, penicillins, and clinically relevant concentrations of aminoglycosides (17, 23).
Considering the clinical significance of vancomycin-resistant enterococcal infections, sev-
eral studies have focused on the ecology, evolution, and dissemination of vancomycin
resistance genes (reviewed in reference 24). Clinical E. faecalis and E. faecium isolates resist-
ant to the “last-line-of-defense” antibiotics, linezolid and daptomycin, have also been iden-
tified (23, 25, 26). While exploring adaptive traits of vancomycin-resistant E. faecium in
immunocompromised patients, researchers noted that the emergence of linezolid or dap-
tomycin resistance is associated with prolonged antibiotic exposure in these patients (27).

E. faecalis and E. faecium have adapted to nosocomial settings due to their ability to
acquire mobile genetic elements (MGEs) through horizontal gene transfer (HGT). HGT
facilitates acquisition of novel traits, including genes that promote virulence and anti-
biotic resistance (28–32). Mobile genes that increase clinical resilience are genetically
similar to genes found in other bacterial genera, suggesting their broad distribution
among pathogens (29, 33, 34). Clinical E. faecium strains have twice as many genes
associated with MGEs than nonclinical strains (35), while some clinical isolates of E. fae-
calis are comprised of up to 25% MGEs (36). Transferable plasmids (mobilizable and
conjugative) and bacteriophages play central roles in HGT of bacterial genes and trans-
posons (37), driving bacterial evolution. Many MGEs encode antimicrobial resistance
(AMR) genes, which we will describe in this review. Antimicrobials used to combat
enterococcal infections, such as tetracycline, aminoglycosides, and erythromycin, were
nullified due to the emergence of resistance genes that were rapidly disseminated
among the enterococci via MGEs (38). This has necessitated updated treatment guide-
lines for MDR enterococcal infections and development of the new antibiotic treat-
ment regimens, such as daptomycin and linezolid (39–41).

Despite their benefits to the bacteria, MGEs can adversely affect their growth and
survival (42, 43). Plasmid maintenance requires synthesis of additional cellular macro-
molecules and can be a metabolic burden on the host, while conjugation requires the
production of pili, secretion systems, and additional DNA replication proteins following
induction. It is important to note that, often, these fitness costs exist initially, but over
time, these costs are mitigated via adaptive evolution, and the benefits of accessory
plasmid genes can outweigh the costs (44, 45). Additionally, it is possible that conjuga-
tive structures may expose the bacteria to virulent phages that are otherwise unable to
penetrate bacterial cellular barriers (46). This phenomenon has been studied for the F
pili of Escherichia coli and filamentous phages but has not been thoroughly explored in
enterococci (47). MGEs like prophages and transposons can integrate into bacterial
chromosomes and disrupt gene function (48, 49). Stressors and nutrients, such as
Casamino Acids, various temperatures, and DNA-damaging antimicrobials, drive pro-
phage induction leading to bacterial lysis (50, 51). Hence, bacteria have acquired
defense systems to protect themselves from these foreign MGEs. Clustered regularly
interspaced short palindromic repeats (CRISPR) and corresponding Cas proteins repre-
sent an adaptive bacterial genetic system that can prevent MGE acquisition (52).

In this review, we (i) summarize current knowledge of enterococcal MGEs, with a
specific emphasis on E. faecalis and E. faecium, (ii) highlight the contributions of MGEs
to enterococcal fitness within the scope of intestinal colonization and infection, (iii) dis-
cuss the impact of CRISPR-Cas on enterococcal MGE acquisition, and (iv) identify key
areas of MGE research that, if explored, should improve our understanding of entero-
coccal evolution and ecology.

CONTRIBUTIONS OF PHAGE-MEDIATED HGT TO ENTEROCOCCAL GENOME DIVERSITY
ANDNICHE ADAPTATION

Bacteriophages (phages) are viruses that infect and replicate in bacteria and are the
most abundant organisms on earth (53). Since the initial discovery of enterococcal
phages almost a century ago (54), these phages have been isolated and characterized
from diverse environments, including wastewater, livestock runoff, and the mammalian
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intestine, with the most commonly studied enterococcal phages today being those
that infect E. faecalis and E. faecium (55–57). Phages often lyse bacteria, but some
phages (temperate phages) can integrate into the bacterial genome, an event termed
lysogeny. Since phages can transfer DNA from cell to cell via transduction, phage-
driven HGT can have a significant impact on host genetic composition and phenotypic
characteristics as well as the surrounding microbial community (reviewed in references
58 and 59).

Phage-adapted replication and genome packaging mechanisms influence phage-
mediated HGT. Upon infection, temperate phages integrate into the host genome and
are maintained as prophages. Newly integrated prophages can supply genes which
enhance host fitness, including antibiotic resistance, stress tolerance, and immunity
against secondary infection by closely related phages (superinfection exclusion) (51,
60–62). In this scenario, the temperate phage is an MGE, whereupon integration, phage
auxiliary genes bestow a benefit upon the host. HGT can also occur via specialized
transduction when prophages excise specific bacterial DNA flanking the phage integra-
tion site and package it into progeny virions (59, 63). Additionally, generalized trans-
duction occurs when nonphage, chromosomal DNA fragments are packaged into
phage capsids (59, 63). The recently discovered process of lateral transduction occurs
in situ prior to prophage excision, resulting in packing of up to several hundred kilo-
bases of host DNA into infectious virions (64). The authors demonstrated that these
Staphylococcus aureus prophages can integrate into a new host, carrying the DNA from
the previous host. In each mode of transduction, host DNA-carrying phages can infect
vulnerable hosts where the DNA can be integrated into the chromosome. Prophages
can confer a competitive advantage to their host bacterium by switching to the lytic
cycle and producing infective viruses which target phage-susceptible bacteria (65, 66).
The shift from the lysogenic to lytic cycle can occur spontaneously or in response to
UV radiation and antibiotics that induce DNA damage, triggering the bacterial SOS
response (51, 67–71). Although the mobilization of phage-encoded virulence determi-
nants and other factors are well studied in some Gram-positive pathogens such as S.
aureus and group A Streptococcus (72–75), much remains unknown about the influence
of prophages on enterococcal virulence and genetic plasticity.

The emergence of MDR enterococci makes it imperative to identify and characterize
drivers of enterococcal evolution. With limited studies highlighting phage-mediated
HGT in enterococci, we are just now appreciating potential contributions of phages to
enterococcal evolution. Yasmin and colleagues demonstrated that temperate phages
induced from clinical E. faecalis isolates are capable of intraspecies generalized trans-
duction of antibiotic resistance genes and gelE encoding a metalloprotease implicated
in virulence (76, 77). Enterococcal phages have also been shown to successfully trans-
fer tetracycline and gentamicin resistance between enterococcal species via general-
ized transduction (78). Enterococci are not intrinsically resistant to tetracycline; entero-
coccal tetracycline resistance is common due to the distribution of the resistance
genes tetM and tetL (23). While gentamicin monotherapy is not used to treat entero-
coccal infections, it is used synergistically with beta-lactams to achieve a 70% cure rate
in susceptible isolates (23, 79). Other studies observed that the fitness and virulence of
a probiotic E. faecalis strain were significantly enhanced when transduced by temper-
ate phages from a pathogenic E. faecalis strain (80). Considering that enterococci regu-
larly encounter prophage-inducing environmental stimuli in the GI tracts of animals,
including bacterial signaling molecules (80), dietary components (50, 81), and sublethal
antibiotic doses (51, 76), it is likely that temperate phage-mediated HGT can increase
the distribution of pathogenic traits among enterococci.

Studies highlighting widespread prophage distribution among virulent enterococci
underline the importance of prophage dynamics during enterococcal pathogenicity.
The well-characterized clinical VRE isolate E. faecalis V583 harbors seven prophage-like
elements. These elements, designated pp1 to pp6 and EfCIV583 (phage-related E. fae-
calis chromosomal island), constitute up to 10% of the V583 genome (36, 82). Upon
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excision of these prophage-like elements, host cell lysis is not detected (51).
Polylysogeny, the presence of more than one prophage-like element in the genome,
has been reported in multiple clinical isolates of E. faecalis besides V583 (36, 76, 82),
suggesting that E. faecalis prophages are more widely distributed than previously
thought. Contrastingly, there are still many strains of E. faecalis that do not harbor mul-
tiple prophages, such as the common lab strain OG1RF. Pp2, a cryptic prophage, is a
part of the core E. faecalis genome (82). Pp2 has yet to be shown to excise from the
bacterial chromosome and produce infectious virions; however, pp2 tail proteins have
been identified in the supernatant of E. faecalis OG1RF cultures (83). Interestingly, it
was recently observed that while the presence of clinically relevant antibiotics altered
the excision of six of seven prophages via the E. faecalis V583 SOS response, including
DNA-damaging antimicrobials and various temperatures, only four of these prophages
were able to form infectious virions (51). Additionally, studies have elucidated interac-
tion between coinhabiting prophages, ranging from cooperation to interference.
EfCIV583 relies on pp1 for induction, genome packaging, and transmission but inter-
feres with pp1 infectivity (50, 51, 84). On the other hand, the presence of pp1 impedes
pp4 excision, while pp6 excises only when both pp3 and pp5 are deleted from the
chromosome (51). Using an innovative DNA sequencing-based “transductomics”
approach, wherein deep sequencing identifies DNA originating from ultrapurified vi-
rus-like particles, such as excised prophages, it was discovered that pp1, pp5, and
EfCIV583 are capable of transducing at relatively high frequencies, potentially through
lateral transduction, a recently discovered form of HGT (64, 85). The authors observed
that these E. faecalis V583-transducing phages not only carried bacterial DNA sur-
rounding either the region of the prophage integration site but also packaged several
additional regions, including transposase-carrying insertion sequence (IS) elements
and the three rRNA operons (85). The authors did not report mobilization of antibiotic
resistance genes. Using this technology, future studies can reveal virus-like particle-
host interactions in complex communities like the intestine.

Although prophages are pervasive among MDR enterococci, only a limited number
of studies have addressed their impact on enterococcal fitness and evolution. E. faecalis
V583 prophages pp1, pp4, and pp6, harboring homologs of the Streptococcus mitis pla-
telet binding phage tail proteins PblA and PblB, have been shown to be crucial for ad-
hesion to human platelets in vitro and are speculated to contribute to the develop-
ment of infective endocarditis (51). In another study, investigators established that pp5
is required for efficient biofilm formation, and its induction facilitates biofilm dispersal
(80). These findings emphasize the potential influence of enterococcal prophages in
biofilm-associated infections, such as endocarditis, central-venous-catheter infections,
or implant infections. Further, the therapeutic potential of virulent phages and their
lysins is diminished against prophage-carrying clinical isolates of VRE (86, 87).
Additionally, E. faecalis V583 can release EfCIV583 to target and lyse competitor E. fae-
calis strains in the GI tract of mice (50). Collectively, these studies provide evidence of
the influence of prophages in enterococcal physiology, pathogenicity, and adaptation
in competitive ecosystems.

While prophages constitute a large part of the E. faecalis mobilome, there are still
major gaps in the field. To fully comprehend the influence of prophages on enterococ-
cal physiology and adaptation, future research needs to explore the genetic content,
composition, and molecular epidemiology of prophages. As many prophage genes are
hypothetical or of unknown function, characterization of such prophage genes in rela-
tion to virulence or adaptation would divulge how maintaining prophages can aug-
ment enterococcal pathogenicity and fitness. The generation of a transposon library in
E. faecalis MMH594, an MDR isolate that harbors prophage-like elements, could be a
powerful tool for such future studies (88). Another noticeable knowledge gap is the
lack of prophage-mediated HGT studies in other species of Enterococcus. E. faecium is
an equal, if not greater, burden on the hospital system due to AMR gene acquisition.
The study of temperate phages among E. faecium strains is limited, potentially due to
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the genetic intractability of the bacterium, although methodologies to overcome this
are reported (30, 89–91). By expanding studies to include prophages of commensal
enterococcal strains native to nonhuman hosts, we might elucidate mechanisms of
temperate phage HGT relevant to hospital-adapted enterococci.

The fitness trade-offs of defending against phage infection versus allowing phage
acquisition are complex, as lysogenic phages can act either as predators replicating
within and lysing bacterial cells or as agents of HGT carrying novel genetic information.
Investigation into the dynamics of temperate phage acquisition could provide insights
into the complexity of microbial community interactions related to DNA transmission.

CONJUGATIVE AND BROAD-HOST-RANGE PLASMIDS OF ENTEROCOCCI

Plasmids are autonomously replicating, extrachromosomal genetic elements that
are critical drivers of microbial adaptation and evolution via HGT. Although plasmids
do not encode essential genes and can be a metabolic burden for the cell, they often
provide beneficial genes that augment bacterial fitness in complex environments (92,
93). Plasmids are divided into narrow- or broad-host-range plasmids, referring to the
specificity of the replication system encoded on the plasmid and the ability of the plas-
mid to be replicated within a single or multiple bacterial species.

PHEROMONE-RESPONSIVE PLASMIDS

Pheromone-responsive plasmids (PRPs) are narrow-host-range plasmids that are lat-
erally transmitted via conjugation from plasmid-harboring donors to plasmid-free re-
cipient cells (Fig. 1A). Briefly, recipient cells produce and secrete a chromosomally
encoded, plasmid-specific conjugation peptide referred to as the pheromone, denoted
with a “c” before the plasmid’s name. When the donor cell senses the pheromone,
downstream transcriptional regulators are activated and mediate the expression of the
PRP conjugation genes (94). Highly conserved, large cell wall-anchored surface pro-
teins called aggregation substances (AS) encoded by PRPs facilitate physical contact
between donor and recipient cells (95). The operon in which the AS is encoded collec-
tively produces mating channels between the cells, resulting in horizontal plasmid
transfer via type IV secretion system (T4SS) conjugation machinery (95). The T4SS is
also involved with integrative and conjugative elements conjugation (discussed later)
(96). Since pheromones are constitutively expressed, self-induction of plasmid conjuga-
tion is prevented by the production of an inhibitory protein encoded on the PRP,
denoted “i.” PRP transfer has been thoroughly reviewed elsewhere (97–99).

Some PRPs encode antibiotic resistance genes and a wide variety of virulence fac-
tors (99). pHKK100, the first plasmid described to mediate vancomycin resistance,
transfers via pheromone response (100). In addition to initiating PRP conjugation, AS
also increases bacterial virulence by promoting adhesion to, internalization into, and
survival within cultured human cells (101–105). PRPs also increase chromosomal diver-
sity, resulting in transconjugants with hybrid donor-recipient genomes and the transfer
of chromosomal virulence factors such as antibiotic resistance and the E. faecalis path-
ogenicity island (discussed later) (28, 31). To date, about 35 PRPs have been identified,
but only in E. faecalis and E. faecium (28, 99), suggesting that PRPs are restricted to
enterococci.

pCF10 is a well-studied PRP that encodes approximately 60 protein-coding genes
that increase E. faecalis virulence. These genes include secreted proteins, transcription
factors, and orthologs of UV and tetracycline resistance (98) that provide a selective
advantage to pCF10-harboring cells. In the GI tract of germfree mice, rapid high-fre-
quency pCF10 transfer was shown to be strongly dependent on the proximity of donor
and recipient cells, but the transmission was not significantly impacted by the pres-
ence of a defined microbiota (106). Interestingly, the competitive advantage of pCF10
carriage in the intestine was distinct from antibiotic resistance or bacteriocin produc-
tion and led to the speculation that the pCF10-encoded AS may influence bacterial fit-
ness in the intestine (106). Although AS-mediated resistance to phagocytic killing has
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been suggested to benefit pCF10-carrying E. faecalis in an endocarditis model (105,
107), the contributions of AS in GI colonization are yet to be explored.

Understanding pheromone specificity is an expanding area of research. While some
pheromones initiate replication and transfer of a specific plasmid, the PRP pMG2200
responds to synthetic cCF10 pheromone. This is because pMG2200 encodes genes iden-
tical to the replication and conjugation genes in pCF10, the cognate PRP for cCF10 (108).
This phenomenon of pheromone cross talk has been documented for other pheromone-
plasmid pairs (99). However, unlike pMG2200, it is unknown whether other PRPs that
respond to cCF10, such as pHKK703 (109), pMB1 (110), and pAMS1 (111), encode identi-
cal PRP regulation genes and are therefore pCF10 chimeric derivatives. Future studies
are necessary to determine in vivo cross talk between PRP pheromones and to determine
genetic relatedness among plasmids that respond to the same pheromone.

The first identified PRP, pAD1 (112), follows typical PRP conjugation and encodes a
plasmid addiction system to promote plasmid maintenance in the absence of selection
(29, 113). The pAD1 toxin/antitoxin par locus encodes two convergently transcribed

FIG 1 Simplified models for intra- and interspecies dissemination of enterococcal plasmids. (A) PRP
replication and conjugation is initiated by donor cells sensing pheromones produced by plasmid-less
recipient cells. (B) Upon sensing noncognate peptide signals produced by bacteria from a different
genus, PRPs can facilitate mobilization of nonconjugative plasmids. (C) Plasmid-mediated Tn
mobilization across genera. A plasmid carrying the Tn can enter the new host; the Tn can replicate
independently (i) or integrate into the chromosome (ii) or another plasmid (iii) of the recipient if the
plasmid is unable to replicate in the new host. (D and E) Two mechanisms of PAI movement between
enterococcal strains. (D) PRP integration and excision can mobilize the PAI by integrating near PAI on
the chromosome and excise the PAI upon excision. This PAI-PRP hybrid circularizes and can be
conjugated to pheromone producing E. faecalis cells. (E) Alternatively, the PAI can function as an
integrative conjugative element (ICE) and relies on the direct repeats flanking the PAI and products
of PAI-encoded enzymes to excise from and recombine into chromosomes. Mobilization to PAI-less
cells is thought to rely on PRP presence.
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mRNAs, RNA I and RNA II. The stable RNA I encodes the membrane-active peptide
toxin, Fst, that interferes with bacterial cell membrane integrity (114), whereas RNA II is
an unstable sRNA antitoxin that represses Fst production by binding to RNA I. Upon
loss of pAD1, the antitoxin is rapidly degraded, while the more stable toxin kills the E.
faecalis cell (115, 116). E. faecalis V583 harbors the PRP pTEF1, a plasmid with a high
level of nucleotide similarity to pAD1, and encodes a locus identical to par (36). Similar
toxin/antitoxin systems have been identified on plasmids and chromosomes of species
from Enterococcus, Lactobacillus, and Staphylococcus, indicating that par is the proto-
type of a family of type I toxin/antitoxin systems (117).

A recent study focusing on the correlation between antimicrobial use and resistance in
livestock found that pAD1 is present in 38% and 30% of E. faecalis isolated from retail beef
and human clinical samples, respectively, suggesting a clinical implication to ingesting
pAD1-contaminated samples (118). Enhanced virulence of pAD1-carrying E. faecalis strains
in mice is attributed to the plasmid-encoded hemolytic cytolysin (119). Epidemiological
analysis of an MDR E. faecalis outbreak showed that patients infected with a cytolytic strain
were at a 5-fold greater risk of death regardless of treatment, and of the patients that died,
71% were infected with a cytolytic strain (11). However, the cytolytic activity of this strain
was not confirmed to be a result of pAD1 carriage. Despite this, other studies have shown
that there is increased virulence associated with pAD1, specifically due to the cytolysin’s ac-
tivity against multiple eukaryotic cells (120). It is hypothesized that lysing eukaryotic cells
releases nutrients like cytochromes that are otherwise unavailable to noncytolytic bacteria,
potentially allowing for increased survival through aerobic respiration (120, 121). Cytolytic E.
faecalis strains also colonize the bloodstream significantly higher than noncytolytic strains
in mice (11), supporting this theory. pAD1 also encodes UV resistance via uvrA. UV-resistant
E. faecalis that was exposed to UV irradiation had a higher probability of developing sponta-
neous antibiotic resistance mutations than non-UV-resistant E. faecalis cells (122).

pPD1 is an E. faecalis PRP that encodes the bacteriocin Bac-21 (123). Bacteriocins are
small cyclic peptides that are capable of killing or inhibiting growth of related bacteria
by disrupting the proton motive force of the cytoplasmic membranes and energized
membrane vesicles and are commonly produced by many lactic acid bacteria (124, 125).
Bac-21 is a 70-amino-acid protein whose corresponding nucleotide sequence is identical
to that of the PRP pMB2-encoded bacteriocin AS-48 (126). In the mammalian intestine, E.
faecalis strains harboring pPD1 outcompete pPD1-deficient E. faecalis strains, suggesting
that Bac-21 production confers a colonization benefit (127).

PRP conjugation has been documented within E. faecalis strains and between E. fae-
calis and E. faecium. The PRP pBRG1 is a vancomycin resistance (vanA)-carrying plasmid
that can transfer from E. faecium to E. faecalis (128). There is no doubt that this intrage-
nus transfer is concerning regarding the spread of antibiotic resistance genes. Although
studies showing PRP transfer to nonenterococcal bacteria are limited, PRP transmission
from E. faecalis to distant bacterial species, including S. aureus and Streptococcus gordonii,
have been documented (129–131). Other than its cognate pheromone cAM373, the PRP
pAM373 can also initiate conjugation in response to noncognate peptides produced by
S. gordonii and S. aureus (132–134). Although cAM373 produced by S. gordonii and E. fae-
calis bear no structural resemblance, the S. gordonii-cAM373 could induce transfer of a
lab-constructed, nonconjugative plasmid from E. faecalis into S. gordonii in vitro (133)
(Fig. 1B). While PRPs do not appear to replicate efficiently in nonenterococcal hosts (28),
the full breadth of PRP transmission and maintenance can only be realized if other bacte-
rial genera that frequently coreside with enterococci in microbial communities are stud-
ied in this context.

While many enterococcal PRPs have been identified, not all are as well studied as the
plasmids discussed above. Future studies focusing on PRP discovery, genetic diversity,
and distribution will be critical to understanding their contributions to enterococcal fit-
ness and pathogenicity. Over 900 E. faecalis and E. faecium genomes have been
sequenced (135), but many of these genomes are deposited in public databases as draft
genomes fragmented into multiple contigs. Draft genomes are useful for surveying
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genomic composition of isolates; however, it cannot be assumed that the entire genome
is resolved in these assemblies. The combined use of overlapping short and long high-
throughput sequencing reads will allow gap closures in these draft genomes, likely
resulting in novel plasmid discovery. Determining if PRPs are truly enterococci specific
will clarify how the PRP system arose and why it seems to be rare or nonexistent in other
genera and could aid in restricting the potential transmission of these MGEs.

BROAD-HOST-RANGE PLASMIDS

Mobile broad-host-range plasmids (BHRPs) often harbor multiple origins of replication.
Host range can be further expanded if plasmid replication initiation and essential proteins
are also present on the BHRP and are not dependent on host factors (136, 137). These fea-
tures allow BHRPs to replicate in distantly related bacteria and serve as mediators of HGT
across genera (137). However, it is important to note that some narrow-host-range plas-
mids contain multiple replication origins (137). BHRPs can be divided into incompatibility
groups (Inc-groups). Inc-groups are defined as the failure of two coresident plasmids to be
inherited without external selection; if introducing a second plasmid interrupts the inheri-
tance of the first, they are incompatible (138). Inc18-family plasmids are common among
the enterococci, staphylococci, and streptococci (139, 140). Inc18-family plasmid biology is
comprehensively reviewed by Kohler et al. (136).

Inc18 plasmids have been a focus of interest because they frequently carry antibiotic
resistance genes, including resistance to chloramphenicol, vancomycin, and macrolide-
lincosamide-streptogramin (MLS) antibiotics (136, 141). Chloramphenicol was used for the
treatment of VRE (142, 143), while MLS antibiotics were used as a growth promoter in agri-
culture (144). pAM830, an Inc18-type plasmid encoding the vanA transposon Tn1546, is re-
sponsible for the transfer of vancomycin resistance from enterococci to methicillin-resist-
ant S. aureus (MRSA) (28). Genomic analyses of vancomycin-resistant MRSA strains suggest
that either the entire pAM830 was transferred or pAM830 facilitated conjugative dissemi-
nation of only the van gene carrying Tn1546, which ultimately recombined with the chro-
mosome or another plasmid within MRSA (145–147) (Fig. 1C). pAMb1 and pIP501 are two
of the most well-studied Inc18-type plasmids originally isolated from E. faecalis (148) and
Streptococcus agalactiae (149). pIP501 confers resistance to erythromycin and chloram-
phenicol, while pAMb1 carries resistance markers for lincosamides, streptogramin B, and
erythromycin. Both of these two BHPs are capable of antibiotic resistance transmission to
other Gram-positive bacteria, including Listeria spp., Leuconostoc spp., Lactococcus spp.,
and Streptomyces lividans, while pIP501 can even disseminate antibiotic resistance to the
Gram-negative bacterium E. coli (28). Another E. faecalis plasmid, pRE25, sharing 30.5 kb of
sequence fragment with pIP501 and harboring 12 antibiotic resistance markers, is capable
of conjugal transfer into Listeria innocua and Lactococcus lactis (28). In addition to dissemi-
nating antibiotic resistance genes, conjugative transfer of multiresistance plasmids from
other Gram-positive bacteria into enterococci has also been reported. An L. monocytogenes
plasmid, pIP811, which confers resistance to chloramphenicol, erythromycin, and strepto-
mycin, can be transferred to enterococci via conjugation (150). Lateral transmission of
pAMb1 from Lactococcus to E. faecalis in vitro and in vivo has also been demonstrated
(151–153). Collectively, these studies raise concerns regarding cross-genera horizontal
transfer, not only of antibiotic resistance markers but also of other plasmid-encoded viru-
lence and environmental adaptation traits. The high sequence identity among BHPs indi-
cates that such interspecies plasmid transmission influences gene content of plasmids
across species. Therefore, identifying factors that facilitate BHRP transmission and investi-
gating the molecular mechanism(s) of BHRP dissemination are critical for understanding
how these plasmids facilitate genome plasticity and bacterial evolution.

OTHER MOBILE ELEMENTS

Transposable elements (TEs) are widely distributed in prokaryotic genomes, includ-
ing enterococci. TEs are DNA fragments that move autonomously to new locations
within and between DNA molecules present in a single cell; however, they rely on
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conjugative plasmids and transducing phages for intercellular movement. All TEs
encode a transposase, an enzyme that catalyzes excision and integration of TEs
through transposition. Insertion of TEs can disrupt, activate, or silence gene functions
(154). Broadly, TEs can be categorized into IS elements and composite transposons
(Tns). IS elements are small MGEs composed of two inverted repeat sequences flanking
the transposase open reading frame (ORF). In contrast, composite Tns consist of resist-
ance genes or other adaptive traits bordered by a pair of IS elements.

The incorporation of TEs potentially facilitated the propagation of beneficial traits
and genome plasticity in enterococci. TEs play a role in the shaping of the enterococcal
genome through genomic rearrangements and recombination, thus facilitating E. fae-
cium genome plasticity (155). Upon activation through cell stress, transposons can
induce mutations through novel insertions that may allow for bacterial survival (141).
Vancomycin resistance in E. faecalis V583 encoded by the vanB operon in Tn1549 found
on a PRP was likely acquired via HGT (36, 156). Conjugative transposition of vanB Tn1549
from a plasmid results in transfer of antibiotic resistance between enterococci and
human commensal bacteria in a germfree mouse model of GI colonization (157).
Vancomycin resistance is associated with other transposons. Tn1547 encodes the vanB
operon flanked by IS16- and IS25-like elements and can integrate into plasmids and
chromosomes (158). E. faecium Tn5382 encodes the vanB2 operon and has been identi-
fied in multiple clinical isolates (159). Tn1546 encodes the vanA operon and has been
identified in E. faecalis, E. faecium, as well as in other species, including Enterococcus galli-
narum and Enterococcus casseliflavus (160). Apart from vancomycin, a gentamicin resist-
ance-encoding transposon, Tn5281, is present on the PRP pBEM10 and is widely distrib-
uted among E. faecalis and E. faecium isolates from different geographical locations
(161–164). The DNA sequence and genetic organization of Tn5281 are similar to those of
other Tns such as Tn4001 and Tn4031, found in S. aureus and Staphylococcus epidermidis,
respectively. This similarity suggests that these elements are closely related, possibly as a
result of interspecies transfer (164, 165). Together, these studies indicate that transpo-
son-encoded antibiotic resistance potentiates rapid and widespread dissemination and
diversification among Enterococcus species and, more broadly, other bacterial species.

Pathogenicity islands (PAIs) are large chromosomal genetic elements that are hori-
zontally transmitted among Gram-positive and Gram-negative bacteria (166). The E.
faecalis PAI encodes nearly 150 genes, including virulence factors that vary between
strains (82, 167–170). Examples include a cytolysin, a virulence-associated surface pro-
tein encoded by esp, and an AS (171, 172). The PAI is enriched in pathogenic E. faecalis
strains and is excised at a rate of 1 in 1,000 cells (171). Evidence suggests that PAI intra-
and interspecies mobilization is dependent on the PRPs pTEF1 and pTEF2 of E. faecalis
V583 (173). These PRPs could facilitate PAI transmission in two ways. Manson and col-
leagues demonstrated that pTEFs integrate into the E. faecalis V583 chromosome in
close proximity to the PAI, and subsequent excision of plasmid-PAI hybrids potentially
allows for PAI movement between bacterial cells (31) (Fig. 2D). The authors also
showed that the E. faecalis V583 pTEFs can mobilize random segments of chromo-
somal DNA, including vancomycin resistance, multilocus sequence type (MLST)
markers, and capsule genes, indicating that plasmid-mediated HGT is a major driving
force behind the evolution of MDR enterococci (31). In contrast, the E. faecalis UW3114
PAI is capable of precise excision and circularization and can undergo horizontal intra-
and interspecies transfer with the help of a PRP (173) (Fig. 1E). It is suggested that the
E. faecalis UW3114 PAI functions similarly to an integrative conjugative element (ICE),
relying on the direct repeats flanking the PAI and phage-related excisionase and inte-
grase genes to excise from and recombine into bacterial chromosomes (173).
Nucleotide sequence identity exists at one end of the PAI with conjugation-related
structural genes of enterococcal PRPs pAM373 and pAD1 (174), indicating that part of
the PAI may have evolved from the integration of a PRP into the chromosome. A
region present on the PAI has 87% nucleotide identity to a transfer origin in pAD1
(171), further supporting this theory. Although a number of PAI ORFs remain

Minireview Journal of Bacteriology

November 2021 Volume 203 Issue 21 e00177-21 jb.asm.org 9

https://jb.asm.org


uncharacterized, the absence of these genes from certain human isolates suggests that
the products of these genes could facilitate the commensal to pathogen transition of
the enterococci. Additionally, tracing the evolutionary origins of enterococcal PAIs will
provide further enlightenment as to how enterococci become successful pathogens.

CRISPR AND HGT

Many bacteria have established barriers to combat HGT (50, 51). One such defense
system is CRISPR-Cas, an adaptive immune system that utilizes an RNA-guided nucle-
ase to block acquisition of MGEs in a sequence-dependent manner (52). CRISPR-Cas
systems are present throughout enterococcal species, most frequently in commensal
isolates (175, 176). CRISPR loci consist of several direct repeat regions separated by
variable spacers, which are sequences derived from foreign DNA which serve as adapt-
ive memory units for identifying invading nucleic acid targets. Identified spacers match
phage, plasmid, and nonkin chromosomal sequences (177, 178). CRISPR interference is

FIG 2 CRISPR-Cas is a fitness balance for enterococci. (A and B) Commensal strains typically harbor a functional
CRISPR-Cas system (A), while MDR clinical isolates do not (B). Generally, commensal strains carry the cas genes
and repeat spacer array, resulting in a fully functional system (A, i), while MDR strains contain only the orphan
CRISPR2 repeat-spacer array (B, i). The presence of functional CRISPR-Cas results in reduced plasmid transfer,
preventing transfer of virulence or antibiotic resistance genes (A, ii); however, CRISPR-Cas also blocks phage
infection and killing of a host bacterium (A, iii). (B, ii) On the other hand, plasmid transfer is not blocked in
MDR strains, allowing them to gain accessory genes. (B, iii) This trade-off makes MDR strains sensitive to phage
infection.
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adaptive, and new targeting spacers can be acquired as invading DNA threats are
encountered (52, 179). However, spacer acquisition is tightly regulated and occurs at
very low rates (180). Still, this may provide a benefit to cells over other phage protec-
tion mechanisms like surface receptor modification, as alteration of these receptors is
known to increase antibiotic susceptibility (141, 181).

These repeat-spacer arrays are in close proximity to the cas genes (177). The cas
genes encode a large and diverse family of proteins which interact with the transcribed
spacers to form the CRISPR-Cas complex (182). Unique cas genes allow CRISPR systems
to be divided into three major types, types I, II, and III, defined by the presence of cas3,
cas9, and cas10, respectively (183). Type IV CRISPR has been identified but is much less
common (184). CRISPR types are further divided into subtypes based on additional sig-
nature genes or gene variants (183). CRISPR classification and mechanisms of action
have been thoroughly reviewed elsewhere (183, 184).

To date, type II-A and type I-C CRISPR loci have been found in Enterococcus (175). Type II-
A CRISPR-Cas systems are significantly more common in commensal Enterococcus strains
than in clinical isolates, and the lack of functional CRISPR-Cas is correlated with acquired anti-
biotic resistance in E. faecalis (176, 185, 186) (Fig. 2A and B). The type II-A subtype is broken
down further into four systems within Enterococcus, CRISPR1-Cas, CRISPR2, CRISPR3-Cas, and
CRISPR4. Of enterococcal genomes screened thus far, CRISPR1-Cas and CRISPR2 seem the
most predominant (176, 187–189). CRISPR1-Cas is the most commonly identified functional
CRISPR system in E. faecalis, with spacers varying by strain (176, 178, 187, 190, 191). CRISPR1-
Cas has also been identified in E. faecium, primarily in isolates without antibiotic resistance
genes, and in Enterococcus hirae (176, 187).

Many MDR E. faecalis strains lack functional CRISPR-Cas systems (176, 186). The
CRISPR2 locus is nonfunctional, consisting only of the orphan repeat-spacer array and
no cas genes (176, 192, 193). CRISPR2 is nearly ubiquitous within E. faecalis and com-
mon among E. faecium (176, 187, 189). It is theorized that CRISPR2 is maintained
because of a self-preservation mechanism within the locus itself, using terminal repeats
within the CRISPR array to prevent loss of the terminal spacer (182). Additionally, in the
presence of cas9, the CRISPR2 locus becomes functional for defense (194). CRISPR sys-
tems are detected less frequently in other disease-associated species like E. gallinarum
and E. casseliflavus (191).

Lack of CRISPR systems is associated with detergent and chlorohexidine resistance,
increased biofilm production, and bacteriocin activity (186, 195). Conversely, the pres-
ence of a functional CRISPR-Cas locus correlates with a lack of virulence genes in both
E. faecalis and E. faecium (176, 185, 191) (Fig. 2A). The E. faecalis oral commensal strain
OG1RF contains both functional CRISPR1-Cas and an orphaned CRISPR2 locus, while
the hospital-acquired strain V583 harbors only the CRISPR2 orphan locus (192, 193).
This correlation between the absence of functional CRISPR-Cas in hospital-adapted
strains indicates a fitness cost for harboring CRISPR-Cas; in order to protect against
phage infection and/or plasmid acquisition, CRISPR-Cas is needed, which may not ben-
efit enterococcal strains when adapting to environments outside the GI tract such as
the hospital setting (Fig. 2B).

In addition to the above type II-A CRISPR systems, a type I-C CRISPR locus has been
identified in three pathogenic strains of Enterococcus cecorum, a poultry pathogen, and
predicted to be functional in two strains (175). This CRISPR type is rare in enterococci
but commonly found in streptococci (175). Commensal strains of E. cecorum harbor the
more typical type II-A CRISPR arrangement (175). The presence of a type 1-C locus in
pathogenic strains is unusual, as it defies the established pattern of disease-associated
strains being less likely to contain a functional CRISPR system (176, 185, 186, 191).

Although CRISPR-Cas was identified as an antiphage system, CRISPR also guards
against invading MGEs. E. faecalis type II CRISPR-Cas blocks antibiotic resistance encod-
ing plasmid conjugation in vivo (196, 197). Additional known targets of enterococcal
CRISPR-Cas include the PRPs pTEF1 and pTEF2, phages, and prophages (176, 178). No
spacers have been identified against conjugative transposons; the tet(M) tetracycline
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resistance gene, commonly carried by Tn916 and its relatives, is present in strains with
functional CRISPR-Cas (176). Many spacers have been found in E. faecalis and E. hirae,
which correspond to bacterial chromosomal sequences (178, 187). Specifically, spacers
have been identified with homology to the E. faecalis V583 ref35B gene, potentially
encoding an antisense ncRNA (178, 198). It is unknown if CRISPR-Cas systems target
PAIs. Many spacers have yet to be matched with a target sequence, likely due to the
lack of available MGE sequences in GenBank (178, 199).

Current research describes the ramifications of harboring a CRISPR-Cas system as it
relates to the pathogenic potential of enterococci while also inspiring future research into
the context of CRISPR-Cas in multispecies environments. Known spacers targeting the
chromosome of non-CRISPR-harboring bacteria, in addition to the high abundance of
CRISPR-positive strains in environments like endodontic biofilms, warrant investigations
into how CRISPR might modulate polymicrobial interactions (186, 187). Experimentation
on the role of CRISPR within a multispecies microbial community could provide insight
into the complex nature of microbial interactions in various niches.

CONCLUSIONS

The recent accessibility of next-generation sequencing technologies has increased
our knowledge of the role of MGEs in enterococcal biology. The discovery that MGEs can
constitute 25% of the E. faecalis V583 genome opened the door to a multitude of studies
elucidating the role of the mobilome in enterococcal evolution (36). By studying E. faeca-
lis and E. faecium as model enterococci, it is becoming clear that the enterococcal mobi-
lome drives environmental adaptation and niche colonization (Fig. 1). Similar studies in
other species, including E. gallinarum and E. casseliflavus, are necessary to answer ques-
tions regarding the overall impact of MGEs on enterococcal evolution. Obtaining more
complete genome sequences of these understudied species is a key first step. Closing
genomes reveals plasmid carriage, prophage presence, and the distribution of transpos-
able elements within the genome (200, 201). By comparing the mobilomes of E. faecalis
and E. faecium to other species, we can resolve many of the questions regarding the role
of MGEs in virulence and ecological competition in addition to better understanding the
MGE host range.

Prophage contribution to enterococcal evolution is understudied. Even though E.
faecalis V583 prophages are associated with virulence and interbacterial competition,
the ecological and evolutionary impact remains underexplored. Studies focusing on
single prophage-harboring strains of E. faecalis should reveal distinct prophage bene-
fits. Homologs of the E. faecalis V583 prophages have been identified in other strains,
but similarities and differences among these prophages are yet to be elucidated (76,
202). Prophage-mediated HGT and its contributions to virulence have been studied in
other bacteria, such as S. aureus. Examples include pathogenicity and genomic island
transfer between strains (203–205), gene regulation upon prophage excision and inte-
gration (206), and DNA transduction (207, 208). Similar studies in enterococci will fur-
ther contribute to our understanding of the role of coevolution between phages and
their hosts and the implications of undiscovered and uncharacterized prophages on
enterococcal environmental adaptation.

Few studies have assessed the ability of the enterococci to share MGEs like plasmids
with other genera (133). While PRPs have been extensively studied in E. faecalis, more
work should focus on the ability of other bacterial species to induce the pheromone-re-
sponsive conjugation system through secreted peptides, especially since other bacteria
such as staphylococci are known to produce a variety of small, secreted peptides (209).
Alternatively, it is possible that PRPs will fail to replicate or will be subjected to CRISPR-
Cas-targeted degradation in the new host, nullifying the hypothesis that PRPs can be
maintained outside the enterococci (99, 130). Finally, chromosomal conformation cap-
ture (Hi-C) technology with deep sequencing that estimates physical proximity between
DNA molecules (210, 211) could potentially be leveraged to track lateral dissemination
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of enterococcal prophages, plasmids, and PRPs within complex multispecies commun-
ities (212, 213).

Finally, the role of CRISPR-Cas systems in controlling enterococcal HGT has not yet
been thoroughly characterized. While identified spacers indicate that CRISPR-Cas is
able to target the genome of non-CRISPR-harboring strains (178), the circumstances
upon which targeting of nonhost genomes may occur remains unclear. Further, contri-
butions of CRISPR-Cas-mediated restriction of phage predation or MGE movement and
subsequent impact on microbial community dynamics should be assessed in the con-
text of polymicrobial environments, such as the GI tract. High-throughput sequencing
could be leveraged to match enterococcal CRISPR spacers to their source in order to
provide additional context on the role of CRISPR-Cas and identify common threats that
enterococci face while also providing insight on spacer acquisition and retention
mechanisms.
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