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Abstract

Intracellular protein delivery is a transformative tool for biologics research and medicine. Delivery 

into the cytosol allows proteins to diffuse throughout the cell and access subcellular organelles. 

Inefficient delivery caused by endosomal entrapment is often misidentified as cytosolic delivery. 

This inaccuracy muddles what should be a key checkpoint in assessing delivery efficiency. Green 

fluorescent protein (GFP) is a robust cargo small enough to passively diffuse from the cytosol 

into the nucleus. Fluorescence of GFP in the nucleus is a direct readout for cytosolic access and 

effective delivery. Here we highlight recent examples from literature for the accurate assessment of 

cytosolic protein delivery using GFP fluorescence in the cytosol and nucleus.

Introduction

Protein therapeutics are powerful tools for targeted manipulation of cellular processes.1 

Proteins are responsible for modulating cellular activities like autophagy and homeostasis, 

and protein dysfunction can cause disease on a cellular or organismal level.2-4 Controlled 

introduction of functional proteins into the cell is a promising strategy to alleviate disease 

symptoms.5,6 Further, cytosolic delivery of exogenous proteins provides a key tool for the 

fundamental study of protein function in cells.7,8

Entry into the cytosol is a critical checkpoint for the assessment of most protein 

therapeutics.9,10 From the cytosol, proteins can access subcellular organelles, apoptotic 

machinery, and the nuclear membrane.11,12 Direct entry into the cytosol is generally barred 

to proteins by the selectively permeable cell membrane.13
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A number of nanocarriers14,15 and cell-penetrating peptides16,17 have been engineered 

for delivery of proteins into the cell. However access to the cytosol is often limited 

in efficiency because these systems are generally uptaken by endocytosis18 through a 

range of mechanisms.19 Endocytic uptake entraps particles in vesicles (endosomes) that 

sequester them from the cytosol, ultimately leading to either endo/lysosomal degradation 

or exocytosis.20,21 Choice of carrier material, formulation, and treatment conditions are 

critical considerations for effective delivery, and all contribute to both cellular uptake and 

intracellular distribution.22-24 Engineered delivery vehicles can promote endosomal ‘escape’ 

through various methods of endosomal rupture, 25-28 but recent reports estimate that even 

utilizing these methods <10% of endosomally delivered cargo can be expected to enter the 

cytosol.29,30 Recently, vehicles capable of non-endosomal uptake through direct cytosolic 

entry have been reported with highly efficient protein delivery, providing a potential 

alternative pathway31,32 Distinguishing cytosolic access from endosomal entrapment 

however, is a critically important yet often overlooked checkpoint in the development of 

effective intracellular delivery systems.23,33

Fluorescent proteins provide a straightforward and effective readout to evaluating cytosolic 

access. The integral fluorescence of these proteins eliminates artifacts arising from 

intracellular separation of the fluorophore from the protein cargo.34,35 Green fluorescent 

protein (GFP) is a robust and versatile model cargo that can passively diffuse from the 

cytosol into the nucleus through pores in the nuclear membrane.36 Nuclear fluorescence 

of GFP thus provides definitive evidence of cytosolic access, making it a versatile tool for 

evaluating intracellular protein delivery (Figure 1). In this topical review we will discuss 

the use of both GFP and fluorophore-tagged small proteins as tools for validating cytosolic 

protein delivery, highlighting fundamental concepts and recent applications of this strategy.

Diffuse Fluorescence Indicates Cytosolic Access

There are two main indicators of cytosolic access of small fluorescent (or fluorophore

tagged) proteins that are easily evaluated by fluorescence microscopy: punctate versus 
diffuse fluorescence signal and fluorescence signal in the nucleus. Diffuse fluorescence 

qualitatively defines endosomal entrapment from cytosolic access. Fluorescence in the 

nucleus provides a direct readout, as small proteins like GFP will diffuse from the cytosol 

through nuclear membrane pores and illuminate the nucleus.

Fluorescent proteins trapped in endosomes are visible as highly localized, punctate 

fluorescence signals. In contrast fluorescent proteins free to move about the cytosol display 

diffuse, evenly spread fluorescence, as seen in cells that constitutively express fluorescent 

protein. 37 Recently, Gao reported a method allowing small proteins to avoid endocytosis 

and pass into the cytosol through noncovalent tagging with Coomassie blue (CB)-cholesterol 

conjugates.38 Cytosolic access of four dye-labeled proteins was assessed by diffuse versus 
punctate fluorescence signal (Figure 2) as well as co-localization with LysoTracker. The 

two smaller proteins were delivered to the cytosol, as evidenced by diffuse fluorescence 

throughout the cytosol. Lysozyme displayed a mixture of diffuse and punctate fluorescence. 

Notably, the small size of these proteins also allowed them to diffuse across the nuclear 
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pore and into the nuclei. The larger proteins showed only localized punctate fluorescence, 

indicating vesicular entrapment.

Co-localization of protein fluorescence with an endosomal marker is a common method 

to validate endosomal entrapment.39 A common misconception is that protein cargo not 

co-localized with endosomal marker has avoided the endosome and entered the cytosol, even 

if fluorescence signal remains punctate. Endosomal markers like those of the LysoTracker 

series40 work through pH-responsiveness, making them specific for early (pH ~6.3) or late 

stage (pH 4.5 - 5) endo/lysosomes.33 When LysoTracker dyes aggregate, intracellular pH 

also rises considerably, potentially quenching the fluorophore of the delivery cargo.41,42 

Lysotracker co-localization should therefore always be qualified by fluorescence signal 

to accurately assess endosomal escape. Flavell recently reported a method to quantify 

endosomal escape of fluorescently labelled saporin toxin in Daudi cells using flow 

cytometry. 43 Endosomal escape was induced by treatment with chloroquine, an inhibitor 

of endolysosomal acidification. Pulse width analysis was used to distinguish punctate 

signal from diffuse cytosolic fluorescence. A fluorescence shift from punctate to diffuse 

corresponded with protein escape from the endosome, providing a metric of cytosolic 

access.

GFP in the Cytosol will Enter the Nucleus

GFP is an ideal model cargo to visualize protein trafficking into and throughout the 

cell. The fluorophore of GFP is composed of amino acid residues within the polypeptide 

chain, providing robust fluorescence (quantum yield up to 80 percent)44 while avoiding 

the issues of photobleaching or enzymatic cleavage associated with fluorescent dyes. 45-47 

Fluorescence is only lost upon denaturation, which can be used as a readout for retention of 

protein structure through the delivery process.

In addition to the diffuse fluorescence discussed above, GFP also provides a reliable readout 

of cytosolic access through nuclear fluorescence. 48 The nuclear membrane pores limit 

entry by passive diffusion to approximately 60kDa.49,50 Small proteins like GFP (238 

residues, 27 kDa) will passively translocate from the cytosol into the nucleus through 

these size-restrictive pores. 51 For proteins larger than the nuclear pore, passive nuclear 

diffusion is dramatically decreased and generally requires the aid of active nuclear targeting 

elements.52, 53 Nuclear fluorescence therefore provides a direct readout of cytosolic access, 

as endosomally entrapped GFP can access neither the cytosol nor the nucleus. In one 

example of this effect, Raines modified GFP allowing it to pass through the cell membrane 

and into the cytosol by cloaking its carboxyl groups with a hydrophobic moiety.54 

Modified GFP showed diffuse fluorescence throughout the cytosol and nucleus. Delivery 

was compared with a super-charged GFP variant, which displayed dark nuclei and punctate 

signal indicative of endocytosis (Figure 3). In this study deliveries were performed through 

incubation for 30, 120, or 240 min at 37 °C in serum-free culture media.

We recently reported an imaging flow cytometric method that utilized the passive 

translocation of GFP into the nucleus as a quantitative indicator of cytosolic delivery. 

Cytosolic delivery efficiency was quantified through co-localization of GFP signal with 
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nuclear stain. Supramolecular nanocomposite vehicles were generated between engineered 

oligo-glutamate, or E-tagged GFP and guanidinium-functionalized poly(oxanorbornene) 

imide (PONI) polymers. The charge ratio between guanidinium (polymer) and E-tag 

(protein) during formulation was found to be critical to nanocomposite generation. These 

vehicles efficiently delivered GFP directly to the cytosol, with diffuse cytosolic and 

nuclear fluorescence (Figure 4).55 Notably these vehicles demonstrated cytosolic delivery 

in the presence of serum (media supplemented with 10% fetal bovine serum). Under 

the most efficient delivery conditions, GFP was delivered to the cytosol in >90% of the 

cell population as indicated through GFP fluorescence in the nucleus. This simple and 

straightforward approach to quantifying cytosolic delivery is widely applicable to small 

fluorescent or dye-labeled protein delivery, regardless of carrier vehicle.56-59

Conclusions

In sum, GFP and fluorophore-tagged proteins provide two key readouts for cytosolic 

access. Diffuse fluorescence provides a simple readout but is challenging to quantify in 

a cell population. Diffuse nuclear fluorescence definitively demonstrates cytosolic access 

of delivered GFP and can be quantified in cell populations using microscopy and imaging 

flow cytometry. These robust, versatile methods are suitable for fluorophore-tagged small 

proteins, and using fluorescent proteins like GFP further eliminates artifacts arising from 

cargo degradation and fluorophore release. Widespread utilization of these tactics provides 

rigorous assessment of cytosolic access that will promote the development of more efficient 

platforms for protein delivery.
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Figure 1. 
Protein nanocarriers are uptaken by the cell through endocytosis (left) or direct cytosolic 

entry (right). Endocytosis presents as punctate fluorescence in the cytosol. Diffuse 

fluorescence suggests cytosolic access. Small proteins (< 60kDa) like GFP can passively 

diffuse from the cytosol into the nucleus, definitively establishing cytosolic access.
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Figure 2. 
Cytosolic delivery by protein tagging. (a) Proposed delivery mechanism. Proteins tagged 

with CB-cholesterol conjugates embedded within the lipid bilayer. The noncovalent nature 

of the tagging causes dissociation, after which untagged hydrophilic protein can ‘slip’ into 

the cytosol. Deliveries were performed in serum-free RPMI 1640 media for 3 hours. (b) 

Confocal fluorescence and bright-field micrographs of live HeLa cells treated with tagged 

proteins of different molecular weights. All proteins were labeled with a green fluorescent 

dye (AF488). Adapted with permission from [35].
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Figure 3. 
(a) Bar graph showing the extent of esterification of the superfolder variant of GFP with 

diazo compounds 1–6 (black) with parenthetical log P values, and the internalization of the 

ensuing esterified GFPs into CHO-K1 cells (green). Values (±SD) were determined by mass 

spectrometry and flow cytometry, respectively. (b) Images of the cellular internalization in 

CHO-K1 cells of esterified GFP (top) and its supercharged variant (bottom). Cells were 

stained with Hoechst 33342 and wheat germ agglutinin (WGA)–AlexaFluor 647. Scale bars: 

25 μm. Adapted with permission from [51].
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Figure 4. 
Polymer mediated intracellular delivery of GFP, quantified by imaging flow cytometry. (a) 

PONI polymer electrostatically complexed with ‘E-tagged’ GFP to form supramolecular 

polymer-protein nanocomposites. Delivered cell population was analyzed by confocal 

microscopy or imaging flow cytometry, through co-localization with a nuclear stain. (b) 

Confocal images of GFPE20 showing cytosolic delivery and diffuse nuclear fluorescence 

in HEK-293T cells. Scale bars = 50 μm. (c) Representative imaging flow cytometry 

micrographs showing cytosolic delivery and nuclear localization of GFPE20 as compared 

to endosomally entrapped GFP and undelivered cells. Channels displayed are bright-field, 

FITC for GFP, and TRITC for nuclear stain (DRAQ5). (d) Percentage of cell population 

with cytosolic delivery of GFP using a family of different molecular weight PONI polymers. 

Adapted with permission from [52].
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