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Abstract: Gonadotropins are essential for regulating ovarian development, steroidogenesis, and
gametogenesis. While follicle stimulating hormone (FSH) promotes the development of ovarian
follicles, luteinizing hormone (LH) regulates preovulatory maturation of oocytes, ovulation, and
formation of corpus luteum. Cognate receptors of FSH and LH are G-protein coupled receptors that
predominantly signal through cAMP-dependent and cAMP-independent mechanisms that activate
protein kinases. Subsequent vital steps in response to gonadotropins are mediated through activation
or inhibition of transcription factors required for follicular gene expression. Estrogen receptors,
classical ligand-activated transcriptional regulators, play crucial roles in regulating gonadotropin
secretion from the hypothalamic—pituitary axis as well as gonadotropin function in the target organs.
In this review, we discuss the role of estrogen receptor 3 (ERf3) regulating gonadotropin response
during folliculogenesis. Ovarian follicles in Erf3 knockout (ErpXO) mutant female mice and rats
cannot develop beyond the antral state, lack oocyte maturation, and fail to ovulate. Theca cells (TCs)
in ovarian follicles express LH receptor, whereas granulosa cells (GCs) express both FSH receptor
(FSHR) and LH receptor (LHCGR). As oocytes do not express the gonadotropin receptors, the somatic
cells play a crucial role during gonadotropin induced oocyte maturation. Somatic cells also express
high levels of estrogen receptors; while TCs express ERx and are involved in steroidogenesis, GCs
express ER( and are involved in both steroidogenesis and folliculogenesis. GCs are the primary site
of ERp-regulated gene expression. We observed that a subset of gonadotropin-induced genes in GCs,
which are essential for ovarian follicle development, oocyte maturation and ovulation, are dependent
on ERB. Thus, ERp plays a vital role in regulating the gonadotropin responses in ovary.

Keywords: estrogen receptor (3; follicle stimulating hormone; luteinizing hormone; steroidogenesis;
follicle development; oocyte maturation; ovulation

1. Introduction

Follicle stimulating hormone (FSH) and luteinizing hormone (LH) are called go-
nadotropins due to their effects on gonadal development and function [1,2] Gonadotropins
are secreted from the anterior pituitary gland and act on the ovary and testis [1,2]. In the
ovary, gonadotropins interact with intraovarian factors to regulate steroidogenesis, follicle
development, oocyte maturation, ovulation, and formation of the corpus luteum [1-5]
Estrogens synthesized in the ovary during folliculogenesis in turn act on the hypothalamic-
pituitary (H-P) axis to regulate gonadotropin secretion [2]. While estrogens generally exert
a negative regulatory effect on gonadotropin secretion, a high level of estrogens during
the preovulatory period induces a surge of gonadotropins, which is essential for oocyte
maturation and induction of ovulation.
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Ovarian follicles consist of oocytes surrounded by two types of somatic cells, granulosa
cells (GCs) and theca cells (TCs). These somatic cells are involved in steroidogenesis, and
regulation of oocyte development from the dormant stage to ovulation. While TCs are
mainly involved in steroidogenesis, GCs are responsible for steroidogenesis, as well as
regulation of oocyte maturation. The gonadotropin receptors, FSH receptor (FSHR) and
LH/chorionic gonadotropin (CG) receptor (LHCGR), are expressed on the somatic cells,
but not on the oocytes. Thus, gonadotropin response that leads to oocyte maturation is
mediated through the signaling within somatic cells [6].

Estrogen signaling not only regulates the gonadotropin secretion, but it also controls
the gonadotropin functions in the ovary [7]. Estrogen receptors are abundantly expressed
in the H-P axis as well as in somatic cells in the ovary. While TCs express estrogen receptor
o (ERax), GCs cells express estrogen receptor 3 (ER) [8]. ERf is the predominant estrogen
receptor in the ovary, and the adult ovary is the site associated with the highest level of
ERp expression in females [9]. Thus, it is highly likely that ER( plays a crucial role in
regulating ovarian functions, including those mediated by gonadotropins. Loss of ERf3
is associated with a decreased estrogen level, and attenuated preovulatory gonadotropin
surge associated with complete failure of ovulation [10-14]. In this review, we discuss the
role of ER in regulating the gonadotropin responses in ovaries.

2. Estrogen Regulation of Gonadotropin Secretion

Estrogen signaling plays an essential role throughout the hypothalamic—pituitary—
ovarian (H-P-O) axis. Estrogens are synthesized in the ovary during folliculogenesis
and circulating estrogens acts on the kisspeptin neurons in the hypothalamus to regulate
kisspeptin production. Kisspeptins stimulate gonadotropin releasing hormone (GnRH)
neurons in the hypothalamus leading to the secretion of GnRH [15] (Figure 1). Finally,
GnRH acts on the gonadotrophs in the anterior pituitary and induces gonadotropin syn-
thesis and release.

There are two distinct populations of kisspeptin neurons in the hypothalamus; one
that is repressed by estrogens and a second that is induced by estrogens [16-21]. Kisspeptin
neurons in the arcuate nucleus are repressed by estrogen signaling. These neurons are
responsible for basal secretion of gonadotropins, which are essential for steroidogenesis,
and development of ovarian follicles [16-23]. Throughout the estrous cycle, low levels
of ovarian-derived estradiol inhibit GnRH secretion via negative feedback on kisspeptin
neurons until the proestrus evening, when elevated estradiol induces a preovulatory GnRH
surge [21,24-26]. In rodents, kisspeptin neurons in the anteroventral periventricular nuclei
and neighboring paraventricular nuclei mediate estrogen induced positive feedback on LH
surge [16-21]. This high level of estrogen during the preovulatory period that induces the
gonadotropin surge is required for oocyte maturation and ovulation.

Estrogen receptors are expressed in the kisspeptin neurons, GnRH neurons in the
hypothalamus as well as in the pituitary gonadotrophs [22]. Estrogen mediated repression
of kisspeptin neurons in the arcuate nucleus is mediated by ERx [23]. In the absence of ERx
in ERaKO mice and rats, kisspeptin secretion is increased due to the lack of the repressive
effects [27-29]. An elevated level of kisspeptin results in augmented GnRH release in the
hypothalamus, which leads to an increased secretion of gonadotropins from the anterior
pituitary [27-29]. Ultimately, a high level of gonadotropins acting on the ovaries synthesize
an increased amount of estrogens. A high level of gonadotropins associated with elevated
levels of estrogens lead to acyclic anovulation and infertility [27-29].

In ERBXC mice and rats, steroidogenesis and follicle maturation are significantly
reduced, which is associated with an attenuated gonadotropin surge [10-14]. Until recently,
it was thought that ER« is the predominant estrogen receptor in the H-P axis with ERf3
having a negligible regulatory role on gonadotropin secretion. Using subfertile ErpX®
female mice, it was shown that ERf is not necessary within the H-P axis for generation
of the gonadotropin surge [14]. This study emphasizes the presence of ER3 within the
ovary for providing the required signals to the H-P axis, and suggests that estradiol alone
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may not be sufficient to induce the gonadotropin surge [14]. In contrast, a recent study
has demonstrated that expression of ERf3 in hypothalamic GnRH neurons is essential for
induction of the preovulatory gonadotropin surge [30]. Moreover, loss of ER(3 also reduces
pulsatile GnRH production, and this mutation led to delayed onset of puberty in the Erp*®
female mice [30].
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Figure 1. Estrogen receptor (3 (ER) regulation of gonadotropin production and function. Estra-
diol (E2) secreted from ovarian follicles acts on the kisspeptin (KP) neurons in the hypothalamus
to regulate KP expression and release. KP acts on GnRH neurons to induce GnRH release in the
hypothalamic-pituitary (H-P) axis. GnRH stimulates the gonadotrophs in the anterior pituitary to
induce gonadotropin (FSH and LH) secretion. Gonadotropins act on the ovary to induce follicle
development, oocyte maturation, ovulation, and luteinization. Estrogen receptors ERoc and ERf3 are
expressed in hypothalamic neurons, as well as in gonadotrophs. While ERx plays a predominant role
in KP neurons, ERp regulates GnRH release and secretion of gonadotropins. Moreover, ERp is the
major estrogen receptor in ovarian follicles. Thus, ER plays a vital role in the levels of gonadotropin
production and gonadotropin function.

Estrogen receptors also play an important role in the level of gonadotropin secretion
from the pituitary gland [31,32]. ERx has been found essential for regulating LH and FSH
secretion from the pituitary gonadotrophs, and thus female fertility [31]. It has been re-
ported that ER(3 can partially compensate the ER«x deficiency in pituitary gonadotrophs [32].
Taken together, we can conclude that ER3 plays an important role in gonadotropin secretion
from the H-P axis.
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3. Ovarian Responses to Gonadotropins

Gonadotropins play a vital role in ovarian development and onset of puberty [1].
Impaired gonadotropin secretion results in a something is missing here [30,33]. In the
adult females, gonadotropins regulate the major ovarian functions: steroidogenesis and
oogenesis [2,6]. Follicle assembly, activation of primordial follicles, and the early stage
of follicle development to the preantral stage are independent of gonadotropins [2,34,35]
(Figure 2). However, development of ovarian follicles beyond the early antral stage is
dependent on FSH and LH stimulation [2,34,35]. The intraovarian regulators such as an-
drogens, IGF1, EGEF, activin, GDF9, BMP15, and connexins play vital roles in the acquisition
of FSH dependence in preantral follicles [1]. Formation of the TC layer on secondary
follicles is a key step for acquiring FSH dependence [1]. GC-derived KL and IGF1 recruits
TCs to secondary follicles [36-38], and oocyte-derived GDF9 induces differentiation of the
TCs [39-42]. These events are followed by expression of FSHR on GCs and LHCGR on TCs
in preantral follicles [1]. TCs synthesize androgens that play important roles in the growth,
survival, and acquisition of FSH dependence in preantral follicles [1]. Androgens bind
to ARs in GCs to induce the expression of Fshr. IGF1 induces the expression of Fshr and
Cyp19al in GCs during the preantral-to-antral transition [43]. Expression of FSHR is highest
in GCs of small antral follicles and the expression is decreased with further development
and follicular selection [43,44]. In contrast, expression of LHCGR is increased in the GCs of
larger antral follicles after selection and dominance [43,44]. IGF1, estradiol, and IL-6 can
enhance the expression of Lhcgr gene that is induced by FSH stimulation [45-47]. While
FSH-stimulation upregulates the expression of Lhcgr on GCs, LH-signaling downregulates
it dramatically [45—-47]. Limited information is available regarding the regulation of Fshr
gene expression [48]. Activin and TGF( can upregulate the expression of Fshr, but the
mechanism remains unclear [48].
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Figure 2. A schematic representation of ovarian follicle development and ovulation. At birth, a fixed number of primordial
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follicles are present in the ovary. Throughout a woman’s reproductive years, follicles are recruited and activated from the

pool of dormant follicles. The initial recruitment of primordial follicles to form primary follicles, and their development

into secondary follicles are regulated by intraovarian factors, which are independent of gonadotropins. When secondary

follicles reach the preantral stage, developmental mechanisms of follicles shift from intraovarian to FSH responsiveness.

Subsequent development of preantral follicles to early antral and then antral stage is FSH dependent. Thereafter, follicle

selection is accomplished, follicles acquire LH-dependence and LH stimulation gives rise to the development of graafian

follicles. LH-signaling is also crucial for the final stages of oocyte maturation, ovulation, and luteinization of GCs.

The development of early antral follicles to small antral follicles is dependent on
FSH-induced follicular growth, whereas the development of antral follicles to the Graafian
stage is mediated by LH-induced follicular (and oocyte) maturation [1,2,6] (Figure 2). Both
growth and maturation phases of follicle development are accompanied by gonadotropin-
induced steroidogenesis in TCs and GCs [1,2,6]. Pulsatile secretion of low levels of LH
stimulates TCs to synthesize progestins, and androgens [49], which are taken up by the
adjacent GCs and converted into estrogens [50,51]. A surge of gonadotropin secretion
is triggered by the rising estrogen level synthesized by the GCs of maturing follicles.
Preovulatory oocyte maturation, induction of ovulation, and luteinization of GCs are
dependent on the gonadotropin surge.

LH and FSH have an identical « subunit, but the  subunit is different in each.
This difference is responsible for the specific binding of each hormone to its cognate
receptor [52]. However, the receptor binding is not exclusive of the 3 subunit because
the o subunit also interacts with the gonadotropin receptors [52]. As we have mentioned
above, only the somatic cells in ovarian follicles express the gonadotropin receptors. TCs
express LHCGR and respond to LH stimulation, whereas mural GCs express both FSHR
and LHCGR and respond to both gonadotropins [6,53,54]. As oocytes do not express
gonadotropin receptors, the gonadotropin response from TCs or GCs is conveyed to them
through vectorial transfer of information [6]. FSHR and LHCGR are G-protein coupled
receptors (GPCRs) that activate adenyl cyclase, PKA, PI3K-AKT, and MEK1-ERK1/2
pathways. Gonadotropin responses can also be grouped into cAMP-dependent and cAMP-
independent. Although both gonadotropins are thought to activate similar protein kinase
pathways, the fundamental difference between FSH and LH response in the ovary results
from cell-type specific expression of their receptors, and the dynamic differences in their
pulsatile and bolus secretion from the anterior pituitary gland.

3.1. FSH Signaling in the Ovary

FSHR is expressed in the GCs of multilayered secondary follicles, however, FSH
stimulation is essential for follicle development beyond the preantral stage [2,34,35,55]
(Figure 2). Secondary follicles acquire FSH dependence during the transition from pre-
antral to early antral stage and these changes determine the fate of follicles [2,34,35]. In
FshBXO mice, activation of primordial follicles and subsequent growth to preantral follicles
was intact, but follicles were arrested at the preantral stage, and no antral follicles were
observed [34,56]. These findings indicate that FSH is indispensable for follicle growth and
antrum formation during the preantral-to-antral stage transition [34,56].

FSH activates the GCs both in a cAMP-dependent and a cAMP-independent man-
ner [55,57]. Binding of FSH to FSHR activates adenyl cyclase and increases cAMP levels,
which subsequently activates the PKA pathway [55,57] (Figure 3). FSH signaling can
activate GRKSs and associate with (-arrestins, which results in GPCR desensitization and
G-protein independent signaling [58-61]. FSHR interacts with APPL1, and activates the
PI3K-AKT and calcium ion mobilization essential for follicle selection and acquisition of
dominance [62,63]. Activated FSHR can interact with the adapter protein 14-3-3t, which
can also mediate AKT-activation [64,65]. Activated PI3K-AKT phosphorylates and de-
activates FOXO1A [66,67] that leads to upregulation of GC-genes involved in cellular
proliferation [68]. FSH induced PI3K-AKT activation also inhibits apoptosis of GCs in
antral follicles and prevents follicle atresia [2]. FSHR can interact with a PDZ protein, GIPC,
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that promotes the intracellular MAPK [69]. FSH signaling can also activate MEK1 and
ERK1/2 by stimulating RAS-RAF-MEK pathway [62] (Figure 3). FSH can also stimulate
the TGEP pathway and activate transcription factors like SMAD2/3 and SMAD4 [70].
Thus, FSH signaling regulates the expression of target genes including Lhcgr, steroidogenic
enzymes, protein kinases, and growth factors that positively impact steroidogenesis and
gametogenesis [71-78] (Figure 3). Recent studies suggest that estrogen signaling increases
the ovarian responses to FSH. Particularly, estradiol augments the FSH effects during the
advanced stages of follicle development [79,80].
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Figure 3. FSH signaling in the ovarian follicles. FSH signaling is necessary for the development of
follicles during preantral to antral transition. Binding of FSH to FSHR can activate GCs in both a
cAMP-dependent and independent manner. Upon FSH binding, FSHR recruits Gs and AC, leading
to activation of the cyclic AMP/protein kinase A (c(AMP/PKA) pathway. Alternatively, PI3K/AKT
can be activated upon FSHR interaction with APPL1. Through phosphorylation, PI3K/AKT directly
inhibits FOXO1A, which leads to upregulation of FOXO-regulated genes involved in cell proliferation.
In addition, PI3K/AKT activation of Ca%* channel leads to an increase in intracellular calcium
concentration, which is crucial for follicle selection and dominance. PI3K/AKT can also activate
the RAS/RAF/MEK singling that plays an important role in the induction of Fshr, Lhcgr, Cyp19al
expression, gap junction formation, steroidogenesis, and inhibition of apoptosis.

3.2. LH Signaling in the Ovary

Development of antral follicles to the Graafian stage occurs after follicle selection and
dominance via LH-dependent mechanisms that increase estrogen synthesis and activate
IGF1 signaling [1,2,81-86]. In antral follicles, LHCGR is expressed in both TCs, and
mural GCs but not in cumulus GCs or oocytes [6]. FSH signaling in association with the
intraovarian factors like IGF1, IL6 and estradiol induces Lhcgr expression in mural GCs [48],
whereas it is repressed in cumulus GCs by GDF9 secreted from oocytes [87-89]. LhK®
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mice suffer from arrested antral follicle growth, and fail to develop preovulatory follicles,
indicating that LH signaling is essential for further maturation of antral follicles [90-92].
LH signaling in TCs plays an essential role in initiating steroidogenesis, whereas
LH binding to LHCGR induces differentiation of GCs, which is required for cumulus
expansion, oocyte maturation, ovulation, and luteinization [6,93]. The low level of LH
bound to LHCGR readily activates Gs and stimulates cAMP synthesis. However, in the
presence of a large quantity of LH and higher LHCGR expression during the preovulatory
period, LH signaling can also activate G4,11, stimulate phospholipase C, and increase
second messengers like inositol phosphates, calcium, and diacylglycerol [94-97] (Figure 4).
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Figure 4. LH signaling in the ovarian follicles. The final stages of follicle maturation and ovulation
are dependent on binding of LH to the LHCGR in mural granulosa cells (GCs). The binding of
LH to the LHCGR activates Gs, which increases cAMP levels within mural GCs. LH stimulated
GCs express growth factors including AREG and EREG that can stimulate the EGFR signaling.
This results in an activation of RAS-RAF-MEK pathways that phosphorylate ERK1/2. Activated
pERK1/2 stimulates the expression of Pgr and Ptgs2, which are necessary to achieve successful
ovulation. In contrast, cAMP and ERK1/2 pathways inhibit expression Nppc mRNA (that encodes
CNP) and NPR2, respectively. As CNP and NPR2 plays an important role in the maintenance of
meiotic arrest in preovulatory follicles, the inhibition of CNP/NPR2 signaling allows oocytes to

resume meiosis.

LH signaling via LHCGR interacts with an RTK family member, EGFR, and a guanylyl
cyclase NPR2°. LH stimulated mural GCs express EGFR ligands EREG, AREG, and others,
which can activate EGFR [98-101] (Figure 4). These factors trigger RAS-RAF-MAPK
pathways, and increase the expression of Ptgs2, Has2, and Tnfaip6 in GCs, which are
essential for the induction of ovulation [98]. In mutant mouse studies, disruption of the
EGF pathway [102] or ERK1/2 [103] resulted in failure of ovulation despite a normal
follicle growth. Thus, ERK1/2 may mediate the response of EGFR signaling in activated
GCs [104]. LH stimulated mural GCs also express high levels of Nppc mRNA that encodes
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C-type natriuretic peptide ligand (CNP), which can activate NPR2 to increase the cGMP
production crucial for follicle maturation [105,106].

3.3. Interaction between FSH and LH Signaling

FSHR can interact with other related GPCRs like LHCGR, and thus provide diversity
in regulation of gonadotropin responses [107-109]. Studies have suggested that heteromer-
ization of the FSHR with LHCGR plays a key role in regulating the follicular growth and
selection [110,111]. Intracellular signals delivered by LHCGR may be modulated by the
presence of FSHR on GCs, and vice versa. While unliganded FSHR can amplify LHCGR
signals, LHCGR can inhibit FSHR-dependent cAMP production [110,112]. FSHR also inter-
acts with RTKs including IGF1R and EGFR, which is important for the AKT and ERK1/2
activation required for gonadotropin induced differentiation of GCs [62,113,114].

4. ERf3 Regulation of the Gonadotropin Responses

For successful ovulation, ovarian follicles need to develop to full maturity in response
to gonadotropin stimulation that leads to follicle rupture [100]. Estrogen signaling plays a
crucial role in mediating an effective gonadotropin response on the ovarian follicles [10,100].
Thus, disruption of estrogen signaling by loss of estrogen receptors or aromatase prevents
antral follicles from developing to the Graafian stage and to ovulate [10,13,115-119]. The
expression and function of ER«x are predominant at the H-P level, and that of ER(3 are
prominent within the ovary. Thus, ERx is important for gonadotropin secretion whereas
ERp is essential for gonadotropin responses in the ovary [10]. Nevertheless, ERf also
regulates gonadotropin secretion acting in GnRH neurons [30] and ER« also regulates
steroidogenesis acting in TCs.

An effective interaction between estrogen signaling and gonadotropin responses is
required for the ovarian follicle maturation and ovulation. As the somatic cells express
the gonadotropin receptors, it is likely that gonadotropin signaling interacts with the
estrogen signaling within these cells. Loss of either ERoc in TCs or loss of ER in GCs
affects the gonadotropin responses regulating ovarian functions [120]. Somatic cells are
primarily involved in steroidogenesis and regulation of oocyte maturation in response to
gonadotropins [53,54]. While LH signaling initiates steroidogenesis in TCs, both FSH and
LH signaling complete the final steps of steroidogenesis in GCs [53,54,121,122]. Further,
LH stimulated GCs contribute to oocyte maturation, induction of ovulation, and formation
of the corpus luteum [53,54,121,122].

Gonadotropin responses in the ovary are affected in the absence of ER{3 [10,100,101].
ErpXO mutant female mice and rats have been found to be infertile due to failure of follicle
maturation and ovulation [10,100,101]. However, loss of ER3 does not affect the male re-
productive function [10]. Targeted deletion of the DNA-binding-domain of ER{3 resulted in
an anovulatory phenotype in mutant rats similar to that of complete ErpXO rats, suggesting
that canonical transcriptional regulatory function of ERf is essential for the gonadotropin
responses [10,100]. Due to a high level of ERf3 expression in GCs, ER3-regulated GC-genes
play crucial roles in folliculogenesis starting from follicle assembly and follicle activa-
tion to follicle maturation and ovulation [100,101]. Presence of ERp is essential for the
gonadotropin-induced differentiation of GCs, and regulation of GC-genes including Lhcgr
and the steroidogenic enzyme Cyp19a1 as well as the transcriptional regulator Pgr [101,123]
(Figure 5). Transcriptional regulators are either activated or inactivated by LH or FSH
stimulation resulting in differential expression of genes in TCs or GCs that are required
for steroidogenesis, follicle development, and oocyte maturation. One such group of tran-
scriptional regulators are estrogen receptors within the somatic cells. However, instead of
being a downstream target of gonadotropin signaling, estrogen receptors may also have
gonadotropin-independent roles that are required for ovarian follicle development and
oocyte maturation [7,124].
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Figure 5. ER3 regulation of gonadotropin responses. ER{ is the predominant estrogen receptor in the ovary involved in

transcriptional regulation of gene expression. While ER« is expressed in theca cells (TCs), ERp is expressed in granulosa
cells (GCs). As GCs express both FSHR and LHCGR, we analyzed the role of ER( in gonadotropin-induced gene expression
in GCs. We identified that a subset of PMSG (that activates FSHR) or hCG (that activates LHCGR) regulated genes failed to
respond in the absence of ER expression in GCs. In early antral follicles, expression of FSHR-induced genes including
Cyp19A1, Cypllal, Lhcgr, Gata4, Npr2, Jaml, Galnt6, Znf750, and Dusp9 was dependent on ERf3. Moreover, presence of
ERp was found to be essential for the expression of LHCGR-induced genes, such as Egfr, Kiss1, Ptgs2, Adamts1, Wnt16,
Mageb16, Pgr, Runx2, and Jaml. Disruption of ER signaling results in dysregulation of these genes and is associated with

failure of follicle maturation, and ovulation. As ovulation does not occur in the absence of ERf, the potential role of ERf in

luteinization has not been studied.

ERp is a ligand-activated transcription factor. However, loss of ERp disrupts the
final stages of follicle development and oocyte maturation, when gene transcription is
minimal in oocytes. Studies have shown that ERp can induce the expression of miR-
NAs [125] and it can directly interact with AGO2 [125]. Thus, ERf can also be involved
in posttranscriptional regulation of gene expression. Nevertheless, most of the studies
suggesting a post-transcriptional regulatory function of ERf refer to cancer cells, and it
remains unknown whether such mechanisms also occur in normal ovarian follicles.

4.1. ERB Regulation of FSH Responses

FSH signaling stimulates early antral follicles to develop to the antral stage [2]. It has
been shown that FSH stimulation of small antral follicles alone is insufficient for induction
of maturation, which must be facilitated by estrogen signaling [126]. Loss of ER(3 does
not impact the development of ovarian follicles prior to the antral stage [101]. However,
failure of ErpK© follicles to mature following LH stimulation suggests that those follicles
may not possess the factors required for a proper LH response [101]. Gene expression
analyses 48h after PMSG stimulation (PMSG acts on rodent FSHR) revealed that many of
the genes that are differentially expressed in wildtype ovaries fail to do so in the absence of
ERp [10,100,101].
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Most studies suggest a primary role for ERp in the GCs as being essential for FSH
induced ovarian follicle development. Differentiation of GCs in response to FSH is de-
pendent on ERf3-mediated estrogen signaling [127]. Despite an increased expression of
FSHR, administration of PMSG fails to induce the genes required for an effective LH
response [101,128]. Although there was no change in FSH-induced genes such as Star,
expression of Lhcgr, Cypllal, Cyp19al, Gatad, and Npr?2 failed to upregulate in ErpX®
GCs [10,100,101,129] (Figure 5). These findings suggest that expression of a subset of
FSH-induced genes is dependent on the presence of ERp in GCs [101].

In the absence of ERf, FSH-induced cAMP production is markedly reduced in
GCs [79]. However, the molecular mechanism underlying such reduced cAMP produc-
tion in GCs remains unclear [79]. In vitro and in vivo studies have also demonstrated
defective antrum formation, associated with decreased cumulus expansion after FSH treat-
ment [120,129,130]. Due to the reduced levels of Cyp11al and Cyp19al, GCs in ErpX®
preovulatory follicles exhibit significantly lower levels of FSH-induced estrogen synthe-
sis [120,130]. A decreased level of Cyp19al can interrupt the development of antral follicles
to the Graafian stage. Similar to ErX© mice, Cyp19al knockout mice are able to develop
antral follicles but failed to mature or ovulate [118]. ErpX© GCs also have a reduced level
of Gata-4 expression, which decreases the proliferation of GCs and that impairs follicle
maturation [131,132]. In contrast, in vitro culture experiments with EraK© models detected
a minimal role for ERa in the differentiation of GCs and their gene regulation [120,130].

4.2. ERB Regulation of LH Responses

ERp plays a very important role in the LH-induced differentiation of GCs required for
follicle maturation and induction of ovulation [130]. A reduced level of Lhcgr expression
in ErpXO GCs in response to FSH causes failure of those antral follicles to respond to LH,
which is essential for their development to Graafian follicles [6,133]. Expression of LH
target genes that regulate steroidogenesis, cumulus cell expansion, oocyte maturation,
and ovulation, were markedly impaired in ErpX® ovaries due to the failure of Lhcgr
upregulation in ErpXO GCs [14,101]. It is important to note that Lhcgr knockout mice
also suffered from lack of follicle development beyond the antral stage and failed to form
Graafian follicles [91]. We recently reported a similar ovarian phenotype in gonadotropin-
induced ErpX© rats [101].

Our recent study revealed that a subset of LH-induced genes in GCs is also depen-
dent on the presence of ERf [100,101]. We observed that hCG-stimulation (hCG activates
LHCGR) failed to upregulate the expression of Pgr, Runx2, Egfr, Ptgs2, Adamts1, and Kiss1
in ErpXC GCs [101] (Figure 5). Pgr, Runx2, Ptgs2, and Adamts1 were also found to be
downregulated in GCs isolated from hCG treated ErpX© mice [123]. We previously demon-
strated that loss of ERf3 results in failure of LH-induced Kiss1 gene expression in Er pKO
rat GCs [100,101]. Our recent findings suggest that ER3-regulated ovarian kisspeptin may
play an important role in preovulatory maturation of oocytes [129]. However, it remains
unknown if ovarian kisspeptin has any role in regulating GnRH neurons. In addition to
the known LH-regulated genes, we identified that loss of ER(} also alters the expression of
several novel GC-genes including Jaml, Galnt6, Znf750, and Dusp9 [101]. Differential ex-
pression of these LH-regulated genes in GCs may be responsible for the lack of maturation,
and ovulation of ErpX© ovarian follicles [101].

LH signaling also plays an important role in TCs, however, the major estrogen receptor
in TCs is ER«x. Therefore, it is less likely to be impacted by ER3. However, development of
the TC layer, and differentiation of TCs can be affected by the loss of ER in GCs or oocytes,
because these mechanisms are dependent on GC-derived KL and IGF1 [36-38] and oocyte
derived GDF9 [39-42]. We have observed that serum androstenedione and progesterone
levels can be lower in Erp3 mutant rats [100]. However, studies have not yet analyzed the
changes in the gene expression profile in ErX© TCs.
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5. Chorionic Gonadotropins in Ovarian Biology

Two placenta-derived gonadotropins (chorionic gonadotropins) are commonly used in
ovarian biology research and in clinical settings. Human chorionic gonadotropin (hCG) is
a polypeptide hormone produced by the trophoblast cells of the placenta. Equine chorionic
gonadotropin (eCG), also known as pregnant mare serum gonadotropin (PMSG), is another
commonly used placenta-derived gonadotropin hormone. Chorionic gonadotropins are
composed of two dissimilar subunits of glycoproteins like that of pituitary gonadotropins.
The o subunit is common to chorionic and pituitary gonadotropins while the 3 subunit,
which is unique for each specific hormone, is responsible for selective receptor binding.
The {3 subunit of hCG (3-hCG) has an 85% homology with the (3 subunit of pituitary LH,
but in equids, the 3 subunit of chorionic gonadotropin and pituitary LH are expressed
from the same gene, differing only by the glycosylation pattern. 3-hCG is mostly similar to
3-LH, differing in the carboxy terminal region. 3-hCG has a carboxy terminal extension
that includes four glycosylated serine residues that is responsible for its longer half-life.
hCG can bind and activate LHCGR in humans as well as in experimental animals like
rodents. Interestingly, PMSG has only LH-like activity in equids, but in other species
including rodents, it has FSH-like activity due to its preferred binding to FSHR. PMSG
is also preferred over pituitary extracts of gonadotropins due its longer half-life. hCG
prepared from the urine of pregnant women and PMSG purified from pregnant horse
serum are used in research, however, recombinant hCG or PMSG have been developed
and approved for clinical use.

Physiologically, CGs are important only during pregnancy in humans, primates, and
horses [134,135]. These mammals sustain their initial period of pregnancy by steroid
hormones produced by the corpora lutea. Extension of normal corpus luteum life is
achieved by placental secretion of chorionic gonadotropins and their binding to and
regulation of LHCGRs within the corpus luteum. Subsequently, they experience a luteal
to placental shift, and placental steroid production becomes essential for continuing their
pregnancy [134,135]. In contrast, the rodent corpora lutea are responsible for steroid
hormone production throughout gestation. Therefore, the rodents do not express CGs
in placenta to sustain their pregnancy [134,135]. In animal experiments, exogenous CGS
(PMSG and hCG) are administered into mice or rats for synchronized induction of ovarian
follicle development, as well as for the induction of ovulation. PMSG is administered to act
like FSH while hCG is administered to act like LH. hCG can bind the LHCGR and induce
responses like that of LH signaling. Injections of hCG mimic the LH surge that is necessary
for oocyte maturation and induction of ovulation. hCG is also used in the therapy of female
infertility, particularly in assisted reproductive techniques. PMSG is also administered
with progesterone to induce ovulation in livestock prior to artificial insemination.

Another importance of CG is the potential role of hCG in cancer progression due
to its proangiogenic properties [136]. Ovarian cancer cells express hCG and its receptor
LHCGR [137]. Such aberrant expression of hCG can be used as a tumor marker in non-
pregnant females [138,139]. It has been shown that hCG stimulates angiogenesis in the
ovary by inducing the expression of VEGF and increasing the proliferation of vascular
endothelial cells [137,140]. However, there has been no correlation between hCG expres-
sion and the survival of ovarian cancer patients [141]. An interesting aspect of LHCGR
expression outside the H-P-O axis is the association and sensitivity of the expression site
with estrogen signaling [137,140]. Tissues that express LHCGR also respond to changes in
estrogen levels [142], which suggest that either estrogen can modulate the expression of
LHCGR or estrogen signaling interacts with LH signaling. Thus, cancer cells that express
LHCGR may also express ERx and ERf} and respond to estrogen signaling. However,
further studies are required to clarify that.

6. ER3 and Gonadotropins in Ovarian Diseases

In contrast, hCG acts on increasing the growth and angiogenesis of ovarian cancers
as mentioned above. However, it remains unclear how gonadotropin signaling and ERf3
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signaling interact in ovarian cancer cells. ERf is the predominant estrogen receptor in
the ovary [143-146]. ER polymorphisms and mutations in women have been linked to
ovulatory dysfunctions, including complete ovarian failure [147-150]. PCOS, a common
clinical condition among women that causes failure of ovulation and infertility, is associated
with high levels of LH and androgens [151,152]. Recent genomewide association studies
have linked FSH and LH receptor variants to the development of PCOS [153]. Due to the
intricate connection between gonadotropin response and estrogen signaling in the ovary, it
is likely that estrogen signaling plays an important role in the pathogenesis of PCOS. The
loss of ERx induces polycystic like changes in mutant mouse [154] and rat [115] ovaries. But
there are no such cystic changes in the ErpXO mouse [12,13] or rat [10] ovaries. Rather, the
presence of ERB was found essential for the development of polycystic changes in Eroa<®
mice [146]. Based on these findings, it may be assumed that loss of ERx in TCs associated
with a normal or increased ERf activity in GCs may lead to the development of PCOS.
However, studies on human PCOS tissues only partially support the assumption [155-158].
Another ovarian disease that has been linked to estrogen signaling is ovarian cancer [159].
Estrogen receptors are also frequently detected in ovarian cancers, however the exact role
of estrogen receptors in ovarian cancer prognosis remains unclear [159-163]. ER{3 acts as a
tumor suppressor and inhibits the progression of ovarian cancers [164,165]. As expected,
expression of ERp is very low in advanced ovarian cancers [166,167] and loss of ERf3
expression in ovarian cancers correlates with a shorter survival rate [168,169]. In contrast,
hCG acts on increasing the growth and angiogenesis of ovarian cancers as mentioned above.
However, it remains unclear how gonadotropin signaling and ER( signaling interact in
ovarian cancer cells.

7. Future Perspectives

Estrogen signaling is essential for mediating effective gonadotropin responses within
the ovary. Gonadotropin receptors are expressed in TCs and GCs. The presence of ERx
in TCs, and ERf in GCs are essential for gonadotropin induced steroidogenesis and
gametogenesis. However, it remains unclear how gonadotropin signaling interacts with
estrogen signaling, and the hierarchy in these signaling mechanisms in those somatic
cells. It has been demonstrated that FSH induced Lhcgr expression in GCs depends on
the presence of ER3 [100,101]. As loss of ER3 reduces estrogen synthesis in GCs, it may
be hypothesized that ER3-dependent estrogen signaling positively regulates Lhcgr gene
expression in GCs. In contrast, the expression of Fshr is increased in the absence of ERf in
the ovary [100,101], which suggest that ER3 may negatively regulate Fshr expression in
GCs. Nevertheless, the molecular mechanisms underlying ER(3 regulation of gonadotropin
receptors in GCs remain unknown.

ERp is the predominant estrogen receptor in the ovary, where it functions to regulate
expression of genes involved in follicle development and oocyte maturation [120,170-172].
GCs in growing ovarian follicles express the highest level of ERf3. However, in vitro studies
on GCs are limited by spontaneous differentiation of GCs in culture. Moreover, GCs rapidly
lose the expression of ER in cell culture. Thus, the results obtained from in vitro studies of
GCs may differ from the exact molecular mechanisms that exist in vivo. Another limitation
in ER research is the lack of a specific antibody [173]. Although a mouse monoclonal
antibody has been reported to be efficient in detecting human ER, it fails to detect ER(3 in
the rodents [173].

Our studies have shown that ER plays a major role in regulating the GC-genes
that are important for oocyte maturation and induction of ovulation [10,100,101,129]. Ad-
ministration of gonadotropins for ovarian stimulation is a common practice in assisted
reproductive technologies [174,175]. Some of the patients that receive gonadotropins do
not respond well and are investigated for predisposing conditions underlying the defec-
tive gonadotropin responses [174]. A more directed focus on ERf3 may help identify the
underlying pathologies and lead to an effective treatment to overcome ineffective follicle
development and oocyte maturation following gonadotropin stimulation.
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