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Abstract   22 

During the COVID-19 pandemic, West Virginia developed an aggressive SARS-CoV-2 testing 23 

strategy which included utilizing pop-up mobile testing in locations anticipated to have near-24 

term increases in SARS-CXoV-2 infections.  In this study, we describe and compare two methods 25 

for predicting near-term SARS-CoV-2 incidence in West Virginia counties. The first method, Rt 26 

Only, is solely based on producing forecasts for each county using the daily instantaneous 27 

reproductive numbers, Rt.  The second method, ML+ Rt, is a machine learning approach that 28 

uses a Long Short-Term Memory network to predict the near-term number of cases for each 29 

county using epidemiological statistics such as Rt , county population information, and time 30 

series trends including information on major holidays, as well as leveraging statewide COVID-19 31 

trends across counties and county population size.  Both approaches used daily county-level 32 

SARS-CoV-2 incidence data provided by the West Virginia Department Health and Human 33 

Resources beginning April 2020. The methods are compared on the accuracy of near-term 34 

SARS-CoV-2 increases predictions by county over 17 weeks from January 1, 2021- April 30, 35 

2021. Both methods performed well (correlation between forecasted number of cases and the 36 

actual number of cases week over week is 0.872 for the ML+Rt method and 0.867 for the Rt 37 

Only method)  but differ in performance at various time points. Over the 17-week assessment 38 

period, the ML+Rt method outperforms the Rt Only method in identifying larger spikes.  We also 39 

find that both methods perform adequately in both rural and non-rural predictions. Finally, we 40 

provide a detailed discussion on practical issues regarding implementing forecasting models for 41 

public health action based on Rt, and the potential for further development of machine learning 42 

methods that are enhanced by Rt.   43 
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Introduction 44 

Rural communities in the United States (US) have been heavily impacted by the novel coronavirus 45 

(SARS-CoV-2) pandemic. SARS-CoV-2 related deaths have occurred disproportionately among 46 

rural areas of the US, and negative impacts on health and economic well-being have been 47 

described to be more severe among rural populations (Bradford, Coe, Enomoto, & White, 2020) 48 

(Mueller, McConnell, & Burow, 2021) (Cyr, Etchin, & Guthrie, 2019). Persons living in rural 49 

communities often have multiple barriers to health care and laboratory diagnostic testing due to 50 

geographic, transportation, and cost.   51 

 52 

Early in the COVID-19 pandemic, the state of West Virginia (WV) provided county-specific data 53 

on SARS-CoV-2 testing results so that daily instantaneous reproductive numbers (Rt) could be 54 

calculated for each WV county to indicate viral transmission dynamics. An aggressive SARS-CoV-55 

2 testing strategy was implemented that included static as well as mobile testing units.  The Rapid 56 

Acceleration of Diagnostics in Underserved Populations (RADx-UP), funded by the National 57 

Institutes of Health, provided the opportunity to deliver pop-up mobile testing in those areas 58 

predicted to have the greatest increases in SARS-CoV-2 incidence. The objective was to increase 59 

testing in those communities most likely to have a near-term (within 7-10 days) increase in 60 

COVID-19 cases, thereby potentially providing early identification of SARS-CoV-2 infected 61 

persons who may then quarantine more rapidly in an effort to blunt the anticipated increase in 62 

new cases.   63 

 64 
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Two strategies to predict near-term increases in SARS-CoV-2 cases were developed using recent 65 

county-specific incidence of infections and Rt – one method is a dynamical algorithm-based 66 

prediction using Rt and the serial interval while the second method uses a long short-term 67 

memory (LSTM) machine learning strategy. The goal was to recommend counties of outbreak for 68 

targeted testing.  Here we compare accuracy of the two methods to predict short-term increases 69 

in county-specific SARS-CoV-2 incidence and discuss conditions favoring one method or the 70 

other. 71 

 72 

Data and Methods 73 

Data 74 

To obtain estimates of near-term increases in SARS-CoV-2 cases, we deployed the likelihood-75 

based model underlying the EpiEstim package in R and developed in Cori et al. (Cori, Ferguson, 76 

Fraser, & Cauchemez, 2013) and Thompson et al. (Thompson, et al., 2019). using software 77 

provided by Imperial College London (Mishra & Valka, 2020) Two methods were employed: 1) 78 

the Rt Only method, a forecast based on the reproduction number and associated serial interval 79 

that predicts the future Rt  that is then extrapolated to estimate the number of future cases; 2) a 80 

Long Short-Term Memory (LSTM) machine learning model (ML+Rt) that utilizes the reproduction 81 

number from the Rt Only method as an input, but also utilizes total cases and population, among 82 

other inputs, to predict the total number of cases for a given period of time. 83 

 84 
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We received daily reports of all daily COVID-19 polymerase chain reaction (PCR) and antigen 85 

testing results conducted in WV since March 2020 directly from the WV Department of Health 86 

and Human Resources (WVDHHR). Noteworthy is that all SARS-COV-2 testing data are required 87 

to be reported to WVDHHR.  Information for each unique patient is collected and contains test 88 

procurement date, test result date, patient zip code, patient county of residence, testing site 89 

name, county where the test is obtained, and test result. As patients who test positive may be 90 

tested multiple times, we only consider the first positive tests on a patient. When applying this 91 

filter, we consider data obtained from all testing sites (i.e., hospital, clinic, pharmacy, drive-92 

through, mobile van). The number of daily cases for each county is calculated by adding the lab 93 

confirmed cases and clinical confirmed cases after filtering out repeated tests or COVID-19 94 

diagnoses.  This daily incidence data on first diagnosed infection is the basis for calculation of Rt.   95 

 96 

Rt Only Method: Producing Short Term Predictions  97 

Our Rt Only method relies on the methodology used in the EpiEstim package and the underlying 98 

modeling approach of Cori et al (Cori, Ferguson, Fraser, & Cauchemez, 2013) and Thompson et 99 

al. (Thompson, et al., 2019). This approach relates the daily incidence (number of new cases) to 100 

past cases through an instantaneous reproduction number Rt which characterizes the daily 101 

dynamics of transmission reflects a multitude of factors relating to individual and group behavior 102 

in the community of interest.  103 

 104 

As a brief review, daily infections within a community occur as independent random events 105 

drawn from a Poisson distribution. The probability that exactly 𝑘 cases occur is 𝑝! =
"!

!!
e$", and 106 
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the rate parameter Γ coincides with the average daily incidence, ⟨𝑘⟩ = Γ. In the instantaneous 107 

𝑅% framework, the expected incidence on day 𝑡 is a product of two quantities, the infection 108 

potential and the reproduction number, Γ%=Λ%𝑅%. The infection potential Λ% summarizes the 109 

record of past cases in the community and the typical variation of the infectiousness of an 110 

individual over time.  111 

 112 

The infection potential Λ%	is determined by the incidence 𝐼%$& on prior days 𝑠 = 1,2,⋯ and the 113 

serial interval distribution 𝑤&. 114 

Λ% = 3 𝐼%$&𝑤&

'"#$

&()

 115 

The serial interval distribution 𝑤& reflects the time course of infectiousness of one infected 116 

individual at 𝑠 = 1,2, … days from the primary infection. It encapsulates the relative increase and 117 

decrease of infectiousness of an individual, assuming all other conditions in the community 118 

remain unchanged. In practice, the serial interval is typically obtained as the normalized 119 

(∑ 𝑤(𝑠)&"#$
&() = 1) distribution of time intervals between known infector-infected pairs. Based on 120 

studies done by Gostic et al. and Challen et al., we used a distribution extending over 100 days 121 

for the serial interval (Gostic, et al., 2020) (Challen, Brooks-Pollock, Tsaneva-Atanasova, & Danon, 122 

2020). The infection potential can be understood as the sum of the expected number of 123 

infections on day 𝑡, due to past cases in the community, under ideal “steady state” conditions, 124 

such that over time, each primary case causes exactly one secondary case. 125 

 126 
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The time varying reproduction number, 𝑅%, captures conditions of transmission that are external 127 

to the infected individuals and reflect community behavior. In this framework, 𝑅% is a random 128 

variable with a Gamma distribution 𝑓(𝑅) = )
*%+(-)

𝑅-$)𝑒$//* . The parameters 𝑎% , 𝑏% are 129 

determined for each day through Bayesian (maximum a posteriori probability) estimation. The 130 

parameters of interest are estimated using incidence data up to and including the current day, 131 

𝐼), 𝐼1, ⋯ 𝐼% as follows: 132 

𝑎% =3𝐼%$&

2$)

&(3

+ 𝑎45675,
1
𝑏%
=3Λ%$&

2$)

&(3

+
1

𝑏45675
, Λ% = 3 𝐼%$&𝑤&

'"#$

&()

 133 

This estimated 𝑅% distribution applies to the most recent 𝜏 days, but it requires the values of 𝐼%&  134 

for 𝑡8 ≤ 𝑡 going back to 𝑡8 = 𝑡 − 𝑠9:; where 𝑠9:; is the length of the serial interval distribution. 135 

For the serial interval 𝑤& we used the discretized gamma distribution with mean and standard 136 

deviation of t_s = 7.0 ± 4 days, provided in the software similar to Cori, Ferguson, Fraser, & 137 

Cauchemez (2013). 138 

For the serial interval 𝑤& we use a gamma distribution with mean and standard deviation of 𝜏& =139 

6.99 ± 4.02 days, as given by Flaxman, et al., 2020. Following Cori and Thompson’s method, we 140 

used a prior distribution consistent with mean and standard deviation equal to 5 (𝑎45675 =141 

1, 𝑏45675 = 5). 142 

The semi-deterministic model for future incidence, based on Cori’s method regards the daily 143 

distributions of 𝑅% (values of 𝑎% , 𝑏%) as inputs that summarize the current conditions for disease 144 

transmission within the community of interest. The serial interval distribution  𝑤&, which is fixed 145 

with regard to time, is also an input. Thus, on day 𝑡 we have access to the distribution of 𝑅% that 146 

applies to this day (assessed using the most recent 𝜏 days, similar to a trailing moving average).  147 
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 148 

Next day prediction: Assuming we have a time series of past daily incidences {𝐼<}<(3,),..% ending 149 

on day 𝑡, the number of infections on the next day 𝑡 + 1 follows a Poisson distribution, with 150 

parameter Γ%?) = Λ%?)𝑅%?), where 𝑅%?) is also a random variable. Assuming the parameters 151 

𝑎, 𝑏	of 𝑓(𝑅%?)|𝑎, 𝑏) are known, the probability of exactly 𝑘 new infections on day 𝑡 + 1 is:  152 

𝑃(𝑘|𝑅%?), Λ%) =
(𝛬%?)𝑅%?))!

𝑘! 𝑒$@'()/'() → 𝑃(𝑘|Λ%?), 𝑎, 𝑏) = N 𝑃(𝑘|𝑅, Λ%?))𝑓(𝑅|𝑎, 𝑏)	𝑑𝑅
A

3

153 

=
(𝑏Λ%?))!

(𝑏𝛬%?) + 1)-?!
P

(𝑎 + 𝑗)
𝑗

!

B()

 154 

The expected number of new infections coincides with the infection potential multiplied by the 155 

expected 𝑅. 156 

⟨𝐼%?)⟩/'() = 𝛬%?)𝑅%?) → R⟨𝐼%?)〉/'()T-,* = 𝛬%?)⟨𝑅%?)⟩-,* = 𝛬%?)𝑎𝑏	157 

For the purpose of predicting a likelihood range for the daily incidence, we use the CDF of 𝑅%?): 158 

𝑃(𝐼%̅ ∈ [𝐼), 𝐼1]|𝑎, 𝑏, 𝛬) = 𝑔𝑎𝑚𝑐𝑑𝑓 \
𝐼1
𝛬 |𝑎, 𝑏] − 𝑔𝑎𝑚𝑐𝑑𝑓 \

𝐼)
𝛬 |𝑎, 𝑏] =

1
𝑏-𝛤(𝑎) N 𝑅-$)𝑒$

/
*

C*/@

C)/@

𝑑𝑅	159 

We obtain a [5% - 95%] credibility interval for the daily incidence using the inverse CDF for 𝑅 and 160 

multiplying by the corresponding infection potential. This provides a smaller variance than the 161 

discrete distribution 𝑃(𝑘) but is a more practical indication of the incidence rate.  162 

 163 

Extrapolation over multiple days: To go beyond the “next” day, we iterate the one-day 164 

prediction, using predicted values to expand the incidence data. One can reasonably extrapolate 165 
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the current distribution of 𝑅% to 𝑡 + 1 and any number of days in the future. For the short term 166 

(7 day) predictions discussed here, we assumed the value of the most recent available 𝑅%	remains 167 

the same over the prediction interval, 𝑅_%?! = 𝑅%.  168 

 169 

The estimated incidence for day 𝑡 + 1 requires the infection potential on that day Λ%?), which 170 

is computed based on incidence up to the preceding day 𝑡.    171 

𝐼%̅?)|% = 𝛬%?)𝑅_%?) = 𝛬%?)𝑅% ,172 

𝛬%?) = 3 𝐼(%?))$&𝑤&

&+%,

&()

= 𝐼%𝑤) + 𝐼%$)𝑤1 +⋯𝐼(%?))$&+%,𝑤&+%, 	173 

Predictions for day 𝑡 + 2 and beyond can be obtained using the predictions for preceding days 174 

for the incidence and iteratively applying the approach for any number of k days into the future.   175 

𝐼%̅?)|% = Λ%?)𝑅% Λ̀%?1|% = 3 𝐼%?)$&𝑤&

&"#$

&(1

+ 𝐼%̅?)|%𝑤)

𝐼%̅?1|% = Λ̀%?1𝑅% Λ̀%?E|% = 3 𝐼%?1$&𝑤&

&"#$

&(E

+3𝐼%̅?1$&𝑤&

1

&()

𝐼%̅?!|% = Λ̀%?!𝑅% Λ̀%?!|% = 3 𝐼%?!$&𝑤&

&"#$

&(!

+3𝐼%̅?!$&𝑤&

!

&()

 176 

We estimate credibility intervals similar to the one-day case, using only the corresponding range 177 

for the reproduction number 𝑅%, and not compounding with uncertainty for each estimated 178 

incidence 𝐼%̅?! or with the additional uncertainty due to the Poisson distribution of the daily 179 

(integer) incidence. While this provides a narrower range, the credible interval serves as a relative 180 

measure of the uncertainty affecting the prediction.  181 

 182 
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Correction for imported cases: Not accounting for imported SARS-CoV-2 cases into a county will 183 

lead to over estimation of Rt. In practice, we are not able to directly identify imported cases, so 184 

an adjustment must be made to identify them. Assuming the daily incidence 𝐼% can be separated 185 

into imported and community-spread parts: 186 

𝐼% = 𝐼%
(F7G:F) + 𝐼%

(69475HIJ)		 187 

Then, imported cases are an additional input to the model. Imported cases are included in the 188 

infection potential because they contribute to new local infections, but are not included in the 189 

number of new cases when estimating the reproduction number: 190 

𝑎% = 3𝐼%$&
(F7G:F)

K$)

&(3

+ 𝑎45675,
1
𝑏%
= 3Λ%$&

K$)

&(3

+
1

𝑏45675
, Λ% = 3 𝐼%$&𝑤&

&"#$

&()

		 191 

Turning to predictions, the reproduction number and infection potential computed in the 192 

standard framework can only predict the local cases: 193 

		𝑅% ∼ 𝑔𝑎𝑚𝑝𝑑𝑓(𝑎% , 𝑏%), 𝐼%
(LMN-L) ∼ 𝑝𝑜𝑖𝑠𝑠𝑝𝑑𝑓(𝑅%𝛬%) 			→ 			 d𝐼%

(LMN-L)e = 𝛬%⟨𝑅%⟩ = 𝛬%𝑎%𝑏%			194 

By definition, imported cases cannot be predicted in the 𝑅% model; however, we can identify 195 

events when the observed number of new cases vastly exceeds the expectation from local 196 

transmission. We use this hindsight to improve our estimate of the reproduction number as 197 

follows.  198 

We estimate the likely number of imported cases on a given day by comparing the actual 199 

incidence to the Bayesian credible interval for new local cases estimated from the previous days. 200 

This estimated past incidence is then incorporated in a corrected estimate for 𝑅%.  201 
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In an initial pass we compute the 𝑎% , 𝑏% parameters for time point  𝑡 based on the incidence time 202 

series {𝐼2}2(3,),⋯%$) . We compute the one-day predicted incidence on day 𝑡 as described above, 203 

using the infection potential Λ% and the distribution of 𝑅_% ≡ 𝑅%$) (so we do not rely on the 204 

knowledge of 𝐼%). We take the value corresponding to the upper 𝜃 = 95% credible interval as a 205 

cutoff and identify the part of the incidence that exceeds the cutoff with imported cases.  206 

𝐼%
(F7G:F,P6QP) = Λ%	gaminv(θ, 𝑎%$), 𝑏%$)), 𝐼%

(69475HIJ,IRH) = max q𝐼% − 𝐼%
(F7G:F,P6QP), 0r 207 

We use the estimated local incidence 𝐼%
(F7G:F,IRH) to provide revised estimates for the reproduction 208 

number as described above (also consistent with Cori and Thompson’s approach). Finally, we use 209 

the resulting 𝑅% parameters for the most recent day and the full incidence to provide revised 210 

estimates for days 𝑡 + 1, 𝑡 + 2,… 𝑡 + 𝑘. 211 

 212 

ML+Rt Method: Using Long Short-Term Memory (LSTM) Network to Forecast Outbreaks 213 

As previously mentioned, the LSTM method implemented in this project is meant to build on the 214 

widely used Rt Only approach described in the previous section. The novelty of this LSTM 215 

approach is that it provides for the input of epidemiological modeling while taking advantage of 216 

cutting-edge machine learning techniques. The combination of the two allows the LSTM model 217 

to incorporate the epidemiological principles used to produce the Rt estimate while adding 218 

additional information such as temporal and demographic information that can be leveraged 219 

with traditional machine learning models. Further, the calculation of Rt   using the Rt Only method 220 

uses independent data sets for each county in turn creating a unique model for each county that 221 

does not consider the impact of possible relationships between counties. By contrast, the ML+Rt 222 
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approach uses global trends across counties. By training on all the data, we are not only able to 223 

take advantage of global trends, but by including spatial information, we are also able to show 224 

how these trends impact specific counties.  225 

 226 

Daily county-specific Rt, summary statistic information on the estimated Rt such as standard 227 

deviation, confidence intervals, and the probability of Rt >1 are also provided. We include values 228 

of Rt computed using both 7 and 14 day intervals.  All these factors along with temporal 229 

information such as daily information on whether it is a weekend or not, holiday or not, days 230 

passed from last major holiday, days to the next major holiday were utilized as inputs for our 231 

model.   232 

 233 

As mentioned previously, due to the length of time it takes to receive a test result (lag time), we 234 

had to consider the deflated effect on the positive cases when considering test procurement 235 

date.  We observed an average lag of 3 days for results to achieve close to actual levels.  To 236 

mitigate the effect of the testing lag we impute day t, t-1, t-2 with the actual SARS-CoV-2 cases 237 

for days t-3, t-4, t-5 respectively.  238 

 239 

We utilize a Long-Short Term Memory (LSTM) recurrent neural network (Hochreiter & 240 

Schmidthuber, 1997), implemented in Python with an Adam optimizer, as our model of interest 241 

for this analysis, permitting consideration of all available county-specific input information for 242 

the past 7 days with a prediction of the number of positive cases for the county as an output. 243 
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Other advantages of the LSTM approach are the ability to exploit autocorrelation between time 244 

points and the utilization of dropout layers to remove redundant information.   245 

 246 

In general, the LSTM models are more complex versions of recursive neural networks (RNNs). 247 

The multi-layer LSTM method deployed here follows the framework described in Figure 1 where 248 

the input layer is defined by a matrix combining the number of positive cases for county c at time 249 

point t, 𝑌N,%, and all inputs for county c at time point t. The inputs then move their way through 250 

the network (i.e., through the LSTM layer and dense layer) to obtain an output. The output is 251 

defined as, 𝑌tN,%?S, the predicted daily number of cases for county c at time point t+7. LSTM can 252 

be viewed as a network where information between time points is shared. Each LSTM cell, 253 

diagramed in Figure 1, shares two pieces of information with other LSTM cells; the current state 254 

of the cell, 𝐶%, and output of the cell, ℎ% , is calculated with the following formulas given input 255 

data, 𝑥%: 256 

𝐶x% = 𝜎8(𝑊N . [ℎ%$), 𝑥%] + 𝑏N) 257 

𝑔%T = 𝑖% × 𝐶x%																		 258 

𝑔%
U = 𝑓% × 𝐶%$)																				 259 

𝐶% = 𝑔%
U + 𝑔%T 															 260 

ℎ% = 𝑜% × 𝜎8𝐶%															261 

Where, w are the weight variables (traditionally thought of like regression coefficients), and b are 262 

the bias variables (traditionally thought of as intercept terms). Activation functions, 𝜎 and 𝜎8 are 263 

non-linear transformation functions such as, sigmoid and hyperbolic tangent. A feature of each 264 
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cell is input, output, and forget gates. These gates are what give the LSTM, the memory property 265 

which allows it to account and adjust for auto correlation. We define: 266 

𝑓% = 𝜎|𝑊U . [ℎ%$), 𝑥%] + 𝑏U}	267 

𝑖% = 𝜎(𝑊T . [ℎ%$), 𝑥%] + 𝑏T)	268 

𝑜% = 𝜎(𝑊M . [ℎ%$), 𝑥%] + 𝑏M)	269 

The above are gates that define the memory of the LSTM cell and are distinct linear combinations 270 

of inputs and outputs from the previous LSTM cell with specific activations functions. 271 

 272 

Figure 1: The LSTM framework deployed for the proposed ML+Rt method on right, and structure of each LSTM Cell 273 

on left. 274 

 275 

In addition, as we cannot guarantee the importance of the inputs (including Rt and associated 276 

summary statistics), we add dropout layers which allow for the identification of important inputs. 277 

Using these dropout layers, we filtered out inputs that would be considered insignificant in order 278 

to detect the important signals coming from the input data and also protect against overfitting.   279 

 280 

Once predictions for a given week were determined, the summary statistics of the results were 281 

produced. Summary statistics included: 1) predicted number of positive cases by county, 2) 282 

predicted percent change in cases per 100,000 persons by county compared to the previous 283 

week, 3) predicted increase in number of cases compared to the previous week, and 4) predicted 284 

number of cases relative to the population size.   285 

 286 
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Evaluations of Models in Deployment 287 

Metrics and Evaluation 288 

To evaluate performance of the two methods, the predicted values for new SARS-CoV-2 cases 289 

were benchmarked against the actual number of positive cases recorded for each week from 290 

January 1, 2021 through April 30, 2021.  As a main goal of these new case forecasts was to target 291 

areas for diagnostic testing, we viewed each week’s prediction as a recommendation. These 292 

recommendations were ranked on many several metrics but most predominately on the 293 

percentage increase in cases over the previous week. To evaluate the recommendations, we 294 

measured the total discounted cumulative gain (DCG) of each method (Järvelin & Kekäläinen, 295 

2002). DCG is a commonly used metric in page ranking calculations and is suitable here as the 296 

information shared was used similar to page ranking calculations. As a reminder the goal of this 297 

analysis is to recommend counties of increased incidences for intervention (i.e., increased SARS-298 

CoV-2 testing), not to predict the actual number of incidence. DCG provides a metric for 299 

comparison of differing recommendation methods, which is how both the ML+ Rt and Rt Only 300 

are being used. Unlike most metrics used in machine learning such as squared error or absolute 301 

error, larger DCG values indicate better performance.    302 

 303 

To better study performance of the ML+Rt and Rt Only methods, we define two separate DCG 304 

metrics to consider the cost of poor recommendations. The first is on the ability to identify the 305 

top counties of increase regardless of the level of increase, while the second metric considers the 306 

size of the increase (percentage) in the comparison.   307 

 308 
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To define the first metric let 𝑦�N,% and 𝑦N,% represent the number of predicted cases and actual 309 

cases over a 7-day period for the 𝑐th county at time point 𝑡 respectively. To keep from biasing 310 

the evaluation towards rural areas with a low incidence, we only consider those with 𝑦N,%?) >311 

10.  Define 𝑆% to be the set of indices, the largest 10 values of W-,'()
W-,'

 for a given time point. We 312 

defined the Binary Discounted Cumulative Gain (Binary DCG) of a set of rankings at time point 𝑡 313 

as: 314 

3
𝐼(𝑖 ∈ 𝑆%)
ln(𝑖 + 1)

X

T()

 315 

where 𝐼(𝑖 ∈ 𝑆%) is an indicator of a correct identification of a top 10 ranking in the actual 316 

percentage increases, and 𝑞 is the number of rankings used in the calculation. For example, if 317 

𝑞 = 10, then 𝐵𝐷𝐶𝐺% would only evaluate the top 10 rankings, in our setting this would be the 318 

top 10 counties, returned by a method. One may view B-DCG as a weighted identifier to measure 319 

the quality of the rankings for purposes of identifying case increases (or spikes) of the top 𝑞 320 

recommendations.   321 

 322 

As the closeness of the predicted number of cases to the actual case number, i.e., the “quality” 323 

of the prediction, we considered a second metric to consider the quality of the prediction rather 324 

than just considering a binary outcome. To accomplish this, we define Spike DCG as: 325 

3
𝑦T,%?)

𝑦T,% ln(𝑖 + 1)

X

T()

. 326 

Spike DCG considers the relative size of the spike for the top 𝑞 recommendations. While Binary 327 

DCG investigates the ability of a method to correctly identify the top 10 counties, Spike DCG 328 
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places value on the recommendations that are produced by identification of larger spikes.  This 329 

comparison is of great importance as targeted interventions may only have finite resources to 330 

deploy so understanding the level of trust and impact expected by the two methods is of 331 

importance. 332 

 333 

As both the Rt Only and ML+Rt methods are used to recommend county level locations for testing, 334 

we also want to investigate the quality of the top recommendations, disregarding the order and 335 

quality of the ranked predictions. This evaluation gives a sense of the quality of the 336 

recommendations produced by the methods, relative to others.   337 

 338 

Finally, as this study is being deployed in a state with many rural areas, we analyzed any 339 

differences in methods between rural and non-rural areas. We used the 2013 Rural-Urban 340 

Continuum Codes (RUCC)  (Rural-Urban Continuum Codes (RUCC)) which define a rural area as a 341 

non-metro area with population under 20,000 and is not adjacent to an urban metro area. To 342 

asses quality of the predictions provided by each method, we examined correlations between 343 

predicted and actual 7-day positive case totals. We also assess the quality of Binary DCG and 344 

Spike DCG in both rural and non-rural areas by investigating the performance of ML+Rt and Rt 345 

Only methods among lower population communities with less access to large healthcare systems. 346 

Both Rt Only and ML+Rt methods were deployed each week from January 1, 2021 through April 347 

30,2021 using all available training data beginning in April 2002 for each of the 55 counties in the 348 

state of WV, and resulting county recommendations were retained for comparison against the 349 

actual number of cases.   350 
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 351 

Results 352 

The daily number of tests from April 2020-April 2021 were highly variable (Figure 2 with some 353 

weeks having very low testing rates as illustrated by Figure 3). Each of the two prediction 354 

methods utilized all available data and was updated weekly to obtain county level predictions. 355 

We note that this study specifically focuses on evaluating predictions in the latter part of this 356 

time frame, and coincided with vaccinations becoming available to different demographics of 357 

residents of West Virginia residents, though data from the entire study was used to train each of 358 

the methods. 359 

 360 

Figure 2: Number of SARS-COV-2 tests in the state of West Virginia from April 2020-April 2021. 361 

Figure 3: Number of SARS-COV-2 tests in the state West Virginia from May 2020- July 2020. 362 

 363 

 364 

The correlation between forecasted number of cases and the actual number of cases week over 365 

week is 0.872 for the ML+Rt method and 0.867 for the Rt Only method. Figure 4 shows a scatter 366 

plot of the relationship between forecasted cases and the actual corresponding cases.   367 

 368 

Figure 5 compares Binary and Spike DCG for the case of recommending 10 counties (q=10) and 369 

55 counties (q=55). Both the Rt Only and ML+Rt methods perform well overall but differ in 370 

performance at various time points. In the case of Binary DCG the Rt Only method has better 371 

performance, and in the case of Spike DCG the ML+Rt method performs better. Over the 17-week 372 
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assessment period, the ML+Rt method outperforms the Rt Only method in recommendations 373 

with regard to all measures except Binary DCG for q=10 (Table 1). These results show that if users 374 

are interested in mitigating outbreaks by identifying larger spikes in the Top 10 375 

recommendations, as was the goal of this implementation, the ML+Rt method should be used.   376 

 377 

Figure 4: A comparison of actual 7-day case totals and predicted 7-day cases totals for the ML and Rt methods 378 

 379 

Figure 5: A comparison of the ML+Rt and Rt Only methods with respect to Binary DCG and Spike DCG over the 17-380 

week evaluation period for both 10 and 55 county recommendations.  381 

 382 

 383 

 384 

A more concerning result is the decrease in both DCG metrics that are seen with regard to both 385 

methods over time. Further investigation and analysis showed that during deployment the focus 386 

of providers shifted from active testing and contact tracing to vaccination.   387 

 388 

Assessing Rural vs Non-Rural Results 389 

Critically important is analysis on the performance of the two forecasting strategies in rural 390 

compared with more urban counties in WV. Correlations between predicted 7-day positive case 391 

totals and actual 7-day positive case totals are higher for non-rural counties than rural counties 392 

for both methods (Table 2).   393 

 394 
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For rural areas, the two methods perform similarly with the ML+Rt  method slightly 395 

outperforming Rt Only in regard to Spike DCG (Figure 6).  For non-rural areas, we observe that 396 

ML+Rt outperforms Rt Only for both DCG metrics (Table 2). The Rt Only Method performs well 397 

when identifying counties in the top 10, but ML+Rt method identifies larger spikes in the top 10 398 

recommendations.   399 

Figure 6: A comparison of Binary DCG and Spike DCG for both rural and non-rural counties. 400 

 401 

A secondary analysis shows that the ML+Rt method recommends for enhanced SARS-CoV-2 402 

testing more non-rural counties than rural counties in the top 10 rankings during January and 403 

February when compared to the Rt Only method. The opposite occurs during the March and April 404 

time period during which the Rt Only method recommends more non-rural counties in the top 405 

10 compared to the ML+Rt methods.  When coupled with decreasing number of tests, leading to 406 

lower daily incidence this alleviates any concern of bias of the ML method on rural counties.  407 

 408 

Discussion 409 

In this study, we deployed two methods to predict short term incidence of SARS-CoV-2 infection 410 

for purposes of identifying West Virginia counties that might benefit from enhanced SARS-CoV-2 411 

testing. One method, Rt Only, utilizes the Cori model [5], assuming that all positive cases are 412 

known. In contrast, the ML+Rt method utilizes Rt as an input value, but bases predictions on an 413 

LSTM framework that utilizes other factors such as population size.   414 

 415 
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Our results demonstrate that both methods perform well. The ML+Rt out performs the Rt only 416 

method when it comes to recommending larger spikes in the top recommendations. The 417 

implementation of the ML+Rt method is novel as it is utilizing epidemiological underpinnings 418 

while exploiting other information such as county population, minimum and maximum values of 419 

Rt, variability in Rt, and other information that may, or may not be useful in predicting out breaks.   420 

 421 

Each of the methods for incidence prediction have strengths and weaknesses. The Rt Only 422 

method only assumes that all positive cases are known. However, in practice, this assumption is 423 

unreasonable and highlights some of the problems with applying the standard Cori Rt model to 424 

SARS-CoV-2 data. The Rt Only approach relies on the most recent testing data available, and our 425 

daily incidence 𝐼% represents the number of positive test results from tests performed on day 𝑡. 426 

Publicly reported case numbers (Dong, Du, & Gardner, 2020) typically represent the number of 427 

positive test results reported on the respective day, but the lag time from test procurement 428 

varies. Using the day tests were procured eliminates one additional source of variability and 429 

brings our proxy for the “serial interval” closer to the relevant distribution (which would be the 430 

infectivity profile – see (Challen, Brooks-Pollock, Tsaneva-Atanasova, & Danon, 2020) (Britton & 431 

Scalia Tomba, 2019) (Gostic, et al., 2020) ). However, this raises a practical issue in that data for 432 

day 𝑡 is typically incomplete on day 𝑡 and is reported gradually over several days. To address this 433 

issue, we estimate SARS-CoV-2 incidence using data from 3 days prior (𝜏5I475H =434 

𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒	𝑎𝑡	𝑡 − 3	 days). For example, the weekly total reported on day 𝑡 = May 12, 2021 435 

represents the week ending on 	May 9, 2021, and it is this incidence that is used to predict SARS-436 

C0V-2 incidence for the subsequent 7 days.   437 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.06.21264569doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.06.21264569
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

 438 

A second issue with the Rt Only method is that we do not have access to a reliable record of 439 

imported cases as they are a theoretical concept in this model. In practical settings, the term 440 

“imported” is to be taken in a (very) broad sense. There are a number of situations that have a 441 

similar effect.  442 

1. True “exogenous” cases likely occurred due to county residents traveling for school or 443 

holidays. [1][2]. There are numerous anecdotal instances in the media but no consistent 444 

methodology or documentation of such cases. Commuters from one county to another 445 

or out of state could be susceptible to outbreaks outside of their “home” geographic area. 446 

2. “Institutional” or “congregate setting” cases, occur (rather, are identified) over a short 447 

time in closed or limited access facilities. Congregate setting outbreaks have somewhat 448 

similar features; however, it is not obvious whether individuals infected in congregate 449 

settings (e.g., nursing homes) cause new infections in the community as these individuals 450 

have limited community access.  451 

3. Finally, significant variability over time of test availability and policies (e.g., limited test 452 

availability early in the pandemic, prioritizing resources for vaccine rollout to the 453 

detriment of testing availability) complicates the role of the observed incidence as an 454 

estimator of the true number of infections.  455 

4. Severity of a disease leading to hospitalization or other interventions that allows for 456 

insight into a group that was not previously being tested.   457 

 458 
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To address these issues, we use the Bayesian credible interval to better define the number of 459 

imported cases in the Rt Only method.  By the iterative fitting technique proposed we are able 460 

to better estimate the number of imported cases that will be observed.   461 

 462 

The ML+Rt value suffers from issues with practical implementation as well. The same issues with 463 

data quality from testing lags can be found when using any data driven method to forecast cases. 464 

In addition, there are known problem of using neural networks and deep learning methods when 465 

sample sizes are not extremely large. Our approach which predicts using a model that is trained 466 

from all combinations of counties and time points takes advantage of the 55 counties over the 467 

365+ days of observed data. Early on in a pandemic it would be unreasonable to think an LSTM 468 

or many data driven methods could be used and would be reliable due to a limited number of 469 

data point. Therefore, early in the pandemic, our results show the stability of the dynamical 470 

model underlying the Rt Only method is reliable once the serial interval could be constructed as 471 

the Bayesian approach of the Rt Only method utilizes the serial interval to create an informed 472 

prior distribution of spread. For this reason, the LSTM method was not incorporated until October 473 

2020 and only presented in this study from January through April 2021, a time period at which 474 

the SARS-CoV-2 epidemic in West Virginia was well established and just before the new Delta 475 

variant became established (only one case of Delta was identified during the study period).  As 476 

the ML+Rt method utilizes all data available, it is less predictive during times that diagnostic 477 

testing is erratic (e.g., school breaks, testing supply shortages, etc) (Figure A1). The Rt Only 478 

method is able to adjust predictions in a quicker time frame Figures 3 and Figure 4 demonstrate 479 

a sharp decrease in performance of the ML+Rt method in February at which time there was a 480 
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sharp decrease is SARS-CoV-2 diagnostic testing. Again, we recommend using the Rt Only 481 

approach when drastic changes in testing occur and doing so until testing stabilizes.   482 

 483 

As we have seen during the SARS-COV-2 pandemic, situations are dynamic and models must be 484 

built to account for the changing landscape of the data and inputs available. With this in mind, 485 

extensions of this work should consider vaccination rates, population distributions, vaccine 486 

hesitancy, and baseline testing access to better predict outbreaks and target testing. A 487 

combination of vaccine information could account for decrease testing and smaller number of 488 

cases in models such as the ML+Rt method can adjust for this new input and do so in ways that 489 

cannot be accounted for using the Rt Only method. Furthermore, this could lead to interesting 490 

results in both identification of not only outbreaks but areas for potential variants and the 491 

possibility to use model averaging techniques to create an optimized rule that utilizes both 492 

methods.   493 

 494 

The approaches proposed in this work provide a framework for forecasting outbreaks at a local 495 

level that utilizes two different approaches. The first is a model based on epidemiological theory, 496 

while the second is a machine learning approach that simultaneously considers historic trends 497 

and other inputs.  Both methods are useful specifically the Rt Only method when data is limited, 498 

while the ML+Rt method performs well when data has been collected and a historic perspective 499 

can be presented.   500 

 501 
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Limitations 502 

This study addressed the West Virginia SARS-CoV-2 epidemic from January – April 2021. At that 503 

time, only one case of the Delta variant had been detected, therefore, our models do not address 504 

prediction of new SARS-CoV-2 incidence when Delta is the prevalent variant. As the Delta variant 505 

has unique epidemiologic characteristics compared to earlier SARS-CoV-2 variants such as a 506 

shortened serial interval which influences calculation of Rt, models must be adjusted as new more 507 

virulent strains of SARS-CoV-2 appear in the population (Baisheng, et al., 2021). 508 

 509 

Conclusion 510 

This study provides important information on strategies for predicting near-term increases in 511 

SARS-CoV-2 incidence, and hence, for targeting SARS-CoV-2 testing. We provide a new approach, 512 

Rt Only, that utilizes the estimation of the reproduction number to provide recommendations on 513 

county-specific areas where outbreaks will likely occur. We also describe a second approach, 514 

ML+Rt, utilizing long short-term memory models that consider epidemiological statistics such as 515 

Rt, county population information, and time series trends including information on major 516 

holidays to forecast outbreaks and create county recommendations. Comparison of the two 517 

approaches shows the top 10 recommendations produced by the ML+Rt method outperform the 518 

Rt Only method over the period of this study. Our data suggest that traditional epidemiological 519 

modeling can be enhanced by modern machine learning tools to inform decisions on where to 520 

target SARS-CoV2 testing.   521 

 522 
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Tables 578 

 579 

Table 1: A comparison of total both DCG metrics for recommendations of 10 counties and 55 counties for the ML 580 

and Rt methods implemented. 581 

  Binary DCG  Spike DCG 

55 

Counties 

ML+Rt 42.50  22.90 

Rt Only 41.83  21.18 

10 

Counties 

ML+Rt 11.88  7.87 

Rt Only 12.59  4.26 

 582 

 583 

Table 2: A comparison correlation of 7-day positive case totals and 7-day actual case, and both DCG metrics (total) 584 

for the ML and Rt methods implemented when viewed by rural and non-rural counties. 585 

  Correlation  Binary DCG  Spike DCG 

Rural 
ML+Rt 0.690  4.12  0.84 

Rt Only 0.710  6.07  0.76 

Non-Rural 
ML+Rt 0.867  7.77  7.03 

Rt Only 0.862  6.52  3.50 

 586 
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Appendix 588 

 589 

Distribution and expectation of daily incidence 590 

 591 

The daily incidence has a Poisson distribution with parameter Λ%𝑅%. 𝑅% is represented as a 592 

random variable following a gamma distribution with parameters 𝑎, 𝑏: 593 

𝑃(𝑘|𝑅% , Λ%) =
(𝛬%𝑅%)!

𝑘! 𝑒$@'/'  594 

		𝑓(𝑅%|𝑎, 𝑏) =
1

𝑏-Γ(𝑎) 𝑅
-$)𝑒$

/
*  595 

where Γ(𝑎) is the usual Gamma function defined as:  596 

Γ(𝑧) = N 𝑡Y$)𝑒$%
A

3

𝑑𝑡 → Γ(𝑛 + 1) = 𝑛! (if	𝑛	is	a	positive	integer) 597 

	Γ(𝑧 + 1) = 𝑧Γ(𝑧) 598 

 599 

Denote by 𝐶-,* the normalization constant for the Gamma distribution: 600 

1
𝐶-,*

= N 𝑑𝑅	𝑅-$)𝑒$
/
*

A

3

= 𝑏-N 𝑑𝑢	𝑢-$)𝑒$<
A

3

= 𝑏-Γ(𝑎) 601 

		𝐶-,* =
1

𝑏-Γ(𝑎) 602 

		𝐶-?),* =
1

𝑏-?)Γ(𝑎 + 1) =
1
𝑎𝑏 𝐶-,* 603 

 604 

The PMF of the expected number of cases is obtained by integrating over the values of 𝑅%: 605 
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𝑃(𝑘|Λ% , 𝑎, 𝑏) = N 𝑑𝑅
(Λ%𝑅)!

𝑘! 𝑒$Z'/ ⋅ 𝐶-,* ⋅ 𝑅-$)𝑒
$/*

A

3

	 606 

The integrand is proportional to a gamma distribution with parameters 𝑎8 = 𝑎 + 𝑘, )
*&
= )

*
+ Λ% 607 

𝑃(𝑘) =
Λ%!𝐶-,*
𝑘! N 𝑑𝑅	𝑅!?-$)𝑒$/[Z'?

)
*\

A

3

= 𝐶-,*
Λ%!

𝑘! 	
Γ(𝑎 + 𝑘)

qΛ% +
1
𝑏r

-?! 	=
(Λ%𝑏)!

(Λ%𝑏 + 1)-?!
⋅
Γ(𝑎 + 𝑘)
𝑘! Γ(𝑎)  608 

Or (use Γ(𝑧 + 1) = 𝑧Γ(𝑧) ) 609 

𝑃(𝑘|𝑎, 𝑏) =
1

(𝑏Λ% + 1)-
\

𝑏Λ%
𝑏Λ% + 1

]
!

P
(𝑎 + 𝑗)
𝑗

!

B()

 610 

 611 

The expected number of new infections follows from working out the Gamma-Poisson 612 

distribution and coincides with the infection potential multiplied by the expected 𝑅 613 

⟨𝐼%⟩ = Λ%𝑅% → R⟨𝐼%〉(𝑅%)T/' = Λ%⟨𝑅%⟩ = Λ%𝑎𝑏 614 

⟨𝐼⟩ = 3𝑘
A

!()

	N 𝑑𝑅
(Λ𝑡𝑅)𝑘

𝑘!
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𝑏

∞

0

= N 𝑑𝑅	Λ𝑡𝑅3
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∞
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 615 

 616 
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