Table 7.
References | Criteria to Diagnose DSPN | Suggested ML Models | AUC/Accuracy | Laboratory Data Processing | Providing Decision-Making Tool |
---|---|---|---|---|---|
Kazemi et al., 2016 [24] | clinical (T1DM and T2DM) | MSVM | UC/0.76 | UC | N |
Dagliati et al., 2018 [25] | UC | LR | 0.726/0.746 | UC | nomogram |
Fan et al., 2021 [27] | UC | EM | 0.847/0.783 | UC | N |
Maeda-Gutierrez et al., 2021 [38] | clinical | RF | 0.65/UC | UC | N |
Current study | electrophysiological | RF | 0.825/0.7447 | average/change pattern | decision tree |
Abbreviations: ML = machine learning, AUC = area under the curve; MSVM = multicategory support vector machine; LR = logistic regression; EM = ensemble model; RF = random forest; UC = uncheckable; N = none.