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Abstract: Meteorin-like protein (Metrnl) is an adipo-myokine with pleiotropic effects in adipose
tissue (AT). Its systemic regulation in obesity and under weight loss is unclear. Circulating Metrnl
concentrations were analyzed by ELISA in severely obese patients undergoing bariatric surgery (BS)
or low calorie diet (LCD). Metrnl mRNA expression was analyzed in human and murine tissues and
cell lines by quantitative real-time PCR. About 312 morbidly obese individuals underwent BS (n = 181;
BMI 53.4 + 6.8 kg/m2) or LCD (n = 131; BMI 43.5 + 6.7 kg/m2). Serum samples were obtained at
baseline and 3, 6, and 12 months after intervention. AT specimen from subcutaneous and visceral
adipose tissue were resected during BS. Serum Metrnl levels were lower in type 2 diabetic patients
and negatively correlated with HbA1c. In BS and LCD patients, Metrnl concentrations significantly
increased after 3 months and returned to baseline levels after 12 months. There was no gender-specific
effect. Metrnl mRNA expression did not differ between visceral and subcutaneous AT in n = 130
patients. In contrast, Metrnl gene expression in mice was highest in intra-abdominal AT followed
by subcutaneous, peri-renal, and brown AT. In the murine 3T3-L1 cell line, Metrnl expression was
high in pre-adipocytes and mature adipocytes with a transient downregulation during adipocyte
differentiation. Metrnl expression remained unaffected upon treatment with glucose, insulin, fatty
acids, bile acids, and incretins. Polyunsaturated omega-3 and omega-6 fatty acids downregulated
Metrnl expression. Systemic Metrnl is transiently upregulated during massive weight loss and gene
expression in adipocytes is differentially regulated.

Keywords: meteorin-like protein; Metrnl; adipokine; obesity; bariatric surgery; low calorie diet;
adipose tissue; adipocyte; fatty acids

1. Introduction

The adipose tissue represents an endocrine and immunological organ with pleiotropic
functions exerting an important role in whole body metabolism with a highly significant
clinical impact [1,2]. Its systemic functions are mediated by a number of various secretory
peptides and proteins (adipokines) that are involved in diverse physiological processes,
particularly in metabolism, inflammation, and immunity [1,3–6]. In metabolic disorders
such as obesity, immuno-modulatory adipokines have an essential role in the regulation of
metabolically induced inflammation (“metaflammation”; “adipose inflammation”) [7–9].

Meteorin-like protein (Metrnl; subfatin) represents a secretory protein with a molecu-
lar weight of ~30 kDa and a neurotrophic factor homologous to meteorin [10] and has a
role in neuroblast migration and neuroprotection [11]. Of note, this protein is abundant in
cerebrospinal fluid with its concentrations depending on blood-brain-barrier function [12].
In addition to various organs and tissues (digestive tract, skin, lung, brain), Metrnl is
expressed with high levels in activated monocytes, skeletal muscle (post-exercise), and
adipose tissue. Taken together, Metrnl has been characterized and regarded as an exercise-
inducible myokine as well as an adipokine [13,14]. Regeneration of injured muscle is
promoted by Metrnl via Stat3/IGF-1 signaling [15]. Figure 1 summarizes biological func-
tions of Metrnl.
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increase with deterioration of BBB. In the central nervous system, Metrnl acts as a neuroprotective 
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Metrnl promotes “browning” processes in white adipose tissue (WAT), i.e., transformation of 
“classical” adipocytes toward a brown-like adipose tissue (BlAT) with thermogenic activity (4) [13]. 
This is supported by alternative activation of macrophages induced by Metrnl (5) [13]. Metrnl, 
Meteorin-like protein; MΦ, macrophage. 

Most interestingly, post-exercise Metrnl expression in muscle is linked to PGC1-α 
expression promoting white adipose tissue browning. Metrnl is associated with alterna-
tive macrophage activation favoring anti-inflammatory and thermogenic processes in 
adipose compartments [13,16]. Thus, Metrnl can be considered an exercise- and 
cold-inducible adipo-myokine mediating beneficial effects by adipocyte-immune cell and 
by muscle-fat crosstalk [13]. 

Recent studies suggested beneficial effects of Metrnl in conditions such as chronic 
colitis [17], cholesterol and triglyceride homeostasis [18], chronic obstructive pulmonary 
disease [19], coronary artery disease [20], and insulin resistance [21]. However, currently 
published data on systemic Metrnl concentrations in obesity or type 2 diabetes mellitus 
(T2D) are somewhat controversial. Recently, a meta-analysis evaluating data from nine 
cohort studies could not identify a general association of circulating Metrnl levels with 
T2D [22], due to a high number of potential confounding variables. Of note, a recent 
study reported a protective role of Metrnl in diabetic mice without obesity [23]. While 
Metrnl plasma concentrations were found to be elevated in human individuals suffering 
from T2D and obesity [24], Pellitero et al. reported lower circulating levels in a small 
cohort of 25 obese patients. Another study demonstrated a subsequent increase of Metrnl 
levels following laparoscopic sleeve gastrectomy [25]. A recent study of diet-induced 
obesity in rats revealed increased Metrnl protein concentrations in muscle and white 
adipose tissue after sleeve gastrectomy, whereas circulating concentrations were found to 
be decreased [26]. Taken together, studies in obese humans are scarce and small-sized or 
even lacking regarding circulating Metrnl concentrations during long-term follow up of 
obese patients after bariatric surgery or under diet. Thus, the essential interest of the 
present study was to investigate these issues in a large study cohort comprising 312 
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myocytes or adipocytes, appears in the cerebrospinal fluid (CSF) of humans (1) and crosses the
blood-brain-barrier (BBB) [12]. Concentrations of Metrnl in CSF are similar to those in serum and
increase with deterioration of BBB. In the central nervous system, Metrnl acts as a neuroprotective and
neurotrophic factor (2) [11]. Regeneration of injured muscle is improved by Metrnl (3) [15]. Metrnl
promotes “browning” processes in white adipose tissue (WAT), i.e., transformation of “classical”
adipocytes toward a brown-like adipose tissue (BlAT) with thermogenic activity (4) [13]. This is
supported by alternative activation of macrophages induced by Metrnl (5) [13]. Metrnl, Meteorin-like
protein; MΦ, macrophage.

Most interestingly, post-exercise Metrnl expression in muscle is linked to PGC1-α
expression promoting white adipose tissue browning. Metrnl is associated with alternative
macrophage activation favoring anti-inflammatory and thermogenic processes in adipose
compartments [13,16]. Thus, Metrnl can be considered an exercise- and cold-inducible
adipo-myokine mediating beneficial effects by adipocyte-immune cell and by muscle-fat
crosstalk [13].

Recent studies suggested beneficial effects of Metrnl in conditions such as chronic
colitis [17], cholesterol and triglyceride homeostasis [18], chronic obstructive pulmonary
disease [19], coronary artery disease [20], and insulin resistance [21]. However, currently
published data on systemic Metrnl concentrations in obesity or type 2 diabetes mellitus
(T2D) are somewhat controversial. Recently, a meta-analysis evaluating data from nine
cohort studies could not identify a general association of circulating Metrnl levels with
T2D [22], due to a high number of potential confounding variables. Of note, a recent
study reported a protective role of Metrnl in diabetic mice without obesity [23]. While
Metrnl plasma concentrations were found to be elevated in human individuals suffering
from T2D and obesity [24], Pellitero et al. reported lower circulating levels in a small
cohort of 25 obese patients. Another study demonstrated a subsequent increase of Metrnl
levels following laparoscopic sleeve gastrectomy [25]. A recent study of diet-induced
obesity in rats revealed increased Metrnl protein concentrations in muscle and white
adipose tissue after sleeve gastrectomy, whereas circulating concentrations were found to
be decreased [26]. Taken together, studies in obese humans are scarce and small-sized or
even lacking regarding circulating Metrnl concentrations during long-term follow up of
obese patients after bariatric surgery or under diet. Thus, the essential interest of the present
study was to investigate these issues in a large study cohort comprising 312 morbidly obese
individuals undergoing either bariatric surgery (n = 181 patients) or a multidisciplinary,
life-style intervention program including low calorie diet (LCD; n = 131).

In particular, we focused on the quantification of:
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- Circulating Metrnl concentrations (before intervention) with respect to correlate them
with anthropometric and biochemical parameters;

- Metrnl gene expression in subcutaneous and visceral adipose tissue compartments of
morbidly obese patients undergoing bariatric surgery;

- Circulating Metrnl concentrations longitudinally over 12 months following bariatric
surgery or start of LCD;

- Metrnl gene expression in murine adipose tissues and in the murine 3T3-L1 cell
line upon treatment with metabolites such as glucose, insulin, fatty acids, bile acids,
and incretins.

2. Materials and Methods
2.1. Adipocyte Cell Culture and Stimulation Experiments

3T3-L1 pre-adipocytes [27] were cultured and differentiated into mature adipocytes as
described previously [28]. Briefly, cells were cultured at 37 ◦C and 5% CO2 in Dulbecco’s
modified Eagle medium (Biochrom AG, Berlin, Germany) supplemented with 10% newborn
calf serum (Sigma-Aldrich, Deisenhofen, Germany) and 1% penicillin/streptomycin (Aiden-
bach, Germany) and were differentiated into adipocytes in DMEM/F12/glutamate medium
(Lonza, Basel, Switzerland) supplemented with 20 µM 3-isobutyl-methyl-xanthine (Serva,
Heidelberg, Germany), 1 µM corticosterone, 100 nM insulin, 200 µM ascorbate, 2 µg/mL
transferrin, 5% fetal calf serum (FCS, Sigma-Aldrich, Deisenhofen, Germany), 1 µM biotin,
17 µM pantothenic acid, 1% penicillin/streptomycin (all from Sigma Aldrich, Deisenhofen
Germany), and 300 µg/mL Pedersen-fetuin (MP Biomedicals, Illkirch, France) [29,30]. A dif-
ferentiation protocol reported in the literature [27,31–34] was used with slight modifications,
with light-microscopy control of adipocyte phenotype. In addition, induced gene expression
of adipocyte markers such as adiponectin during the differentiation process was verified
applying real-time PCR (Figure 2).
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Mature adipocytes were incubated under serum-free conditions prior to stimulation
experiments. FFA were purchased from Sigma-Aldrich (Deisenhofen, Germany) and
dissolved in 10% BSA/EtOH in stock concentrations of 200 mM. Palmitic acid (PA; 100 µM),
stearic acid (StA; 100 µM), myristic acid (MyA; 100 µM), lauric acid (LaA; 100 µM), oleic
acid (OA; 10 µM), linoleic acid (LiA; 10 µM), palmitoleic acid (PoA; 10 µM), arachidonic acid
(ArA; 10 µM), eicosapentaenoic acid (EPA; 10 µM), and docosahexaenoic acid (DHA; 10 µM)
were used for overnight (18 h) stimulation experiments (n = 6 wells each). All stimulating
doses had been determined by previous experiments in adipocyte culture with respect
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to dose effects and cell viability [35]. In addition, cells were incubated under low/high
glucose (5.56 mM/25 mM) concentrations and under low/high (0.2 and 2.0 nM) insulin
concentrations. Among bile acids, cholic acid (CA; stimulation dose: 100 µM), deoxycholic
acid (DCA; 10 µM), and ursodeoxycholic acid (UDCA; 50 µM) were used for stimulation.
Among incretin hormones, glucagon-like peptide-1 (GLP-1; 50, 100, 200 nM) and glucose-
dependent insulinotropic polypeptide (GIP; 100 nM) were investigated and purchased from
Sigma-Aldrich (Deisenhofen, Germany) and were applied in overnight (18 h) stimulation
experiments in mature 3T3-L1 adipocytes. LDH (lactate dehydrogenase) concentration was
measured in supernatants (Cytotoxicity Detection Kit, Roche, Mannheim, Germany) from
all cell culture experiments in order to exclude any unexpected cytotoxic effects.

2.2. Preparation of mRNA and Real-Time PCR Analysis of Metrnl Gene Expression in Murine
Cells and in Murine and Human Adipose Tissue

Subcutaneous and visceral adipose tissue specimens were obtained from patients
during bariatric surgery. Intra-abdominal and subcutaneous adipose tissue compartments
were resected from wild-type C57BL/6 mice (bred under standard conditions and chow
diet; sacrificed for organ samples conformable to §4 Abs. 3 Tierschutzgesetz). A specific
announcement was made at the local ethical committee (Regierungspraesidium Giessen: inter-
nal registration number: 544_M) that was approved subsequently. Small portions of fresh
intra-abdominal and subcutaneous adipose tissue were digested with 0.225 U/mL of colla-
genase NB 6 (#17458, SERVA Electrophoresis; Heidelberg, Germany) and adipocytes were
separated from stroma-vascular cells (SVC) via centrifugation. Total mRNA was isolated
from frozen human and murine total adipose tissues, and from cultured 3T3-L1 adipocytes
as described previously [28]. Briefly, tissues were homogenized in TRIzol®-Reagent (Life
Technologies GmbH, Darmstadt, Germany) in combination with gentleMACS dissociator
and M-tubes (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany) for dissociation and
RNA was isolated applying RNeasy® Mini Kit (Qiagen, Hilden, Germany) including DNase
digestion (RNase-Free DNase Set, Qiagen, Hilden, Germany). For gene expression analysis,
reverse transcription of RNA (QuantiTect Reverse Transcription Kit from Qiagen, Hilden,
Germany) was performed in order to generate corresponding cDNA for real-time PCR
(RT-PCR) (iTaq Universal SYBR Green Supermix, CFX Connect RT-PCR system; Bio-Rad,
Munich, Germany). Expression levels of the target gene Metrnl were normalized by ∆∆CT
method to the gene expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
which had been applied before as a reliable house-keeping gene for white adipose tissue
and adipocytes by our group and by others [28,36]. The following primers were used:

Human Metrnl: 5′-AGTGGATGTACCCAACAGGTG-3′/5′-TACCAGCAGTCTCAGT
TCTCC-3′

Human GAPDH: 5′-GAGTCCACTGGCGTCTTCAC-3′/5′-CCAGGGGTGCTAAG
CAGTT-3′.

Murine Metrnl: 5′-CTGGAGCAGGGAGGCTTATTT-3′/5′-GGACAACAAAGTCACT
GGTACAG-3′

Murine GAPDH: 5′-TGTCCGTCGTGGATCTGAC-3′/5′-AGGGAGATGCTCAGT
GTTGG-3′.

All oligonucleotides used were purchased from Metabion (Martinsried, Germany).

2.3. ROBS (Research in Obesity and Bariatric Surgery) Study Cohort

Serum samples and specimens from subcutaneous (abdominal) and visceral (intra-
abdominal) adipose tissue were collected from the ROBS (Research in Obesity and Bariatric
Surgery) study cohort. ROBS is an open-label, non-randomized, monocentric, prospective,
and observational (explorative and confirmatory) study of patients routinely undergoing
either bariatric surgery (gastric sleeve or Roux-en-Y gastric bypass) or a low calorie for-
mula diet (LCD) in the tertiary care center at the University of Giessen, Germany. The
detailed information about this study cohort can be drawn from a recent publication [37]
and basic characteristic are summarized in Table 1. Briefly, patients were treated by a mul-
tidisciplinary team of physicians and professionals from Internal Medicine, Endocrinol-
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ogy/Diabetology, Metabolic/Visceral Surgery, Psychosomatic Medicine/Psychotherapy, Nu-
tritional Science/Dietetics, and Sports Medicine at the Obesity Centre at the University of
Giessen, Germany. The study was approved by the local ethical committee at the University
of Giessen, Germany (file: AZ 101/14). All patients gave informed consent and were informed
about the aim of the study. Data anonymization and privacy policy were accurately applied.
Obese patients with a BMI ≥ 40 kg/m2 or with a BMI ≥ 35 kg/m2 and coexisting type 2
diabetes were consecutively admitted for bariatric surgery from January 2015 to April 2021.
Exclusion criteria were: pregnancy, evidence of or suspicion on underlying endocrine diseases,
untreated bulimia nervosa and binge eating behavior, use of illicit drugs, neoplasm, severe
psychiatric disorders, psychosis, and psychopathologic instability.

Table 1. Anthropometric parameters and baseline Metrnl serum levels in LCD (A) and bariatric
surgery patients (B). BMI, body mass index; Metrnl, Meteorin-like protein; SD, standard deviation.

(A)
Low Calorie Diet

n = 131

Females 88 (67.2%)

Males 43 (32.8%)

Age [years] (±SD) 42.1 ± 12.0

BMI [kg/m2] (±SD) 43.5 ± 6.7

Serum Metrnl [pg/mL] (±SD) 1117 ± 378

(B)
Bariatric Surgery

n = 181

Females 143 (79.0%)

Males 38 (21.0%)

Age [years] (±SD) 39.8 ± 11.1

BMI [kg/m2] (±SD) 53.4 ± 6.8

Serum Metrnl [pg/mL] (±SD) 1143 ± 383

2.4. Measurement of Serum Metrnl Levels

Metrnl serum concentrations were measured in duplicates by ELISA (DuoSet ELISA devel-
opment systems, R&D Systems, Wiesbaden, Germany) and are expressed as means± standard
deviation. The assay detection range was 15.6–1000 pg/mL.

2.5. Statistical Analysis

For explorative data analysis, a statistical software package (SPSS 26.0) was used.
Metrnl concentrations did not follow a Gaussian distribution. Non-parametric numerical
parameters were analyzed by the Mann–Whitney U-test (for 2 unrelated samples), the
Kruskal–Wallis test (>2 unrelated samples), the Wilcoxon test (for 2 related samples), or the
Friedman test (>2 related samples). A p-value below 0.05 (two tailed) was considered as
statistically significant. In the figures, means are displayed as bars with whiskers giving
the standard error of the mean (1 × SEM). Box plots are indicating median, upper/lower
quartiles, interquartile range, minimum/maximum values and outliers.

3. Results
3.1. Quantification of Baseline Metrnl Serum Levels in Patients Undergoing LCD or
Bariatric Surgery

Circulating Metrnl concentrations in morbidly obese patients were quantified by ELISA prior
to weight loss induced by either LCD (n = 131; 88 females, 43 males; BMI = 43.48± 6.74 kg/m2)
or bariatric surgery (n = 181; 143 females, 38 males; BMI = 53.36± 6.84 kg/m2). Mean baseline
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Metrnl serum concentrations were 1117 ± 378 pg/mL (range: 392–3840 pg/mL) in the LCD
cohort and 1143± 383 pg/mL (range: 91–3786 pg/mL) in patients undergoing bariatric surgery
(Table 1).

As illustrated in Figures 3A and 4A, no significant gender-specific differences in
Metrnl concentrations were observed in both cohorts, also neither in normoglycemic nor in
T2D patients. Baseline Metrnl concentrations were not correlated with BMI or percentage
body fat mass (Table 1). Within the LCD cohort, Metrnl levels were significantly decreased
in individuals with type 2 diabetes mellitus (T2D) (Figure 3B) whereas this association
could not be demonstrated in pre-bariatric patients (Figure 4B) which had a higher BMI
than patients undergoing LCD.
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Data analysis applying the Spearman rho test revealed significant correlations of circu-
lating Metrnl concentrations with different biochemical parameters, classical adipokines,
novel immune-regulatory adipokines, and growth factors (Table 2). Of note, a significant
negative correlation between Metrnl and HbA1c was found exclusively among LCD par-
ticipants (rho = −0.269, p = 0.002) (Table 2). This finding fits very well with the lower
Metrnl levels observed in T2D patients in this cohort (Figure 3B). Furthermore, there was a
non-significant trend of a negative correlation between circulating Metrnl levels and HbA1c
for T2D patients among LCD participants (n = 20; rho= −0.425, p = 0.062) unlike normo-
glycemic LCD individuals (n = 111; rho= −0.151, p = 0.113). A more detailed subgroup
analysis for the BS cohort stratifying for HbA1c and BMI values revealed a slight yet signifi-
cant, negative correlation of Metrnl with HbA1c levels in patients with an HbA1c < 6.5%
but not for individuals with higher HbA1c percentages. Regarding BMI subgroups, Metrnl
and HbA1c were negatively correlated exclusively in BS patients within a BMI interval
ranging from 40.0 to 49.9 kg/m2 (rho = −0.267, p = 0.012).

Table 2. Correlation analysis of baseline Metrnl serum levels with anthropometric and biochemical
parameters in LCD (A) and bariatric surgery patients (B). ANP, atrial natriuretic peptide; BMI,
body mass index; CAMP, Cathelicidin anti-microbial peptide; CRP, C-reactive protein; CTRP-3,
C1q/TNF-related protein-3; FGF, fibroblast growth factor; HbA1c, glycohemoglobin; HDL, high-
density lipoprotein; LDL, low-density lipoprotein; Metrnl, Meteorin-like protein.

(A)
Low Calorie Diet

n = 131

Correlation of serum Metrnl with: rho p

Metabolism/Inflammation

BMI +0.049 0.579
Body fat (%) +0.130 0.145

Glucose −0.078 0.379
Insulin −0.113 0.130
HbA1c −0.269 0.002

Total cholesterol −0.038 0.664
LDL cholesterol −0.077 0.380
HDL cholesterol +0.191 0.029

Triglycerides −0.131 0.137
CRP −0.051 0.563

Classical adipokines

Adiponectin +0.135 0.124
Leptin +0.269 0.002

Resistin +0.187 0.032

Novel immune-regulatory adipokines

Progranulin +0.180 0.048
CTRP-3 −0.017 0.845
CAMP −0.115 0.315

Fibroblast growth factors

FGF19 +0.101 0.259
FGF21 +0.066 0.462

Natriuretic peptides

NT-proANP −0.048 0.585



J. Clin. Med. 2021, 10, 4338 8 of 17

Table 2. Cont.

(B)
Bariatric Surgery

n = 181

Correlation of Serum Metrnl with: rho p

Metabolism/Inflammation

BMI −0.005 0.950
Body fat (%) +0.045 0.579

Glucose −0.077 0.308
Insulin +0.023 0.785
HbA1c −0.100 0.208

Total cholesterol −0.111 0.158
LDL cholesterol −0.110 0.162

HDL cholesterol (n = 163) +0.180 0.022
Triglycerides (n = 163) −0.164 0.037

CRP −0.035 0.643

Classical adipokines

Adiponectin −0.019 0.804
Leptin +0.222 0.003

Resistin +0.316 <0.001

Novel immune-regulatory adipokines

Progranulin +0.083 0.308
CTRP-3 −0.122 0.105
CAMP +0.003 0.966

Fibroblast growth factors

FGF19 +0.101 0.180
FGF21 +0.137 0.070

Natriuretic peptides

NT-proANP +0.095 0.202

In contrast to HbA1c levels, triglycerides were negatively correlated with Metrnl only
in bariatric patients (rho = −0.164, p = 0.037) whereas there was a positive correlation of
HDL cholesterol and Metrnl levels in LCD (rho = +0.191, p = 0.029) as well as in bariatric
patients (rho = +0.180, p = 0.022) (Table 2). Among classical adipokines, serum leptin
(LCD: rho = +0.269, p = 0.002; BS: rho = +0.222, p = 0.003) and resistin (LCD: rho = +0.187,
p = 0.032; BS: rho = +0.316, p < 0.001) were positively correlated with circulating Metrnl
in both study cohorts. Subgroup analysis revealed that these correlations were significant
for both males (leptin: rho = +0.226, p = 0.043; resistin: rho = +0.237, p = 0.033) and
females (leptin: rho = +0.201, p = 0.002; resistin: rho = +0.263, p < 0.001) in the whole
study cohort. Furthermore, a slightly positive correlation of Metrnl with the immune-
regulatory adipokine progranulin was observed exclusively in LCD patients, whereas there
were no significant correlations with C1q/TNF-related protein-3 (CTRP-3), cathelicidin
antimicrobial peptide (CAMP) and fibroblast growth factors (FGF) 19 and 21 (Table 2) in
both cohorts.

3.2. Metrnl Gene Expression Is Not Different between Visceral and Subcutaneous Adipose Tissue
in Morbidly Obese Patients

Metrnl mRNA expression levels in human subcutaneous and visceral adipose tissue
(n = 130) were analyzed by RT-PCR (∆∆CT method applying normalization to GAPDH
expression). We did not detect significant differences in Metrnl gene expression levels of
both fat compartments (Figure 5A) in this large array of human adipose tissue samples.
Furthermore, visceral and subcutaneous adipose tissue Metrnl mRNA levels were not
correlated (Figure 5B).
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Figure 5. Metrnl gene expression in adipose tissue compartments (bariatric study cohort, n = 130). Metrnl mRNA expression
levels in subcutaneous and visceral adipose tissue do not differ (A) and are not correlated with each other (B). GAPDH,
glyceraldehyde-3-phosphate dehydrogenase; METRNL, Meteorin-like protein; sc AT, subcutaneous adipose tissue; vis AT,
visceral adipose tissue.

3.3. Correlation of Adipose Tissue Metrnl Gene Expression with Anthropometric and
Biochemical Parameters

There were no significant differences in Metrnl mRNA levels between male and female
patients in subcutaneous and visceral adipose compartments. Subcutaneous adipose tissue
Metrnl gene expression was positively correlated with body weight (rho = 0.224, p = 0.010),
BMI (rho = 0.182, p = 0.038), and homeostasis model of insulin resistance (HOMA-IR)
(rho = 0.226, p = 0.027). Metrnl mRNA expression in visceral adipose tissue was positively
correlated with waist-hip ratio (rho = 0.193, p = 0.042); data not shown.

Metrnl expression in visceral adipose tissue was positively correlated with progranulin
serum levels (rho = 0.249, p = 0.009) and negatively correlated with circulating adiponectin
(rho= −0.202, p = 0.022) and leptin concentrations (rho= −0.265, p = 0.002); data not shown.
Of note, there was a negative correlation between subcutaneous adipose tissue CTRP-3
expression and the expression of Metrnl, both in subcutaneous (rho = −0.198, p = 0.026)
and in visceral adipose tissue (rho = −0.205, p = 0.020); data not shown.

3.4. Serum Metrnl Levels Are Transiently Elevated during Early Stages of Weight Loss

Longitudinal serum samples from follow-up visits were available from 80 LCD par-
ticipants (visits: 3, 6, and 12 months after beginning of dietary intervention (V3, V6, V12);
mean weight loss after 12 months: 30.6 ± 15.2 kg) and from 82 bariatric patients (visits:
3–5 days post-surgery and 3, 6, and 12 months after bariatric surgery (V1, V3, V6, V12);
mean weight loss after 12 months: 55.4 ± 17.0 kg).

Weight loss induced by LCD was associated with an initial elevation of circulating
Metrnl quantities from 1112 ± 327 pg/mL to 1356 ± 689 pg/mL 3 months after the
beginning of dietary intervention (p < 0.001) (Figure 6A). At the following visits (6 and
12 months), Metrnl concentrations returned to baseline levels (1206 ± 786 pg/mL after
12 months) (Figure 6A).
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low calorie diet; Metrnl, Meteorin-like protein.

In the study cohort of bariatric patients, baseline serum Metrnl concentrations were
1126 ± 367 pg/mL and decreased immediately after surgery to 1057 ± 355 pg/mL (p = 0.023)
within 3–5 days (Figure 6B). This initial decline of Metrnl levels was followed by a transient
increase 3 months after surgery up to 1419 ± 646 pg/mL (p < 0.001), similarly to the LCD
cohort (Figure 6B). Levels afterwards returned to baseline quantities at 6 to 12 months.

3.5. Correlation Analysis of Serum Metrnl during Weight Loss

Correlation analysis of circulating Metrnl concentrations with anthropometric and
physiological parameters during stages of weight loss—3, 6, and 12 months after the
beginning of weight reducing intervention (i.e., V3, V6, and V12)—was performed on the
lines of regression analysis of baseline serum levels and patients characteristics as reported
above (Table 2). Metabolic systemic parameters such as blood glucose and lipids were only
assessed at baseline and V12 according to the study protocol. As is displayed in Table 3, no
significant correlations of serum Metrnl with the assessed anthropometric and biochemical
parameters were detected at study time-points V3 and V6 in both cohorts. Twelve months
after the beginning of the diet program, there was a negative correlation of Metrnl with
BMI in the LCD cohort (rho = −0.227, p = 0.043) (Table 3A). In bariatric surgery patients,
Metrnl levels were positively correlated with blood glucose (rho = +0.232, p = 0.040) and
with CRP levels (rho = +0.254, p = 0.023) (Table 3B).

Table 3. Correlation analysis of baseline Metrnl serum levels with anthropometric and biochemical parameters in LCD
(A) and bariatric surgery patients (B). BMI, body mass index; CRP, C-reactive protein; HbA1c, glycohemoglobin; HDL,
high-density lipoprotein; LDL, low-density lipoprotein; Metrnl, Meteorin-like protein.

(A) Low Calorie Diet
(n = 80) V3 V6 V12

Correlated Parameters rho p rho p rho p

Body fat (%) −0.191 0.096 −0.005 0.968 −0.170 0.141
BMI −0.109 0.340 +0.090 0.427 −0.227 0.043

Glucose −0.145 0.207
HbA1c +0.006 0.957 −0.218 0.055 −0.149 0.191

Total cholesterol −0.106 0.351
LDL cholesterol −0.056 0.623
HDL cholesterol +0.002 0.987

Triglycerides −0.142 0.214
CRP −0.056 0.624 +0.002 0.983 −0.062 0.585
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Table 3. Cont.

(B) Bariatric Surgery
(n = 82) V3 V6 V12

Correlated Parameters rho p rho p rho p

Body fat (%) −0.096 0.416 −0.070 0.557 −0.161 0.171
BMI −0.009 0.936 −0.045 0.691 −0.074 0.509

Glucose +0.232 0.040
HbA1c −0.004 0.972 −0.010 0.929 +0.107 0.343

Total cholesterol −0.008 0.945
LDL cholesterol +0.031 0.782
HDL cholesterol +0.046 0.687

Triglycerides +0.096 0.395
CRP −0.006 0.960 +0.190 0.089 +0.254 0.023

3.6. Murine Tissue Expression of Metrnl mRNA

Against the background of data for human circulating and adipose tissue expressed
Metrnl in obesity, we aimed to investigate its regulation under defined experimental
conditions in the established murine 3T3-L1 adipocyte model in vitro. Prior to this cell
culture approach, basal Metrnl gene expression levels in vivo were assessed for different
organs and tissues—including distinct adipose compartments—obtained from C57BL/6
wildtype mice in order to verify adipose tissue as a major site of Metrnl expression also in
the mouse organism. Metrnl mRNA levels (Figure 7) were observed to be highest in adipose
tissue and in testicles whereas expression was low in brain, liver, and untrained skeletal
muscle. Among different adipose tissue compartments, expression levels were highest in
intra-abdominal adipose tissue, followed by subcutaneous and peri-renal adipose tissue.
In brown adipose tissue, expression was low yet detectable.

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 7. METRNL gene expression in murine tissues. BAT, brown adipose tissue; GAPDH, glyceraldehyde-3-phosphate 
dehydrogenase; ia AT, intra-abdominal adipose tissue; METRNL, Meteorin-like protein; ren AT, peri-renal adipose tis-
sue; sc AT, subcutaneous adipose tissue; SkM, skeletal muscle. 

3.7. Metrnl Gene Expression Is Transiently Downregulated during 3T3-L1 Adipocyte 
Differentiation 

Metrnl mRNA levels were determined by RT-PCR during the hormonally induced 
differentiation of 3T3L-1 pre-adipocytes into mature adipocytes. Metrnl mRNA expres-
sion was high in undifferentiated, fibroblast-like pre-adipocytes and in mature adipo-
cytes at day 9 of differentiation. Metrnl expression was significantly decreased (by ~60% 
of initial expression) during the process of differentiation (Figure 8A). 

3.8. Effects of Metabolic Stimuli on Metrnl Expression in Adipocytes 
Since the hormonal differentiation protocol mentioned above contained high glu-

cose and insulin concentrations, mature 3T3-L1 adipocytes were investigated under se-
rum-free conditions and exposed to low/high glucose and to low/high insulin concentra-
tions (Figure 8B). Interestingly, Metrnl expression was not sensitive to these metabolic 
stimuli suggesting that the observed downregulation of Metrnl during differentiation is 
not mediated by these stimuli. 

Since adipocytes represent the most important lipid-storing cell-type, a broad spec-
trum of dietary/nutritional fatty acids was investigated for possible effects on Metrnl 
expression (Figure 8C,D). Importantly, most of the tested nutritional fatty ac-
ids—saturated (C12, C16, C18), mono-unsaturated (C16, C18), and poly-unsaturated 
(C18)—did not modulate Metrnl expression. In contrast, saturated (C14) myristic acid (p 
= 0.013) as well as the poly-unsaturated, omega-6 (C20:4) arachidonic acid (p = 0.029), 
omega-3 (C20:5) eicosapentaenoic acid (p = 0.030), and omega-3 (C22:6) docosahexaenoic 
acid (p = 0.001) significantly downregulated Metrnl gene expression in mature adipocytes 
(Figure 8D) suggesting a possible impact of inflammatory changes after surgery. Since 
the very early decrease of Metrnl immediately after surgery occurred at the same time 
point when systemic bile acids and incretins have been reported to increase [38,39], we 
aimed to test in vitro whether bile acid species and the incretin hormone GLP-1 are able 

Figure 7. METRNL gene expression in murine tissues. BAT, brown adipose tissue; GAPDH, glyceraldehyde-3-phosphate
dehydrogenase; ia AT, intra-abdominal adipose tissue; METRNL, Meteorin-like protein; ren AT, peri-renal adipose tissue; sc
AT, subcutaneous adipose tissue; SkM, skeletal muscle.



J. Clin. Med. 2021, 10, 4338 12 of 17

3.7. Metrnl Gene Expression Is Transiently Downregulated during 3T3-L1 Adipocyte
Differentiation

Metrnl mRNA levels were determined by RT-PCR during the hormonally induced
differentiation of 3T3L-1 pre-adipocytes into mature adipocytes. Metrnl mRNA expression
was high in undifferentiated, fibroblast-like pre-adipocytes and in mature adipocytes at
day 9 of differentiation. Metrnl expression was significantly decreased (by ~60% of initial
expression) during the process of differentiation (Figure 8A).
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3.8. Effects of Metabolic Stimuli on Metrnl Expression in Adipocytes

Since the hormonal differentiation protocol mentioned above contained high glucose
and insulin concentrations, mature 3T3-L1 adipocytes were investigated under serum-
free conditions and exposed to low/high glucose and to low/high insulin concentrations
(Figure 8B). Interestingly, Metrnl expression was not sensitive to these metabolic stim-
uli suggesting that the observed downregulation of Metrnl during differentiation is not
mediated by these stimuli.

Since adipocytes represent the most important lipid-storing cell-type, a broad spec-
trum of dietary/nutritional fatty acids was investigated for possible effects on Metrnl
expression (Figure 8C,D). Importantly, most of the tested nutritional fatty acids—saturated
(C12, C16, C18), mono-unsaturated (C16, C18), and poly-unsaturated (C18)—did not mod-
ulate Metrnl expression. In contrast, saturated (C14) myristic acid (p = 0.013) as well as the
poly-unsaturated, omega-6 (C20:4) arachidonic acid (p = 0.029), omega-3 (C20:5) eicosapen-
taenoic acid (p = 0.030), and omega-3 (C22:6) docosahexaenoic acid (p = 0.001) significantly
downregulated Metrnl gene expression in mature adipocytes (Figure 8D) suggesting a pos-
sible impact of inflammatory changes after surgery. Since the very early decrease of Metrnl
immediately after surgery occurred at the same time point when systemic bile acids and
incretins have been reported to increase [38,39], we aimed to test in vitro whether bile acid
species and the incretin hormone GLP-1 are able to inhibit Metrnl expression. As shown in
Figure 8E, the three bile acid subspecies cholic acid (primary bile acid), deoxycholic acid
(secondary cholic acid), and ursodeoxycholic acid (therapeutically used, synthetic, tertiary
cholic acid) had no effect on adipocytic Metrnl expression when applied in pre-tested,
non-toxic doses in adipocytes. Similarly, the incretin hormone GLP-1 (Figure 8F) and also
GIP (data not shown) did not modulate Metrnl expression.

4. Discussion

The present study provides longitudinal data on serum Metrnl concentrations in
two large and well-characterized cohorts of morbidly obese patients. To the best of our
knowledge, this is the first study that describes and compares the dynamics of circulating
Metrnl concentrations during massive weight loss induced by either low calorie diet or
bariatric surgery. Baseline circulating Metrnl levels prior to the start of weight-reducing
interventions were equal in male and female patients and were not correlated with BMI,
fat mass, or percentage extent of weight loss. However, the expression of Metrnl mRNA
in subcutaneous adipose tissue was positively correlated with BMI and the expression of
Metrnl mRNA in visceral adipose tissue was positively correlated with the waist-hip-ratio.
The observation that only tissue mRNA expression but not the circulating protein correlates
with measures of obesity might be explained by the hypothesis that other cellular sources
than white adipocytes contribute to the systemic protein concentrations. Screening of gene
expression in various mouse tissues verified that Metrnl is abundantly expressed in several
adipose compartments (intra-abdominal > subcutaneous > peri-renal > brown adipose
tissue). Of note, the differences in Metrnl mRNA levels between intra-abdominal/visceral
and subcutaneous compartments are in contrast to our findings in human adipose tissue
from the obesity cohort. Furthermore, we also detected Metrnl expression in brain, liver,
muscle, and testicles. In contrast to muscle cells post-exercise [13], resting muscle cells
only express low levels of Metrnl that ranges below adipose tissue compartments. Overall,
we conclude from the present data that Metrnl can be regarded as a classical adipokine
and also a neurotrophic protein in mice, with adipose tissue and brain as major sites of
gene expression.

Base-line Metrnl levels were found to be significantly decreased in type 2 diabetic
patients and were shown to correlate negatively with HbA1c levels in the cohort of LCD
patients. Since bariatric patients had a considerably higher average BMI than LCD par-
ticipants (53.36 vs. 43.48 kg/m2), this finding might exclusively exist in the LCD cohort.
Within this cohort, a trend of a negative correlation between circulating Metrnl levels and
HbA1c was observed for T2D patients but not for normoglycemic individuals. Considering
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the very low proportion of T2D patients in the LCD study cohort, the physiological impact
of this observation remains a matter of speculation.

Interestingly, Metrnl exhibited a significant and positive correlation with serum HDL
concentrations and a negative correlation with serum triglycerides. Since nutritional fatty
acids did not inhibit adipocytic Metrnl expression, the interpretation of these correlations
remains of speculative nature and should be further investigated. Of note, the observed
correlation of baseline Metrnl with HDL and triglyceride levels did not persist during
weight loss.

A panel of classical and immune-regulatory adipokines and growth factors was
measured in both cohorts of patients at baseline. Interestingly, we found a highly significant
and positive correlation of Metrnl concentrations with the pro-inflammatory adipokines
leptin and resistin in both cohorts. However, Metrnl did not correlate with systemic CRP
levels. Thus, Metrnl serum levels might be associated with adipose tissue-related, local
inflammation and but not with systemic inflammation.

Both in the LCD and in the bariatric subgroup, patients experienced a significant increase
of Metrnl serum levels 3 months after the begin of diet or bariatric surgery, respectively.
Thus, circulating Metrnl concentrations appear to be positively associated with the onset of
weight loss and this increase occurs independently of the mode of the weight loss-inducing
intervention. Since Metrnl concentrations return to the baseline levels after 6 and 12 months,
there seem to exist yet unknown compensatory or counter-regulating mechanisms.

Most interestingly and specific to bariatric surgery, we documented a significant and
transient decrease of Metrnl immediately after surgery within 3–5 days. Since weight loss
does not occur that early, we suggest that other mechanisms are responsible for this effect.
As shown, neither glucose nor insulin in different concentrations alone or together were able
to modulate adipocyte Metrnl expression, at least in adipocytes. Moreover, a broad panel of
tested dietary fatty acids failed to modulate Metrnl expression, whereas mainly pro- and anti-
inflammatory, polyunsaturated, omega-3 and omega-6 fatty acids inhibited Metrnl expression
in adipocytes. Thus, inflammatory processes post-surgery might be of interest. Moreover,
well-known short-term mediators after bariatric surgery such as increasing systemic bile acids
and dysregulated incretins such as GLP-1 might have caused the early decrease of Metrnl.
Since these substances have been shown to be regulated postprandially and to modulate
adipocytic functions [40,41] and adipokine release [42,43], we stimulated adipocytes in vitro
with these mediators. However, neither bile acid species nor the incretin hormone GLP-1
were able to downregulate Metrnl expression, at least in adipocytes.

While the present study provides novel data concerning metabolic effects on adipocyte
Metrnl expression under defined and serum-free conditions in vitro, a potential regulatory
impact of serum components influencing cellular proliferation processes remains an open
question. This issue should be addressed by future approaches elaborating on the present
data, e.g., in cell culture assays applying serum-conditioned media.

5. Conclusions

Metrnl is an adipokine that is differentially regulated during murine adipocyte differ-
entiation. In humans, Metrnl expression is on equal levels in visceral and subcutaneous
adipose tissue and circulating Metrnl protein concentrations are not correlated with adipose
tissue gene expression suggesting additional sources of Metrnl secretion that contribute to
the systemic and circulating protein quantities. Massive weight loss induced by bariatric
surgery or low calorie diet in two large and well-described cohorts of patients transiently
upregulates circulating Metrnl concentrations after 3 months with levels returning to base-
line after 6 and 12 months. The immediate and short-term decrease of systemic Metrnl
concentrations within 3–5 days upon bariatric surgery cannot be explained by weight
loss and we could exclude effects of bile acids and incretins. Thus, this effect seems to
be mediated by other yet unknown short-term mediators such as inflammatory changes
after surgery. Whereas insulin, glucose, and nutritional fatty acids are not able to mod-
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ulate Metrnl expression, omega-3 and omega-6 fatty acids inhibit Metrnl expression in
adipocytes and should be further investigated.
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