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ABSTRACT
Mortality assessments are conducted for both civil and commercial purposes. Recent advances in 
epigenetics have resulted in DNA methylation tools to assess risk and aid in this task. However, 
widely available array-based algorithms are not readily translatable into clinical tools and do not 
provide a good foundation for clinical recommendations. Further, recent work shows evidence of 
heritability and possible racial bias in these indices. Using a publicly available array data set, the 
Framingham Heart Study (FHS), we develop and test a five-locus mortality-risk algorithm using 
only previously validated methylation biomarkers that have been shown to be free of racial bias, 
and that provide specific assessments of smoking, alcohol consumption, diabetes and heart 
disease. We show that a model using age, sex and methylation measurements at these five loci 
outperforms the 513 probe Levine index and approximates the predictive power of the 1030 
probe GrimAge index. We then show each of the five loci in our algorithm can be assessed using 
a more powerful, reference-free digital PCR approach, further demonstrating that it is readily 
clinically translatable. Finally, we show the loci do not reflect ethnically specific variation. We 
conclude that this algorithm is a simple, yet powerful tool for assessing mortality risk. We further 
suggest that the output from this or similarly derived algorithms using either array or digital PCR 
can be used to provide powerful feedback to patients, guide recommendations for additional 
medical assessments, and help monitor the effect of public health prevention interventions.
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Introduction

Accurate and simple assessment of risk for mor
tality is relevant for a wide variety of professionals 
including physicians, insurance underwriters and 
public health data analysts. The approaches used 
to assess risk vary widely, however, with respect to 
the setting. For example, in the acute care setting, 
physicians commonly use algorithms such as 
Acute Physiology, Age and Chronic Health 
Evaluation (I–IV) (APACHE), Multi-Organ 
Dysfunction Syndrome (MODS) or Sequential 
Organ Failure Assessment (SOFA) that rely on 
physiological variables such as serum potassium 
levels, haematocrit and oxygen saturation for pre
dicting mortality [1]. In general, since the input 
variables for these prediction algorithms can 
change rapidly, and the output from these algo
rithms can be used to make critical life or death 

decisions, there is an intense need for quick accu
rate predictions from these and similar algorithms. 
In contrast, insurance underwriters and public 
health analysts work in a context that has a lower 
need for speed. Still, the need for accuracy is high, 
and pressures to reduce cost and potential patient 
burden are substantial. For example, tracking the 
population-level impact of public health initiatives 
is difficult but important for guiding future invest
ments. Similarly, erroneous assessments of morbid 
risk in high-value policies can have substantial 
financial consequences. Additionally, in both pub
lic health and insurance decision-making, 
a successful future may involve moving beyond 
a one size fits all approach premised on the law 
of large numbers. The need for personalization of 
offerings and the ability of the risk tool to assess 
continuously helps consumer centrism. Therefore, 
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no matter what the setting, there is high demand 
for accuracy in mortality prediction, with mini
mizing burden on consumers an important sec
ondary consideration.

In addition to the demand for accuracy and low 
participant burden, there are often cost and speed 
considerations when choosing a method for asses
sing mortality. For research purposes, speed of 
assessment is generally not an issue, but cost may 
be a major consideration. For life insurance, both 
cost and speed may need to be considered [2]. For 
example, for a low face value term life insurance 
policy (e.g. 75,000 USD), the financial cost of 
a face-to-face physical exam of a random 30 year- 
old would likely outweigh the potential informa
tion gained by that assessment. Conversely, when 
the stakes are higher (e.g. 10,000,000 USD) and the 
applicant is older, the calculus is reversed and 
extensive medical exams are universally employed 
[2]. Speed is also an issue to insurers. Delayed time 
service between the initial client inquiry and the 
quote by an insurer, leads to lower placement 
rates. As a result of these and other trade-offs, 
finding solutions that are quick, evidence-based, 
personalized, objective, and continuous has 
become the aim of disruptive insurers; there is 
a great deal of interest in challenging the existing 
approaches which are more lengthy, anecdotal, 
generalized, subjective, and discrete in their 
scope. Improved accuracy, reduced participant 
burden, reduced costs, and increased speed of 
risk assessment are the value propositions.

Recently, approaches for assessing mortality 
that incorporate epigenetic measures have 
attracted considerable attention. Beginning with 
the work of Fraga and Esteller in 2007, and 
Bocklandt and associates in 2011, a number of 
investigators have attempted to use epigenetic 
approaches to assess age or risk for mortality 
[3,4]. In 2013, groups led by Greg Hannum and 
Steve Horvath were the first to use stepwise regres
sion methods and methylation information from 
the Illumina 450 K array to impute relative age 
[5,6]. Over the subsequent years, “epigenetic age
ing’ (EA) indices that built upon these methods 
have been described and, not surprisingly, there is 
a good deal of debate as to which index is most 
accurate [7–9]. Given the continued interest and 

the introduction of the Illumina Epic array, which 
nearly doubles the amount of available methyla
tion information, it is likely that this debate will 
continue and that further improvements to epige
netic clocks will be made. A major advantage of 
EA indices is that they have low participant bur
den and require only a small volume of blood or 
saliva.

Still, no matter which epigenetic index is used, 
there are several limitations that have impeded the 
use of genome-wide arrays for routine imputation 
of mortality risk in medical, public health, or 
insurance settings. The first is price. Methylation 
arrays are costly and the data derived from them 
must undergo extensive bioinformatic processing 
before it can be utilized[10]. The second is speed. 
The complicated laboratory procedures used in 
genome-wide hybridizations typically take a full 
week of laboratory time to complete. The third 
limitation is scaling. Arrays must be run in groups 
referred to as ‘batches’. Although kits for smaller 
sets of samples exist, the standard batch size for 
Illumina arrays is 96 samples (which generally 
includes two controls). If one has more than 94 
samples, those samples must be run in a separate 
group. The fourth limitation is less obvious. The 
extraordinarily complex data processing approach 
used to infer methylation levels utilizes both intra- 
and inter-sample normalization[11]. In layman’s 
terms, this means that to a certain extent, the 
methylation value derived for one locus is depen
dent on values of rest of the loci for that sample 
and to methylation values in other samples. 
Although the sum of these effects are generally 
small, they can be substantial with methylation 
differences of up to 10% being frequently observed 
in technical replicates from the same labora
tory[11].

A final limitation for the use of these array in 
mortality prediction is less discussed, but poten
tially more important from the standpoint of accu
rately identifying causes and protecting against 
discrimination; many of the probes on these ‘epi
genetic’ arrays also implicitly convey significant 
amounts of genetic information [12–14]. The glo
bal regulatory landscape in the insurance industry 
has, in large part, leaned away from the use of such 
personal identifying genetic information for deci
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sion-making. In previous work, we and others 
have shown that it is possible to generate tens of 
thousands of genotypes from these arrays and that 
the information can be used to define ethnicity 
[13,14]. In addition to raising privacy issues, the 
inclusion of loci linked to ethnic background 
could lead to race-linked bias in array-based EA 
algorithms. That bias can lead to biased decision- 
making in the clinical, public health and insurance 
industries – clearly both disenfranchising and 
reputationally catastrophic. Two of the leading 
algorithms, the Levine PhenoAge Index 
(h2 = 0.51) and the recently introduced GrimAge 
index (h2 = 0.37) have significant heritability 
[9,15]. In previous work, we have shown that 
some of the 513 sites used in the Levine 
PhenoAge Index can be used to predict ancestry 
and that this may result in bias that interferes with 
risk prediction in African American subjects [16]. 
Whether this is true for other indices is not known 
and we note that the 1030 probes used in the 
GrimAge index has not been publicly disclosed 
[15]. As a result of these and other limitations, 
methylation arrays have not gained traction as 
tools for assessing mortality risk outside of 
research settings.

Understanding the conceptual framework through 
which these array-based indices predict age or mor
tality is critical to understanding on how improve
ments on this approach could be made. The initial 
indices by Horvath and Hannum were designed to 
predict age. [5,6] These indices were formed by first 
conducting progression analyses of genome-wide 
methylation data from large informative cohorts to 
identify loci in which age-dependent epigenetic drift 
[17] in DNA methylation reliably occur [3,17,18]. 
Overall, tens of thousands of loci mapping to a wide 
variety of pathways show age-related changes in 
methylation[19]. Then, LASSO or some similar tech
nique is used to remove colinear sites and identify the 
least redundant set of markers capable of accurately 
predicting age. Building on work linking specific 
changes in DNA methylation to disease processes, 
the majority of subsequent indices adjusted this 
approach to derive measures capable of predicting 
mortality by comparing the actual age to the com
puted methylation age with the difference being 
termed ‘age acceleration’. [8,9,15] The strengths of 
this approach include the ability to incorporate data 

from literally hundreds of existing databases, some of 
which are very well characterized for specific condi
tions. Weaknesses include significant variation in the 
quality of outcome assessments and access to health
care among cohorts, the latter of which is well known 
to have prominent effects on mortality. Nevertheless, 
useful estimates of general risk for cardiac disease and 
smoking status have been produced, particularly by 
the Grim Age index[15].

Fortunately, there are alternative approaches to 
the stepwise regression methods for generating 
methylation indices for mortality risk. One of 
these is by developing and then compiling indivi
dual mortality index markers from important, yet 
discrete environmental exposure or disease pro
cesses then combining this disease-specific infor
mation with age and sex. This focused approach 
takes advantage of the fact that age and sex are 
traditionally the strongest predictors of mortality 
and are readily available pieces of data in almost 
any situation. As such, there is little value in trying 
to independently impute them. In this vein, our 
group initially approached using DNA methyla
tion as a tool to predict cigarette and alcohol 
consumption status[20]. To date, this approach 
has been highly successful and has led to the 
production of clinically implementable DNA 
methylation assays for both cigarette and alcohol 
consumption with the cg05575921 marker for 
smoking being perhaps the most replicated finding 
in clinical epigenetics with over 100 PubMed pub
lications replicating or extending these findings 
[21–23]. The indices that can be constructed 
using these limited marker sets with age and sex 
information are powerful. A simple combination 
of cg05575921 along with cg04987734, a marker 
from a four marker alcohol prediction panel, out
performs the Levine index with respect to predict
ing mortality in the Framingham Heart Study 
(FHS) Offspring population[24]. To a certain 
extent, the greater predictive ability of this simple 
index makes sense because smoking and drinking 
are important contributors to morbid risk for 
many of the top 10 causes of death such as cancer 
and heart disease. Still, it is important to note that 
a portion of the variance in FHS mortality pre
dicted by these methods are not completely over
lapping and a substantial portion of the variance 
remains unexplained.
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We hypothesized that some of the unexplained 
variance in mortality was secondary to the effects 
of other disease processes that may be partially 
independent of substance use, such as diabetes. 
Fortunately, over the past several years, at least 
three groups have published genome-wide methy
lation analyses of Type 2 diabetes mellitus (T2DM) 
and have shown that methylation status at 
cg19393031, a CpG site in the 5’ untranslated 
region (UTR) of TXNIP, is a strong predictor of 
future T2DM, current T2DM and haemoglobin 
A1c levels [25–27]. Hence, reliable predictors of 
diabetes status are readily available.

Despite the success for diabetes, improving mor
tality prediction by identifying additional loci pre
dictive of common environmental drivers or disease 
processes has proven difficult. In part, this is due to 
the genetic confounding of methylation signals and 
the co-linearity of methylation signatures makes 
identification of sensitive, yet specific epigenetic sig
nals for discrete disorders with more complex, multi
factorial aetiologies difficult[28]. Fortunately, for the 
former, machine learning approaches may be of help 
[29]. Although in some ways less intuitive or elegant 
than the more traditional stepwise approaches, these 
new artificial intelligence-guided methods are gener
ally more powerful in prediction than classical sta
tistical approaches analysing smaller datasets and 
may be the only viable approach for identifying 
predictive markers from large integrated genetic 
and epigenetic datasets for highly dimensional syn
dromes [29,30]. These methods automatically handle 
colinear variables and all types of non-linear rela
tionships (e.g., interactions, variables taken to 
a power), and there are powerful variable selection 
methods that have been developed[31].

Using these machine learning approaches to 
interrogate genome-wide epigenetic and genetic 
data from the FHS and DNA from Intermountain 
(IM) Healthcare, we identified and validated 
a marker set that included three epigenetic loci 
for risk for incident Myocardial Infarction (MI), 
and then described their translation to dPCR [
32–34]. The resulting marker sets outperformed 
current blood-based methods such as the 
Framingham Risk Score or the Atherosclerotic 
Cardiovascular Disease Risk Estimator for pre
dicting risk for incident Coronary Artery 
Disease (CAD) in the IM and FHS test sets. 

Critically, each of the methylation markers in 
the predictor set mapped differently to the clin
ical risk factors (e.g. smoking, hypertension, or 
diabetes) for CAD. Serendipitously, this also cre
ates a set of markers that can be used to capture 
the additional variance for mortality not already 
captured by cg05575921 and cg04987734.

In this communication, after applying the 
machine learning approaches, we use conventional 
survival analysis to test whether the addition of an 
additional alcohol marker (cg02583484) from our 
previously published panel [22], and both the 
CAD and T2DM-specific marker information 
improves prediction of our current model [24] 
relative to existing EA models. Then, we explore 
the translatability of the array-based assessments 
to more generally implementable dPCR methods.

Methods

The current communication relies on information 
data derived from three separate studies. The first 
set of data are from the Framingham Heart Study 
Offspring Cohort. A complete description of the 
FHS Offspring Cohort is available elsewhere [35]. 
All procedures and protocols used for the use of 
FHS data were approved by the University of Iowa 
Institutional Review Board (IRB 201503802). After 
review and approval of the planned study proce
dures by the National Heart, Lung, and Blood 
Institute Data Access Committee, the data for 
this study were downloaded from dbGAP 
(https://dbgap.ncbi.nlm.nih.gov).

A second set of clinical and methylation informa
tion were drawn from the Family and Community 
Health Studies (FACHS) Primary Caretaker (PC) 
cohort. The FACHS PC cohort is the adult component 
in a longitudinal study begun in 1997 of the effects of 
psychosocial factors on health-related outcomes of 
889 African American parent–child dyads [36]. The 
current biological and clinical data, whose collection 
and preparation have been described elsewhere, are 
taken from Wave 5 of the FACHS PC study (2008–
2010) [16]. All procedures in the FACHS study were 
approved by the University of Iowa IRB (IRB 
200802719).

A third and final set of clinical and methylation 
data were taken from the Healthy Iowans Study, 
a longitudinal investigation of the development of 
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smoking and smoking-related health behaviours in 
high school sophomores [37]. The clinical and 
biological data used in this study were taken 
from their intake examination. All procedures in 
the Healthy Iowans Study were approved by the 
University of Iowa IRB (IRB 201409705).

DNA methylation data

The preparation of data from 2256 FHS Offspring 
Cohort subjects used in this study have been 
described elsewhere [16,28]. After downloading, 
the genome-wide methylation data (Infinium 
Methylation450 BeadChip (Illumina, San Diego, 
CA)) from 2,567 individuals of the Offspring 
Cohort who participated in the Framingham 
Offspring 8th exam (2005 to 2008) were extracted 
and then were subjected to DASEN normalization 
using the MethyLumi, WateRmelon, and 
IlluminaHumanMethylation450k.db R packages 
[38]. These data were filtered with individual 
CpG sites being removed if they had a bead 
count of <3 and/or >1%, and samples were 
removed if they had a detection p-value >0.05. 
[38] After removal of those participants for 
whom either acceptable genome-wide epigenetic 
was not available, data for 2295 participants 
remained. The same quality control steps were 
used to prepare the HumanMethylationEPIC 850 
BeadChip (Illumina, San Diego, CA) methylation 
data obtained using DNA from the Wave 5 
FACHS PC subjects. The methylation values for 
cg05575921, cg04987734, cg02583484, cg19693031 
and cg00300879 were then extracted from both 
datasets.

Clinical data

Clinical data from the FHS for this study were 
extracted from the Wave 8 examinations of the cohort 
[39]. These data include: age, sex, date of death (for 
289 participants with death certificates) and dates of 
assessment for those who participated in Wave 9. The 
data from those 17 subjects whose death status was 
unknown and who did not participate in Wave 9 
analyses were excluded from the analyses.

Similarly, for the FACHS PC and Healthy Iowan 
studies, age, gender, body mass index (BMI), and 

where indicated Haemoglobin A1c (HbA1c) values 
were extracted from their respective databases.

Survival analyses

Comparisons of the predictive capacity of the marker 
approaches (Table 2) in the FHS were conducted 
using survival models, namely Cox proportional 
hazards regression [40]. For the reader unfamiliar 
with Cox proportional hazard models, they are 
expected risk functions that take the form of:

h tð Þ ¼ h0 tð Þ exp b1X1 þ b2X2 þ . . .þ bpXp
� �

Where h tð Þ is the expected hazard (or death rate) at 
time t, h0 tð Þ is the rate when all predictors (age, 
methylation, etc.) are zero, X1,, etc. are the baseline 
values for each of the predictors, and b1, b2, etc. are the 
parameter estimates for each of those individual pre
dictors from which the hazard ratios are calculated.

The event of interest in the Cox regression models 
is mortality and each individual either experiences the 
event or is censored during the follow-up period. In 
our models, we examine the association of age, sex, 
and the methylation markers with time to all-cause 
mortality. The time metric was days from the Wave 8 
visit (time 0) to death (all causes) or censoring (87% of 
samples were censored). All the predictors in the 
proportional hazards models were measured at the 
time 0 baseline of the Wave 8 visit. Predictors were 
first considered individually in models and then 
together in a series of multivariate models with differ
ent numbers of predictors, as described below. 
Harrell’s C was used to index the overall prediction 
accuracy of each model and pseudo R2 was used to 
quantify the strength of association of the model pre
dictors with time to death [41,42]. Akaike’s 
Information Criterion (AIC) was used to assess overall 
model fit [43]. In the base model (Model 1), only age 
and gender were used to predict all-cause mortality. 
Next, we added the Illumina array methylation values 
for cg05575921, cg04987734, and cg02583484 to re- 
create our previously described Model 2 [24]. Then we 
added, separately then together, the array values for 
cg00300879 and cg19693031 to Model 2, which 
allowed us to examine changes in prediction accuracy 
and strength of association with time to death.
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In Model 6 we used Levine’s PhenoAge, calculated 
as previously described as the predictor. We then 
added its values to Model 1 to create Model 7. In 
Model 8, we used GrimAge, calculated as described 
by Lu et al. using the proprietary UCLA website 
(http://www.dnamage.genetics.ucla.edu/) as the pre
dictor. Finally, we then added it to the base model to 
create Model 9.

Internal validation of the models for the top CAD 
and diabetes makers in the FHS was accomplished 
through a resampling method using 200 bootstrap 
samples [44]. The model was refit and tested against 
the observed sample to obtain an estimate of the 
predictive accuracy as measured by a comparison of 
average Harrell’s C values for the training and test 
datasets. Through resampling a shrinkage factor is 
also estimated to account for potential overfitting. 
All analyses were conducted using R Version 4.0.2.

Digital PCR

Digital PCR (dPCR) assessments of cg05575921, 
cg04987734, cg02583484, cg19693031 and 
cg00300879 methylation in DNA specimens from 
the FACHS and Healthy Iowans studies were con
ducted as previously described [21,22]. In brief, 
1 µg of whole blood DNA from each subject was 
bisulphite converted using an Epitect Fast 96 
Bisulphite Conversion kit (Qiagen, USA) and 
eluted in 70 µl of buffer. A 3 µl aliquot of the 
eluate was then pre-amped, diluted 1:1500 or 
1:3000, then amplified using primer and probe 
reagent sets from Behavioural Diagnostics 
(Coralville, IA), Cardio Diagnostics (Coralville, 
IA) and Universal Digital PCR reagents and pro
tocols from Bio-Rad (Carlsbad, CA). The number 
of droplets containing a ‘C’ allele (representing 
a methylated cytosine residue), a ‘T’ allele (repre
senting an unmethylated cytosine), at least one ‘C’ 
and “T’ allele, or no amplified alleles was deter
mined using a QX-200 droplet counter and 
Quantisoft Software (Bio-Rad, CA).

Analyses of dPCR data were conducted using 
JMP Version 14 (SAS Institute) using the tests 
outlined in the text. All T-tests were corrected 
for multiple comparisons using the method of 
Bonferroni [45].

Results

Table 1 describes the demographic and clinical char
acteristics of the FHS relevant to the current ana
lyses. In brief, at the time of the Wave 8 
examinations in 2008–2010, the cohort was exclu
sively White and slightly more females (55%) than 
males (45%). The rate of current self-and past 
reported smoking is 8% and 9%, respectively. The 
rate of self-reported diabetes is 12% with the average 
haemoglobin A1c level, a diagnostic marker for dia
betes, being 5.7%. Finally, the rate of physician 
assessed CAD in the FHS, which is a population 
specifically garnered for the study of CAD, is 14.3%.

Two indices of EA, PhenoAge and GrimAge 
were calculated for each of the FHS subjects. 
Interestingly, the average PhenoAge for cohort is 
7 years less than the chronological age while the 
average GrimAge is 5 years greater than the aver
age chronological age. Despite that, the PhenoAge 
and the GrimAge are highly correlated with each 
other (R2 = 0.62; Figure 1).

In the first set of analyses, a series of survival 
models were fit to examine the association of smok
ing, alcohol, heart disease (CAD), and diabetes 
methylation markers with mortality. As the first 
step of these analyses, we began with our previously 
reported base model of age, sex, the smoking marker 
(cg05575921), and the alcohol consumption markers 
(cg04987734 and cg02583484). We subsequently 
added the lead CAD marker (cg00300879), then the 
diabetes marker (cg19693031) to the base model, one 
at a time. Harrell’s C was used to index the prediction 
accuracy of each model, pseudo R2 was used to 
quantify the strength of association of the model 
predictors with time to death, and Akaike’s 
Information Criterion (AIC) was used to assess over
all model fit.

Table 2 displays the results for the base model and 
the models with each CAD/diabetes marker added 
individually. Both cg00300879 and cg19693031 
increase Harrell’s C and pseudo R2 and have 
decreased in AIC of >2, indicating improved fit 
over the base model. Validation of the models for 
these two makers was accomplished through 
a resampling method using 200 bootstrap samples 
(Table 4). The model was refit and tested against the 
observed sample to obtain an estimate of the pre
dictive accuracy. The training and test estimates are 
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similar as can be seen in the low optimism values. 
That is, the corrected values for Harrell’s C are nearly 
identical to the original values while the shrinkage 
coefficients of >0.96 are a sign of good model fit. The 
model with the proposed Mortality Index, one 
methylation marker from each domain (smoking, 

alcohol, CAD, and diabetes) along with age and 
sex, is presented in row 8 of Table 2 and has the 
best fit of Models 1–5.

Table 3 lists the hazard ratio estimates for all 
predictors in Model 5. In this model, age and 
sex are highly predictive of time to death after 

Figure 1. A plot of the relationship of the relationship of the PhenoAge to GrimAge in the FHS cohort (R2 = 0.62).

Table 1. Key demographic and clinical characteristics of participants.
All Male Female

Number of Participants 2256 1022 1234
Age at Intake† 66.3 ± 8.9 years 66.1 ± 8.8 years 66.5 ± 9.0 years
Current Smoking Status‡

Yes 179 (8.0) 75 (7.3) 104 (8.4)
No 2074 (91.9) 944 (92.4) 1130 (91.6)
Missing 3 (0.1) 3 (0.3) 0 (0.0)
Past Smoking Status
Yes 203 (9.0) 86 (8.4) 117 (9.5)
No 2050 (90.9) 933 (91.3) 1117 (90.5)
Missing 3 (0.1) 3 (0.3) 0 (0.0)
CHD
Yes 322 (14.3) 201 (19.7) 121 (9.8)
No 1934 (85.7) 821 (80.3) 1113 (90.2)
Diabetes
Yes 271 (12.0) 144 (14.1) 127 (10.3)
No 1978 (87.7) 874 (85.5) 1104 (89.5)
Missing 7 (0.3) 4 (0.4) 3 (0.2)
HbA1c 5.7 ± 0.7% 5.7 ± 0.8% 5.7 ± 0.6%
GrimAge EA 70.1 ± 8.6 years 71.9 ± 8.7 years 68.7 ± 8.3 years
PhenoAge EA 58.8 ± 9.4 years 59.4 ± 9.5 years 58.3 ± 9.4 years
Average Methylation
cg05575921 76.4 ± 8.4% 75.7 ± 9.0% 77.0 ± 7.8%
cg04987734 37.1 ± 5.2% 38.2 ± 5.0% 36.2 ± 5.2%
cg02583484 29.5 ± 3.9% 29.7 ± 4.0% 29.3 ± 3.9%
cg00300879 68.1 ± 7.3% 67.4 ± 7.0% 68.6 ± 7.4%
cg19693031 66.7 ± 5.4% 66.1 ± 5.3% 67.3 ± 5.3%

†Mean ± Standard Deviation for Continuous Measures; ‡ N (%) for Categorical Measures 
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adjustment for the other predictors (age 
HR = 2.58, 95% CI = 2.26–2.95; M vs. 
F HR = 1.38, 95% CI = 1.09–1.74). Baseline 
fractional methylation levels are highly predic
tive as well. Lower levels in baseline fractional 

methylation at cg05575921 cg02583484, 
cg00300879, and cg19693031 and higher levels 
in baseline fractional methylation at 
cg04987734 result in an increased risk of 
mortality.

Table 3. Hazard ratio estimates for Model 5.
Predictors HR (95% CI)

Age at Intake† 2.58 (2.26, 2.95)***
Sex
Male vs. Female 1.38 (1.09, 1.74)**
Average Methylation†

cg05575921 0.69 (0.62, 0.77)***
cg04987734 1.21 (1.10, 1.32)***
cg02583484 0.89 (0.79, 0.99)*
cg00300879 0.90 (0.81, 0.99)*
cg19693031 0.86 (0.77, 0.97)*

†Continuous measures are standardized; * p < 0.05, **p < 0.01, 
***p < 0.0001 

Table 2. Model fit statistics assessing methylation-mortality association.
Model N (Events) Predictors Harrell’s C Pseudo R2 AIC

1 2274 (289) Age, Sex 0.744 0.107 4087.3
2 2274 (289) Model 1 + cg05575921 + cg04987734 + cg02583484 0.783 0.139 4008.0
CHD Marker
3 2274 (289) Model 2 + cg00300879 0.784 0.141 4005.1
Diabetes Marker
4 2274 (289) Model 2 + cg19693031 0.786 0.142 4003.3
Multiple Markers: Mortality Index
5 2274 (289) Model 2 + cg00300879 + cg19693031 0.787 0.144 4000.9
Epigenetic Age & Grim Age
6 2274 (289) PhenoAge 0.747 0.092 4122.9
7 2274 (289) Model 1 + PhenoAge 0.757 0.117 4062.9
8 2274 (289) Grim Age 0.790 0.151 3969.0
9 2274 (289) Model 1 + Grim Age 0.790 0.151 3972.6

Table 4. Internal validation: bootstrap results.
New Marker Statistic Original Training Test Optimism Corrected Resample

cg00300879 C† 0.7842 0.7872 0.7827 0.0045 0.7797 200
Shrinkage 1.0000 1.0000 0.9692 0.0308 0.9692 200

cg19693031 C 0.7857 0.7884 0.7839 0.0045 0.7812 200
Shrinkage 1.0000 1.0000 0.9676 0.0324 0.9676 200

†C = Harrell’s C 

Table 5. Demographic characteristics and digital PCR methylation 
values for the adults subjects from the family and community health 
study subjects.

N 94

Age 48.4 ± 9.5 years
Gender 

Male 
Female

25 
69

BMI 34.2 ± 8.2
HbA1c 6.1 ± 1.2%
Marker Average Dynamic Range
Dcg05575921 74.2 ± 18.6% 29.5 to 91.9%
Dcg19693031 76.9 ± 5.8% 58.1 to 87.9%
Dcg04987734 36.1 ± 7.4% 20.7 to 57.3%
Dcg02583484 23.7 ± 5.3% 13.1 to 38.4%
Dcg00300879 67.1 ± 14.1% 3.2 to 90.9%
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The second set of analyses examined the Levine 
epigenetic age and Lu and colleagues GrimAge age 
indices for predicting mortality. Models 6 and 7 
with epigenetic age and Models 8 and 9 with 
GrimAge are presented in the last four rows of 
Table 2. Using the Illumina array data, the five 
marker Mortality Index, Model 5, has better fit 
than either of the PhenoAge models but falls 
short of the performance of GrimAge in Models 
8 and 9. Nevertheless, Harrell’s C and pseudo-R2 

were not much smaller for Model 5, thus an argu
ment of parsimony could support the choice of 
Model 5 over Model 8 or 9.

We believe that an important attribute of the 
five-marker approach relative to the much longer 
alternative EA measures, is the capacity to trans
late assays into highly sensitive dPCR assays that 
can be performed in most well-equipped molecu
lar biology laboratories at low cost, providing 
rapid feedback. To illustrate this translation, we 
measured dPCR values for each of these loci in 
DNA contributed by 92 African American subjects 
from the Family and Community Health Studies 
(FACHS) for whom we have both genome-wide 
methylation data and substantial medical informa
tion including history of CAD, diabetes and 
HbA1c values. Figure 2 illustrates the relationship 

between the methylation values for four of these 
makers as assessed by the Illumina array and via 
dPCR in this middle-aged African American sub
jects from the Family and Community Health 
Studies (FACHS). The range for the digital values 
(expressed as %) was greater than for array values 
(expressed as fractional methylation) at each of the 
five loci cg055759219 (92% to 30% vs 0.90 to 0.52), 
cg04987734 (57% to 21% vs 0.39 to 0.20), 
cg02583484 (38 to 13% vs 0.34 to 0.18), 
cg19693031 (88% to 58% vs 0.75 to 0.52) and 
cg00300879 (91% to 3% vs 0.88 to 0.20) (see 
Table 5). Still, the correlation between the array 
and the dPCR was excellent with R2 for each of the 
five markers being 0.96, 0.93, 0.85, 0.90 and 0.95, 
respectively.

In a previous study, we showed that the methy
lation values at many of the loci used in the 
PhenoAge index are correlated with ethnicity. To 
determine whether our dPCR assessments unin
tentionally tag ethnic-specific genetic effects that 
could confound epigenetic predictions, we com
pared the set points of cg05575921, cg04987734, 
cg02583484, cg19693031 and cg00300879 in 92 
samples of DNA collected from 16-year-old sub
jects (45 African American and 45 White) who 
participated in Healthy Iowa Study (See Table 6). 

Figure 2. Plots of the relationship of Illumina array methylation values (x-axis) to that of digital PCR values (y-axis) for each of the 
markers in the predictor set for the subjects in the FACHS study. The R2 for each of the correlations with their corresponding Illumina 
probe values is: Dcg05575921, 0.96; Dcg04987734, 0.93; Dcg19693031, 0.90; Dcg00300879, 0.95.
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This project enrolled high school sophomores 
from the Iowa City region and followed them for 
2 years in the hopes of understanding peer and 
family influences on smoking initiation. Although 
matched in age, the African American students 
were significantly more obese than the White stu
dents (24.4 ± 4.7ve 22.3 ± 3.2, p < 0.0001). 
Critically, at the time of the blood draw, none of 
these 16-year-old subjects reported the consump
tion of more than 100 cigarettes, the presence of 
diabetes, chronic heavy alcohol consumption nor 
heart disease. After standard Bonferroni correc
tion, there were no significant difference at any 
of the five loci included in the index.

Discussion

The FHS Offspring Cohort is a valuable testing ground 
for the development of new prediction algorithms that 
has been used by hundreds of groups to better under
stand factors affecting important health outcomes. 
Arguably, one of the most important of these health 
outcomes is death. The current results suggest that 
addition of three methylation markers predictive of 
alcohol, CAD and diabetes, to an existing two marker 
panel conveys additional prediction with respect to 
mortality. Still, before discussing the implications of 
the findings, it should be noted that the FHS subjects 
are all White and >95% of whom are over the age of 
50. Examination of the performance of the current 
algorithm in other data sets, particularly those includ
ing other ethnicities, will be needed before implemen
tation of this or similar approaches should proceed.

The primary finding from this study is that the 
addition of information from a disease-specific 
index to a more general algorithm of environmen
tal exposures and disease-specific biomarkers 

significantly improves the mortality prediction. 
The demonstration of the admittedly incremental 
increase over our prior communications is impor
tant because it highlights a pathway through which 
additional risk prediction can be generated and 
translated for routine implementation in health
care, underwriting and public health.

To better understand how this approach can lead to 
an improved index, it is essential to understand the 
differences in the way conventional array-based ‘accel
erated aging’ indices and the current index are con
structed. In brief, array-based ‘epigenetic aging’ 
approaches for predicting mortality rely on large 
panels of markers generated through sequential addi
tion of probes via various forms of penalized regres
sion such as elastic net or lasso [5,6,46]. The clinical 
datasets used to train these algorithms vary with the 
DNA PhenoAge and GrimAge both including the 
FHS as a prominent portion of their training data. 
Because smoking and drinking are risk factors for at 
least 8 of the top 10 common causes of death in the 
United States, it is not surprising to find that these 
algorithms that are developed and trained using 
mostly White, American general population samples 
load heavily on smoking and drinking. Previously, we 
have shown that 195 and 327 of the markers in the 
Levine panel being significantly associated with 
cg05575921 and cg04987734 methylation, respectively 
[24]. However, each of these populations used in 
training these indices also have diseases (e.g. renal 
failure) or processes (e.g. toxic metal exposures) not 
highly related to smoking or drinking whose fre
quency varies between populations. This variability, 
and other challenges, can make use the use of regres
sion techniques to identify sets of methylation loci that 
both reliably and discretely capture those varying 
mortality risks that are not colinear with either 

Table 6. Demographic and digital PCR methylation values for adolescents from the health iowa study.

African Americans White Nominal p-value
Corrected 

p-value

N 45 45
Age 15.8 ± 0.4 years 15.6 ± 0.6 years P < 0.55 -
Gender 

Male 
Female

24 
21

21 
24

BMI 24.4 ± 4.7 22.3 ± 3.2 P < 0.0001 -
Dcg05575921 86.0 ± 2.9% 86.4 ± 2.8% P < 0.55 N.S.
Dcg19693031 74.8 ± 4.2% 75.3 ± 3.8% P < 0.51 N.S.
Dcg04987734 29.3 ± 5.4% 28.3 ± 6.7% P < 0.46 N.S.
Dcg02583484 27.5 ± 5.1% 25.2 ± 4.7% P < 0.04 N.S.
Dcg00300879 61.3 ± 11.4% 56.6 ± 8.9% P < 0.04 N.S.
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smoking or drinking using data from a non-enriched 
general population sample a difficult proposition. 
Thus, we believe that improving these accelerated 
ageing indices through current approaches may be 
a difficult task.

In contrast, our approach illustrates a process for 
building an adaptable mortality index in which we 
first select markers highly predictive of smoking and 
drinking status, then add disease-specific markers for 
prevalent causes of mortality that capture compo
nents of illness that are not highly related to sub
stance use. To do this it is first necessary to collect 
DNA from large, ethnically informed, well character
ized cohorts specific for each condition and then 
conduct epigenome-wide association analyses 
(EWAS) to identify these markers. Previously, we 
have accomplished this task for both drinking and 
smoking [21–23] while others identified a reasonable 
epigenetic predictor of diabetes status [25–27]. This 
disease-first foundation for the index was further 
supplemented by our recent integrated genetic- 
epigenetic analyses of CAD, which used DNA from 
an Intermountain cohort specifically collected for 
these purposes, that isolated a set of markers highly 
predictive of CAD [34]. Because machine learning 
algorithm used in these studies emphasized the value 
of combinations of markers rather than the strength 
of the individual markers themselves, it was possible 
to identify non-collinear markers that map strongly 
risk factors for CAD such as elevated serum LDL 
levels, but not smoking. The current demonstration 
that cg00300879, a marker specific for incident CAD, 
significantly improves mortality prediction in the 
FHS suggests that the inclusion of other disease- 
specific methylation assays for prevalent heart dis
ease or other less common causes of death such as 
Alzheimer’s disease could further improve mortality 
prediction when used in the right circumstances [47]. 
However, to accomplish this, it will first be necessary 
to assemble the appropriate set of biomaterials from 
well-characterized clinical population studies and 
then conduct EWAS to identify markers reliably 
predictive for these discrete illnesses. Still, we wish 
to note that at the current time, there are no clear 
effective or prevention measures for Alzheimer’s 
Disease. Hence, we are ambivalent on the merits of 
adding such measures to the current index whose 
goal is to provide an initial simple, ethnically 

unbiased index of treatable conditions for health- 
care researchers.

A second important step forward illustrated in this 
paper is the reduction of the array-based assessments 
to more easily translatable components with clearer 
implications for follow-up assessment and, in some 
cases, intervention. A major barrier to greater use of 
methylation technologies for general purposes is the 
reliance of current mortality prediction tools on gen
ome-wide arrays. This reliance is problematic because 
array-based assessments are costly, take considerable 
amounts of time, are computationally intensive and 
are reference-dependent. In contrast, single locus 
methylation-sensitive dPCR assessments can be per
formed more rapidly, are relatively easy to interpret, 
and are reference free [48]. What is more, to date, 
because of the lack of off-target hybridization effects, 
we have shown that each of the five dPCR markers for 
substance use have greater predictive power than the 
Illumina array assessments that they were designed to 
model [22]. Still, it is important to note that not all 
methylation loci can be easily modelled using dPCR, 
so as of yet, this approach will not work for all loci 
contained on the Illumina array. Fortunately, for those 
more difficult loci, there are other approaches such as 
pyrosequencing which also can be used to accurately 
assess methylation status [48].

From a clinician’s viewpoint, perhaps the great
est advantages of this approach to predicting mor
tality are the interpretability and direct 
actionability of each of the variables. Each of the 
five methylation components used in this index 
map to discrete, potentially addressable clinical 
conditions. Because the sensitivity and specificity 
for smoking for cg05575921 are so high, current 
smoking status should be verified in anyone with 
significant demethylation of cg05575921 [21]. In 
this regard, we feel compelled to repeat the fact 
that for those who smoke, smoking cessation is the 
most generally beneficial treatment that a patient 
can receive [49]. Therefore, if the patient is still 
smoking, he/she should be strongly counselled to 
quit smoking. Furthermore, if the patient/subject 
has recently quit smoking, he/she should be peri
odically monitored to ensure that relapse does not 
occur. Similarly, although cg04987734 and 
cg02583484 are not as sensitive and specific for 
heavy alcohol consumption (HAC) as cg05575921 
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is for smoking, the individual AUC at these loci 
using the dPCR assay are still high enough (~0.85 
each) to suggest that we believe that anyone with 
significant elevation of cg04987734 or cg02583484 
methylation should be evaluated for an alcohol use 
disorder either through the use of the full dPCR 
methylation panel, which has an AUC of 0.95 for 
HAC and outperforms conventional carbohydrate- 
deficient transferrin testing [50], or through refer
ral to a mental health professional [51]. Finally, 
significant changes in cg00300879 or cg19693031, 
particularly in the presence of significant 
cg05575921 demethylation, may suggest the need 
for further cardiovascular or HbA1c testing. 
Hence, we believe that each of the loci could 
bring value in the right clinical setting.

As shown in one of our recent communications, 
array-based assessment tools that have a heritable 
component can have ethnic bias [16]. Hence, we 
and others have expressed some well-founded con
cerns about the use of ageing indices to guide 
health-care decisions [14,52]. To help ensure that 
our smoking and drinking markers had no ethnic 
bias, our National Institutes of Health-funded gen
ome-wide studies purposefully conducted age, 
gender and ethnicity inclusive case and control 
examinations of relationship of alcohol and cigar
ette consumption to methylation status [53,54]. 
This case and control study design helped ensure 
that the resulting marker(s) specific for smoking 
or drinking would not be influenced by these 
factors and increased the likelihood that the results 
would generalize to individuals of all ages, ethni
cities and gender. The essentially equal set points 
of cg05575921, cg04987734 and cg02583484 (see 
Table 6), which provide the bulk of the predictive 
power of the index, in adolescent White and 
African Americans as well as every other ancestry 
that we have examined, combined with their large 
substance-induced dynamic ranges which are not 
influenced by ethnicity, suggests that to a large 
extent, we have achieved this goal.

Similarly, the current data and taken together 
with studies of the epigenetics of diabetes by 
others suggest that cg19693031 has little to no 
detectable ethnic or gender bias. However, in con
trast to cg05575921, cg04987734 and cg02583484, 
which do not change in the absence of substance 
consumption, cg19693031 methylation is 

negatively correlated with age even when haemo
globin A1c levels are considered. But this may be 
secondary to the fact that the HbA1c does not 
perfectly predict diabetes status and the marker is 
tagging some of the unaccounted variance in the 
risk for either diabetes and/or mortality.

We are not oblivious to the statistically insignif
icant, yet arithmetically notable set point difference 
at cg00300879 and are continuing to examine this 
point further. It may well be that this marker, which 
makes a surprisingly minor contribution to the pre
dictive power in this index, may need to be replaced 
if we are to be absolutely sure of having a completely 
bias free methylation index. Alternatively, as we 
show elsewhere, by adding genetic information to 
allow for incorporation of genetically contextual 
effects for a specific locus, it not only improves 
prediction but it makes possible to use methylation 
from that CpG locus in an ethnically unbiased man
ner [34]. We note that cg00300879 is a marker 
selected for its predictive power for incident MI 
and is designed to be employed in combination 
with other methylation and genetic markers using 
a random forest prediction algorithm [34]. It very 
well may be that other markers predictive of pre
valent CAD or incident CAD identified through 
conventional EWAS approaches may be more infor
mative for this type of application [55]. In these 
cases, care should be engaged to safeguard acciden
tally tagging genetic variation.

Our intent in this communication to suggest an 
affordable, actionable set of assays, not to define 
a one-size fits-all mortality panel. Because the 
relative weighting of disease impact are age- and 
culture-specific, consideration should always be 
given to including new markers or excluding non- 
informative markers as indicated. To a certain 
extent, assessments of cg05575921 and the two 
alcohol markers, cg04987734 and cg02583484, 
will provide predictive value in most situations 
because of the profound direct impact of these 
environmental factors and indirect impact of the 
factors which segregate with substance use on 
mortality across the lifespan. However, the inci
dent CAD marker and certainly any predictor of 
dementia would have little immediate predictive 
value in a younger population. Furthermore, as 
changes in the environment preferentially provoke 
previously less frequent disease processes, such as 
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non-alcoholic fatty liver disease [56], alterations of 
biomarker panels to include assays capable of cap
turing these new sources of hopefully preventable 
mortality. It is important to note that these bio
markers need not be epigenetic; they only need to 
be predictive and relatively free of bias.

To those interested in the question ‘which 
method is better?’, we simply note that an under
standing as to how well these dPCR panels will 
perform as the GrimAge panel will take a direct 
comparison. The comparisons detailed in Table 
2 are flawed in at least two respects. First, 
because we do not have access to the FHS 
DNA, we used the Illumina probe values not 
the dPCR values. When we directly compare 
the power of the dPCR to the Illumina probe 
values with respect to alcohol and smoking mar
kers, we significantly increase predictive power 
[22]. Whether this same phenomenon will hap
pen for the new diabetes and CAD markers is 
uncertain and their overall effect on algorithm 
performance unknown. Only testing using actual 
DNA samples from a cohort also examined with 
an Illumina array can determine this. Second, 
the GrimAge algorithm was trained using the 
FHS [15], so it should work well in the FHS. 
However, because the performance of algorithms 
is normally highest in the dataset in which they 
were trained [57] and the genetic loading 
described previously may affect generalizability 
to other populations, the performance in other 
populations is likely less. In contrast, our 
approach was developed in other population 
and tested in the FHS as evidence of general
izability. However, in the end, we note that the 
approaches are not mutually exclusive, and we 
simply suggest that investigators and clinicians 
pick a method that suits their purposes best. 
Indeed, as members of the medical community, 
it is our hope that this is the start of a better 
assessment process, and that other investigators 
expand and improve upon it.

In summary, we report the development of 
a five-locus assay that is highly predictive of mor
tality, relatively free of ethnic bias, does not con
tain personal identifying genetic information, and 
whose results are interpretable and actionable. The 
addition of other markers not highly associated 
with smoking or drinking yet predictive of other 

common causes of death could improve prediction 
and utility of this panel further.
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