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Abstract

Lewis basic salts promote benzyltrimethylsilane coupling with (hetero)aryl nitriles, sulfones and 

chlorides as a new route to 1,1-diarylalkanes. This method combines the substrate modularity 

and selectivity characteristic of cross-coupling with the practicality of a base-promoted protocol. 

In addition, a Lewis base strategy enables a complementary scope to existing methods, employs 

stable and easily prepared organosilanes and achieves selective arylation in the presence of acidic 

functional groups. The utility of this method is demonstrated by the synthesis of pharmaceutical 

analogues and its use in multicomponent reactions.

Graphical abstract

1,1-Diarylalkanes are valuable compounds often prepared by coupling functionalized 

benzylic reagents with aromatic electrophiles.1 In practice, the benzylic coupling partner 

and mechanism for achieving C–C bond formation define the scope and suitability of 

a given method. A widely used strategy is transition metal-catalyzed coupling of aryl 

(pseudo)halides with benzyl magnesium, zinc and boron compounds.2,3 This approach 

enables robust and predictable reactivity often at the expense of using reactive benzylic 

reagents prepared in situ. Significant recent effort has been focused on alternative coupling 

partners and strategies to increase the efficiency and scope of 1,1-diarylalkane synthesis.1,4-6

Benzylic deprotonation represents one such attractive strategy that generates carbanion 

intermediates for metal-catalyzed7 and catalyst-free8 reactions with aryl electrophiles 

* Corresponding Author jeff.bandar@colostate.edu . 

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website. Detailed experimental procedures, 
characterization data, and NMR spectra for all compounds (PDF).

HHS Public Access
Author manuscript
J Am Chem Soc. Author manuscript; available in PMC 2022 August 11.

Published in final edited form as:
J Am Chem Soc. 2021 August 11; 143(31): 11939–11945. doi:10.1021/jacs.1c05764.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Figure 1, left). Direct deprotonative arylation is perhaps ideal as no catalyst is needed and 

only inexpensive reagents are used. However, this approach often leads to multiarylation 

side products and typically requires acidic pronucleophiles such as diarylmethanes.8 

Deprotonative activation also limits the coupling scope to relatively simple substrates in 

which the most acidic proton is at the desired benzylic position.

We sought a new benzylic arylation method that blends the modularity and selectivity of 

cross-coupling with the practicality of a base-promoted protocol. This drew our attention 

toward Lewis base activation of Lewis acidic benzyl compounds, an underdeveloped 

approach for aryl Csp2-Csp3 coupling.9 In this regard, benzyltrimethylsilanes could be 

ideal coupling partners as they are air stable, non-hygroscopic and easily accessed 

in great diversity.10 Furthermore, distinct synthetic routes are available to complex 

benzyltrimethylsilanes that cannot be used to access analogous organometallic reagents.11 

To date, the high stability of benzyltrimethylsilanes has rendered them unreactive in metal

catalyzed cross-coupling12 and thus their use in arylation reactions is limited.13 More 

specialized silanes are required to overcome this challenge in conjunction with Pd- and 

metallaphotoredox-catalyzed methodology (Figure 1, right).14

We herein report that Lewis basic salts promote the direct coupling of benzyltrimethylsilanes 

to a range of aromatic electrophiles (Figure 1, bottom). Benzylic arylation outcompetes 

potential anionic side reactions to enable monoselective coupling in the presence of acidic 

and electrophilic functional groups. This strategy can be extended to other organosilanes 

and reaction sequences, including the tandem arylation/isomerization of allylsilanes as a new 

route to alkenyl arenes. Thus, Lewis base-promoted arylation provides a practical coupling 

protocol with a reaction scope that complements established methods.

We recently reported the monoselective defluoroallylation of trifluoromethylarenes enabled 

by fluoride activation of allyltrimethylsilanes (Scheme 1a).15 This reaction is proposed to 

operate through an anionic allyl intermediate that undergoes single electron transfer (SET) 

to the trifluoromethylarene, leading to C–F bond cleavage and allylation of the resulting 

difluorobenzylic radical. This sequence has similarities to photoinduced electron transfer 

(PET) allylation of 1,4-dicyanoarenes using allyltrimethylsilane, namely SET prior to C–C 

bond formation.16 Benzyltrimethylsilane has also been examined in PET studies, although 

these reactions suffer from low regioselectivity and side product formation while requiring 

use of ultraviolet light (Scheme 1b).16a,17 Based on these precedents, we hypothesized 

Lewis base activation of organotrimethylsilanes could promote their direct coupling with 

aromatic electrophiles beyond trifluoromethylarenes.

To test this hypothesis, we examined the reaction of 4-cyanopyridine (1) with 

benzyltrimethylsilane (2) and found 18-crown-6-ligated cesium fluoride promotes 

monoselective coupling in 3 h at room temperature (rt) in DMSO (95% yield, Scheme 1c). 

Less basic anions, including carbonate, bifluoride and phosphate salts, promote arylation in 

moderate yields. Conditions in the boxes of Scheme 1c show the ability to adjust reaction 

parameters depending on priority, ranging from the use of fluoride-free salts without 18

crown-6 to short reaction times or large reaction scale.
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Table 1 contains a product scope for benzyltrimethylsilane coupling with cyanoarenes 

using CsF and 18-crown-6 in DMSO. Primary, secondary and tertiary benzylsilanes react 

with 2- and 4-cyanopyridines and electron-deficient cyanobenzenes (Table 1a and b). 

The products feature redox-active and electrophilic aryl substituents such as alkynes (6), 

styrenes (9), nitriles (7, 10, 12, 16), sulfones (8), trifluoromethyl groups (11) and activated 

halides (17, 18, 20, 22, 25). Acidic and electrophilic functional groups, including alkyl 

benzoates (17), phthalimides (18), alkenes (19), alkyl pyridines (19-21) and esters (22-24) 

are also tolerated. Table 1c shows products of α-heteroatom benzylsilanes (25-27) and 

with paroxetine (28) and bepotastine (29) drug substructures. Product 27, derived from 

an α,α-difluorobenzyltrimethyl-silane prepared via trifluoromethylarene defluorosilylation, 

illustrates a benzylic coupling partner unique to this method.11a,18 In sum, the scope 

features substitution patterns and functionalities that are difficult to access or not tolerated in 

alternative arylation strategies.

We next examined aryl electrophiles that do not generate cyanide byproducts (Scheme 

2a). 2-Chloro-1,3-azoles are effective coupling partners (30-32), as are chlorides with 

extended π-systems, such as 1,3-dichloroisoquinoline (33), 9-chloroacridine (34) and the 2

chloroquinoline derivative of the anti-tumor drug imiquimod (35). Although 4-halopyridines 

do not react under these conditions, 4-sulfonylpyridines provide good yields (Scheme 2b).19 

To show the benefits of this finding, 4-chloropyridine 37, for which the 4-cyano congener 

is not commercially available, was converted to sulfone 38 on multigram scale without 

chromatography (Scheme 2c).20 Benzylsilane coupling to 38 under the standard conditions 

without crown ether yielded 5.9 g of diarylalkane 39. Thus, base-promoted benzylation is 

applicable to heteroaryl halides either directly or after sulfonyl group installation.

This method can facilitate access to 1,1-diarylalkane compound libraries from abundantly 

available cyano and chloroarenes. We selected the antihistamine chlorpheniramine to 

demonstrate this concept, for which the corresponding benzylsilane precursor 40 can 

be readily prepared on 75 mmol scale (Figure 2).21 Coupling of 40 with eight arene 

electrophiles generates diverse chlorpheniramine analogues, including trifluoromethyl- (41), 

methyl- (42), halo- (43, 44) and aryl-substituted (46) variants. A 2-chloro-1,3-benzothiazole 

(45), a 4-cyanoquinazoline (47) and 4-chloroquinoline (48) also react to access greater 

structural variety.

We next performed studies on the reaction selectivity for arylation over other anionic 

processes. When the aryl electrophile is removed from the standard conditions, toluene 

forms in 80% yield after 2 h (Scheme 3a).22 This suggests benzylic protonation is a 

competing pathway with arylation; however, it is interesting to note that benzylation 

of 4-cyanopyridine occurs in solvents significantly more acidic than toluene (Scheme 

3b).23,24 Furthermore, separate reactions of two benzylsilane isomers (50 and 52) led 

to regioselective arylation for the original position of the −SiMe3 group (Scheme 3c). 

These results demonstrate arylation occurs preferentially over potential proton transfer 

events.25 An important implication is that deprotonation of acidic diarylalkane products 

is minimized, thus preventing multiarylation side reactions. These findings also illustrate 

critical advantages of a Lewis base-promoted arylation method, as a Brønsted base approach 

would not generate benzylic carbanions in the presence of more acidic protons, and would 
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likely lead to multiarylation and poor selectivities in substrates with multiple benzylic 

positions.26

To explain the high arylation selectivity, we propose an anionic benzylic intermediate25 

undergoes rapid aromatic substitution via a polar or SET-based mechanism (Figure 3).27 

The SET mechanism is the base-promoted analogous pathway to PET reactions of 

organosilanes with 1,4-dicyanoarenes.17,28,29 A polar process is also plausible as cyano- 

and sulfonylarenes can participate in typical addition-elimination substitution reactions.30 

Distinguishing between these processes is known to be challenging for addition of anionic 

reagents to similar electrophiles31,32 and we have made observations explainable by both 

pathways.33 The coupling mode may also be substrate dependent, although arylation 

uniformly outcompetes other anionic reactions as monoselectivity occurs for all reported 

substrates.34

From these studies, we realized organosilane arylation could be incorporated into tandem 

base-promoted reaction sequences. First, we found allyltrimethylsilanes react to form allyl 

arene intermediates that undergo stereoselective isomerization to aryl alkenes 54, 55 and 56 
(Scheme 4a).35,36

Next, we proposed a three-component coupling process between organosilanes, aryl 

electrophiles and Michael acceptors. We hypothesized selective benzylic arylation would 

occur and the remaining catalytic organosilane/fluoride combination could initiate a Michael 

addition reaction (Scheme 4b).37 Thus, γ,γ-diaryl amides 57 and 58 can be prepared via 
this strategy. Using methallyltrimethylsilane, tetrasubstituted alkene 59 forms through three 

selective base-promoted processes (arylation, addition and alkene isomerization).

In conclusion, Lewis basic salts provide a practical means of engaging benzyl- and 

allyltrimethylsilanes in arylation reactions. This approach enables regio- and monoselective 

access to 1,1-diarylalkane and aryl alkene products with complementary scope to existing 

methods. The strategic application of multiple base-promoted processes also facilitates 

advanced coupling sequences, a prospect we continue to explore.
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Figure 1. 
Background and motivation for Lewis base-promoted arylation reactions of 

organotrimethylsilanes.
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Figure 2. 
Synthesis of chlorpheniramine analogues. Yields shown are of purified products. 18

Crown-6 added as a 1M solution in THF. a Chloroarene substrate used.
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Figure 3. 
Potential pathways and rationale for selective arylation.
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Scheme 1. Reported organosilane reactions with aryl electrophiles and development of base
promoted arylation.
aYields determined by 1H NMR spectroscopy; 18-crown-6 added as a 1M solution in THF. 

18 h time for salts other than CsF. bYields improve to 57% and 84% at 100 °C without 

18-crown-6 for Cs2CO3 and KF, respectively.
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Scheme 2. Expansion of aryl electrophile scope.
aIsolated product yields. bYields determined by 1H NMR spectroscopy of crude reaction 

mixtures. 18-Crown-6 added as a 1M solution in THF.
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Scheme 3. Investigation of benzylic arylation selectivity.
aYields determined by 1H NMR spectroscopy of crude reaction mixture. bIsolated product 

yields. 18-Crown-6 added as 1M solution in THF.
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Scheme 4. Expanded scope using new coupling partners.a
aYields are of purified product; diastereoselectivities determined by 1H NMR spectroscopy; 

18-crown-6 added as 1M solution in THF. b>10:1 alkene E:Z ratios observed. cReaction 

performed at 60 °C. dCorresponding 4-phenylsulfonyl pyridine used as substrate. eArCN (1 

equiv), organosilane (1.2 equiv) and acrylamide (1-2 equiv) used.
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Table 1.

Product scope using cyanoarene electrophiles.
a

a
Isolated yields from reactions using 1.0 mmol of cyanoarene; 18-crown-6 added as a 1M solution in THF.

b
1.5 equiv of silane.
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c
2.0 equiv of silane.
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