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Abstract

Accurate genetic prediction of complex traits can facilitate disease screening, improve early 

intervention, and aid in the development of personalized medicine. Genetic prediction of 

complex traits requires the development of statistical methods that can properly model polygenic 

architecture and construct polygenic scores (PGS). Here, we present a comprehensive review 

on 46 methods for PGS construction. We connect the majority of these methods through a 

multiple linear regression framework, which can be instrumental for understanding their prediction 

performance for traits with distinct genetic architectures. We discuss the practical considerations 

of PGS analysis as well as challenges and future directions of PGS method development. We hope 

our review serves as a useful reference both for statistical geneticists who develop PGS methods 

and for data analysts who perform PGS analysis.
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Polygenic Scores for Genetic Prediction of Complex Traits

Complex traits are traits that do not perceivably follow simple Mendelian inheritance laws. 

Example complex traits include binary ones such as type 2 diabetes and hypertension as 

well as continuous ones such as body mass index and standing height. Complex traits are 

influenced by multiple genetic factors including genotypes, gene expression, epigenomic 

modifications, chromatin structure as well as multiple environmental factors including 

occupational, lifestyle and environmental exposures [1,2]. Among these factors, genotypes, 

in the form of single nucleotide polymorphisms (SNPs; See Glossary), represent one of 

the earliest, most stable and accurately measurable factors underlying complex traits [3]. 
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In particular, an individual’s genotypes remain the same across somatic cells and tissues 

over lifetime, with mutations being extremely rare and often neutral [4]. In addition, an 

individual’s genotypes can be accurately measured in a cost-effective way through various 

array-based and sequencing-based technologies and can be further imputed across millions 

of genomic locations [5–7]. Therefore, genotypes can be used to predict complex traits and 

reconstruct an individual’s genetic predisposition underlying diseases long before disease 

onset [8,9]. Such genetic prediction of complex traits can facilitate disease screening and 

prevention at population scale, improve symptom diagnosis and intervention at an early 

stage, and aid in the development of precision medicine with individual based treatment 

choices [10–13].

Genetic prediction of complex traits is often carried out by constructing polygenic scores 

(PGS). PGS for a trait, in its simplest form, is a weighted summation of genotypes 

across SNPs with the weights being the estimated genetic effect sizes [10,14–16]. PGS 

is commonly referred to as the polygenic risk score (PRS) or genetic risk score (GRS) when 

the trait of interest is a binary trait of disease status [13,16,17]. PGS becomes increasingly 

popular (Figure 1A) with the abundant availability of genotype and phenotype information 

collected from various genome-wide association studies (GWASs) [15,18,19]. In the past 

decade, GWASs have not only successfully identified many SNPs associated with various 

complex traits [17,20–22], but also demonstrated that most complex traits have a polygenic 

[23–25] or omnigenic architecture [26] with an appreciable heritable component. Indeed, 

many complex traits are influenced by thousands of small-effect SNPs [27,28], which 

together can explain a substantial proportion of phenotypic variance, a quantity known as 

SNP heritability [29,30]. Consequently, using a handful of SNPs that pass the stringent 

genome-wide significance level for predicting complex traits is not optimal [20,31]. Instead, 

genetic prediction of complex traits requires PGS methods that can jointly model genome

wide SNPs.

Development of PGS methods has a long standing history in both animal breeding programs 

and human genetics [32]. In animal breeding programs, PGS methods are commonly used 

for predicting animals’ breeding values, which are the expected phenotypic values of an 

individual’s offspring. There, PGS is referred to as the genomic estimated breeding value 

(GEBV) and PGS based selective breeding is also referred to as genomic selection. Since 

the seminal paper of Meuwissen et al [33], genomic selection has achieved remarkable 

progress in many animal programs and has led to substantial increases in many breeding 

values such as dairy cattle traits [34]. In human genetics, Wray et al [35] evaluated the 

feasibility and accuracy of predicting genetic risk to disease using dense genome-wide 

SNP panels. Later, the predicted genetic risk to disease is coined as PRS [24]. For 

certain diseases, PGS have established initial clinical success [36,37] and are applied 

in counselling, prophylactic intervention, and embryonic screening [38–41]. For majority 

of common diseases and quantitative traits, PGS currently have relatively low overall 

prediction accuracy across individuals in the general population but can be effective for risk 
stratification that aims to identify individuals with high disease risks [17,18]. In addition, 

PGS has many other applications beyond phenotype prediction. For example, PGS for a trait 

of interest can be treated as a covariate in phenome-wide association study (PheWAS) 
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for identifying clinical phenotypes and risk factors that are associated with the genetic 

predisposition of the trait [42,43]. PGS can also be viewed as the combined effects of 

multiple instrumental variables and is applied in Mendelian randomization analysis to study 

the causal relationship among complex traits [42,44]. Importantly, the accuracy of PGS is 

expected to improve along with increasing GWAS sample size, availability of new genomic 

information from omics studies, as well as the development of advanced PGS methods. A 

plethora of PGS methods have already been developed in recent years (Figures 1B–1D) 

[45]. These methods take advantage of the polygenic architecture underlying complex traits 

and model it in different ways. Here, we present a comprehensive review of 46 PGS 

methods (Supplementary Information Table S1), with a primary focus on methods that 

make use of summary statistics. For completeness and methodological coherence, we have 

included early individual-level data based PGS methods and will introduce PGS methods 

not in a chronological order. Different from the previous PGS reviews that were focused 

on the practical interpretation and clinical applications of PGS analysis [11,12,16,17,40], 

we focus on the methodological aspect of PGS methods and review them from a statistical 

perspective. In particular, we connect the majority of PGS methods through a multiple linear 

regression modeling framework and show how different PGS methods can be viewed as 

making distinct modeling assumptions on the distribution of SNP effect sizes across the 

genome. We show that such modeling framework can be instrumental for understanding the 

behavior and prediction accuracy of different PGS methods for traits with distinct genetic 

architectures. Based on the framework, we discuss the practical considerations of PGS 

analysis as well as current challenges and future directions of PGS method development.

A Multiple Linear Regression Framework

We begin by introducing a simple multiple linear regression model that relates genotypes to 

the phenotype of interest. To do so, we denote y as a n-vector of phenotypes measured on n 
individuals in the GWAS. We assume for now that the phenotype of interest is quantitative, 

but we will discuss the case of binary phenotypes in a later section. We denote X as the n 
by p matrix of genotypes collected across p SNPs on the same set of individuals. Genotypes 

are often coded as the number of reference allele for each SNP and can be represented as 

continuous values between 0 and 2 after imputation. To simplify discussion, we assume 

that the phenotype vector y and each column of the genotype matrix X have been centered 

to have a mean of zero. Centering does not influence results and allows us to ignore the 

intercept in the following equation. We consider the following multiple linear regression 

model that relates X to y,

y = Xβ + ϵ, (1)

where β is a p-vector of SNP effect sizes; and ∈ is a n-vector of residual errors, with each 

element following an independent normal distribution, or ϵi N 0, σe2 .

Despite its simplicity, the above model is instrumental for understanding almost all existing 

PGS methods. In particular, most PGS methods can be viewed as making distinct modeling 

assumptions on the SNP effect sizes β in the model and rely on different algorithms to 

obtain the estimates β . The SNP effect size estimates β  subsequently serve as the SNP 
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weights for constructing PGS for newly observed individuals (See Box 1). Because the 

model includes genome-wide SNPs that are in potential linkage disequilibrium (LD) with 

each other as covariates, the resulting PGS naturally accounts for SNP LD.

Sparse Modeling Assumptions on SNP Effect Sizes

One common modeling assumption on the effect sizes β in the multiple linear regression 

model is sparsity, and one common sparsity assumption is a point-normal distribution (See 

Box 1). The point-normal distribution assumes that only a small proportion of SNPs have 

non-zero effects and that their effect sizes follow a normal distribution with mean zero 

and variance σβ
2 PGS methods that use the point-normal distribution include the Bayesian 

variable selection regression (BVSR) [46,47], the Bayesian alphabetic method BayesCπ 
[48], LDpred [31] and JAMPred [49]. The first two methods use individual-level data of 

GWAS while the last two use GWAS summary statistics. These sparse PGS methods also 

have subtle differences in their assumptions on the hyper-parameters as well as their Markov 

chain Monte Carlo (MCMC) fitting algorithms.

The point normal distribution assumes that the effect sizes of the non-zero effect SNPs 

follow a normal distribution. The normality assumption on SNP effect sizes is highly 

effective in many genetic applications including SNP heritability estimation [20,30] and 

is commonly referred to as the global shrinkage approach [50]. However, the normality 

assumption has one potential drawback: the normal distribution has a thin tail, which 

corresponds to a relatively low prior probability of observing large effect sizes.

Consequently, normality assumption can lead to over-shrinkage of large effect estimates that 

are crucial for accurate prediction. Because of the drawback in the normality assumption, 

several PGS methods have been developed to introduce heavy tailed distributions on the 

non-zero effects to ensure adaptive shrinkage, also known as local shrinkage [50]. These 

methods often assume a SNP specific non-zero effect size variance σj2 for the j-th SNP and 

place another prior distribution on σj2 The prior on σj2 can be either continuous or discrete, 

effectively leading to a scale-mixture of normal distribution on the non-zero effect sizes. 

For example, BayesB [33,48] places an inverse gamma (IG) distribution on σj2, leading 

to a point-t distribution on β. BayesD [48] and BayesDπ [48] place a mixture of IG 

distributions on σj2, leading to a point-t mixture distributions on β. BayesR [51] places a 

discrete distribution on σj2, leading to a mixture of three normal distributions along with a 

point mass at zero for β. BayesR is further extended by SBayesR [52] to take summary 

statistics as input. All these methods rely on MCMC for model inference.

The above PGS methods make explicit sparse modeling assumptions to induce sparsity on 

effect size estimates. Several PGS methods that were initially described as an algorithm 

can also be viewed as making implicit sparse modeling assumptions. For example, the 

most commonly used PGS method, C+T [24,35,53], relies on LD clumping and p-value 

thresholding to select a subset of approximately independent SNPs with strong association 

signal for PGS construction. The C+T strategy ensures a sparse set of SNPs to be used 

for constructing PGS and thus corresponds to making a sparse assumption on SNP effect 
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sizes. Similarly, SCT [54] extends C+T by examining an extended set of hyper-parameters 

for SNP selection. These hyper-parameters include p-value threshold, LD window size, LD 

correlation threshold and imputation score. PGS scores in SCT are constructed for different 

combination of the hyper-parameters and are further selected through a penalized regression 

in the validation data.

Polygenic Modeling Assumptions on SNP Effect Sizes

An alternative to the sparse modeling assumption on the effect sizes is the polygenic 

modeling assumption, and the most common polygenic modeling assumption is normality 

(See Box 1). The model in Equation (1), when paired with the normality assumption β on 

in Equation (3), has a wide variety of applications and has many names (See Box 1). Here, 

we simply refer to the model as the LMM, which has been implemented in many software. 

For example, GEMMA [47] implements LMM for prediction using individual-level data. 

LDpred-inf [31], SBLUP [55], and DBSLMM [56] all implement the same model using 

summary statistics as input.

Similar to sparse modeling, multiple PGS methods have been proposed to extend the 

normality assumption in the polygenic models to enable more accurate prediction. For 

example, BayesA [25,33,57] places an IG distribution on the SNP specific variance σj2

to induce a t distribution on the effect sizes β. NEG [58] places an exponential-gamma 

distribution on σj2 to induce a normal-exponential-gamma distribution on β. PRS-CS [59] 

decomposes σj2 as a product of two parameters: a global shrinkage parameter either placed 

with a half Cauchy prior or optimized through a grid search, and a local shrinkage parameter 

with a gamma-gamma prior. Both BayesA and NEG use individual-level data as input while 

PRS-CS uses summary statistics. As another popular example, the Bayesian version of 

LASSO [60] effectively places an exponential distribution on σj2 to induce a t distribution 

on the effect sizes β. NEG [58] places an exponential-gamma distribution on σj2 to induce 

a Laplacian/double exponential prior on β. The Bayesian LASSO is fitted through either 

MCMC [61,62] or EM algorithm [63] to obtain the posterior mean of β. In contrast, the 

frequentist LASSO is expressed in the form of an L1 penalized regression and often fitted 

through a gradient descent algorithm to effectively obtain the posterior mode of β. While the 

posterior mean of β is not sparse, the posterior mode is. For PGS construction, the lassosum 

[64] fits the frequentist LASSO using summary statistics as input. TlpSum [65] extends 

lassosum by selectively penalizing small effect SNPs via the truncated lasso penalty.

Besides placing a continuous prior on σj2, several PGS methods also place a discrete prior on 

σj2 to effectively induce a mixture of normal distributions on β. For example, the Bayesian 

Sparse Linear Mixed Model (BSLMM) [66] assumes that each effect size comes from a 

mixture of two normal distributions. By segregating SNPs into two categories, BSLMM 

can place different shrinkages on the SNP effect sizes in the two categories separately, 

leading to proper shrinkage of small effects without over-shrinkage of large effects. BSLMM 

is implemented in GEMMA [47], which takes individual level data as input and relies 

on MCMC for inference. BSLMM is also implemented in DBSLMM [56], which takes 
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summary statistics and relies on an efficient deterministic algorithm for scalable inference. 

As another example, BayesC [57,67] places a mixture of IG distributions on σj2, thus 

inducing a mixture of t distributions on β. The two types of polygenic extensions on 

normality based on continuous and discrete priors on σj2 have different modeling benefits. 

Specifically, a continuous prior on σj2 often leads to an effect size distribution that is 

relatively easy to perform inference on, while a discrete distribution on σj2 often allows 

for more adaptive shrinkage of effect sizes and robust prediction performance across traits. 

A common feature of both extensions is that they are parametric in nature, relying on 

using a limited number of parameters to characterize the effect size distribution, which can 

be restrictive. To enable more flexible effect size modeling, the latent Dirichlet process 

regression (DPR) [68] uses a Bayesian non-parametric model and places a distribution on 

σj2, with the distribution to be inferred based on the data at hand. The non-parametric 

distribution on σj2 in DPR leads to a normal mixture with infinitely many components on the 

effect sizes, making DPR robust and adaptive to a wide range of phenotypes with different 

genetic architectures. DPR is implemented in the DPR package that uses individual-level 

data as input and relies on either MCMC or variational Bayes for inference. DPR is also 

implemented in SDPR [69], which takes summary statistics as input.

The above PGS methods make explicit polygenic modeling assumptions. A few PGS 

methods that were originally described as a fitting algorithm can also be viewed as making 

implicit polygenic modeling assumptions. For example, Mak et al [70] constructs PGS 

by weighting SNP marginal effect size estimates using local true discovery rates that are 

estimated through either maximum likelihood or kernel density estimation. Because the local 

true discovery rate ranges between zero and one, Mak et al method implicitly assumes 

that all SNPs are included for PGS construction. So et al [71] extends Mak’s approach by 

applying a Tweedie’s formula [72] to further correct for the SNP effect size estimates before 

weighting.

Modeling Assumptions and Other Factors that Influence Performance

Given that the majority of PGS methods make distinct modeling assumptions on the effect 

sizes, one naturally wonders which PGS method to choose for a given trait. Intuitively, if the 

prior effect size distribution can closely match the true effect size distribution underlying the 

trait, then the inferred effect size estimates would approximate well the underling polygenic 

architecture, thus leading to accurate prediction performance. Indeed, it has been shown 

that polygenic PGS methods often perform well for polygenic traits [24,66,73,74] while 

sparse PGS methods often perform well for traits in which a small proportion of SNPs 

have moderate or large effect sizes [26,59,66]. Because the genetic architecture underlying 

a trait is often unknown and varies across traits [75], it is often beneficial to use a PGS 

method with a flexible modeling assumption that can adaptively approximate the true effect 

size distribution across a range of traits. For example, methods that rely on a mixture of 

normal distributions (e.g., BSLMM, BayesR, DPR) for adaptive modeling of effect sizes 

often outperforms standard LMM that assumes a single normal distribution.
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Certainly, how well the effect size assumption matches the underlying truth is only 

one modeling factor, albeit a major one, that determines prediction performance. Other 

modeling factors, such as the choice of inference algorithms and the inference strategies 

on the hyper-parameters, can also substantially impact prediction performance. Specifically, 

given the same model and sufficient computational resources, exact inference algorithms 

often outperform approximate ones. For example, MCMC algorithm for DPR outperforms 

the variational Bayesian approximation of DPR across traits. However, with limited 

computational resources, approximate inference algorithm may become the only viable 

option. For example, DBSLMM relies on an approximate deterministic algorithm to perform 

inference on BSLMM and is much more scalable than the original MCMC algorithm for 

fitting BSLMM. In addition, it is generally beneficial to infer various hyper-parameters in 

the model rather than fixing them to certain pre-assigned values. For example, while both 

BVSR and BayesCπ fit a similar sparse model, BVSR often outperforms BayesCπ by 

inferring the hyper-parameters instead of fixing them to a prior set of values. The ability to 

use a large number of parameters and explore a large parameter space can also help with 

prediction performance. For example, SCT outperforms C+T by performing SNP selection 

with additional criteria and exploring a larger hyper-parameter space. Fitting algorithms 

that use individual-level data as input usually have higher prediction performance than 

algorithms that take summary statistics, as the later have to approximate the LD matrix 

(more below). However, due to LD matrix approximation, algorithms using summary 

statistics are often much more computationally scalable than those using individual-level 

data. Besides the above modeling factors, PGS performance also depends on the quality 

of input data [45], GWAS sample size, as well as the trait SNP heritability [76,77], which 

represents the potential performance upper limit for PGS [78].

Finally, multiple factors also influence the computational cost of different PGS methods. 

For example, PGS methods based on global shrinkage of LMM are often faster than PGS 

methods with local shrinkage or sparsity inducing priors, as the former can be fitted 

based on an analytic solution. For the same model, approximate inference algorithms 

are computationally faster and use less memory than exact inference algorithms. On 

the extreme, algorithm-based PGS methods such as CT and SCT are generally more 

computationally scalable than model-based PGS methods that specify explicit effect size 

priors and perform formal inference. In addition, PGS methods that rely on summary 

statistics as input make explicit approximations on the LD matrix, which can alleviate 

much of the computational burden associated with modeling of SNP correlation. Software 

implementation, use of multithreading or parallel computing environment, and choice of 

computational language can also influence the computational cost of PGS methods.

Adaptation of PGS Methods Towards using Summary Statistics

While early PGS methods use individual-level genotype and phenotype as input, a growing 

number of PGS methods can make use of summary statistics or are specifically designed to 

do so. Fitting with summary statistics requires LD approximation, which can lead to reduced 

accuracy as compared to fitting with individual-level data on the same model [79]. However, 

fitting with summary statistics can take advantage of the easily accessible summary statistics 

from various GWASs without privacy concerns and logistic hurdles [18,19] and can lead to 
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substantial computational gains through LD approximation. Therefore, summary statistics 

based PGS methods facilitate PGS applications towards large-scale data, which is a key for 

ensuring accurate prediction performance.

Two general strategies exist for fitting PGS models using summary statistics, with subtle 

methodological differences between them. The first strategy is to formulate the model with 

individual-level data and derive the inference algorithm using summary statistics, while the 

second strategy is to model summary statistics directly (See Box 2). Both strategies require 

two forms of summary statistics as input: the p-vector of marginal z-scores z and the p by 

p SNP correlation matrix D, which is also known as the LD matrix. The input z can be 

easily obtained through simple linear regression in the original GWAS while the input D 
is often estimated in a reference panel with individuals of the same ethnicity (e.g., from 

the 1,000 Genomes project). Because of the relatively small sample size in the reference 

panel, the estimated D requires further regularization and approximation to ensure numerical 

stability for PGS inference. Some PGS methods approximate D with a block-diagonal 

matrix computed either based on LD [31,56,59,64] or through index-sorting [69], sometimes 

further adjusted for cross-block correlations due to long range LD [49]; some approximate D 
with a banded matrix based on a sliding window for LD computation [31,55]; some shrink D 
towards a diagonal matrix with D = ΛD + (1n×n−Λ)I, where each element λij is a function 

of recombination rate between SNPs i and j [52,80]; and some approximate D with a sparse 

matrix by setting small matrix elements to zero [81]. Regardless of the estimation form, a 

match between the estimated D from the reference panel and the true D in the study sample 

is critical to ensure accurate prediction performance [56,82,83].

Incorporating Additional Information to Improve Prediction

Several recent PGS methods have been developed to incorporate additional and external 

information beyond what is available in the GWAS data. Such external information can 

be either in the form of SNP functional annotations or in the form of other phenotypes in 

addition to the phenotype of interest. Incorporating external information often improves the 

accuracy of PGS.

Incorporating SNP functional annotations

SNP functional annotations for a given SNP are continuous or binary annotations that 

characterize the functional importance of the genetic variant [84–86]. SNP functional 

annotations are obtained through functional genomic studies [87–91] and can serve as 

crucial predictors for SNP effects. For example, SNPs with certain functional annotations 

are more likely to be causal [92], tend to have larger effect sizes, and explain more 

heritability than SNPs with other annotations [93,94]. Several PGS methods have been 

developed to incorporate SNP functional annotations to improve prediction. For example, 

2D PRS [95] categorizes SNPs into two disjoint sets: one containing high-priori SNPs likely 

associated with the trait of interest and the other containing low-priori SNPs less likely 

associated with the trait. The two sets of SNPs are determined based on a separate GWAS 

and are then subject to the C+T procedure separately with a less stringent p-value threshold 

for the high-priori SNPs. MultiBLUP [96] divides SNPs into separate groups based on their 
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genomic location and induces different effect size shrinkage in different groups. AnnoPred 

[97] incorporates SNP functional annotations directly into the prior distribution of effect 

sizes based on BVSR: it either models the j’th SNP’s probability of having a non-zero 

effect as a function of its annotations, or models its non-zero effect variance as a function 

of its annotations. LDpred-funct [98] builds upon LMM and models σj2 as a function of its 

annotations.

Modeling pleiotropy across multiple traits

Another external information that can facilitate trait prediction is pleiotropic association 

information. Pleiotropic association characterizes SNP effects similarity across multiple 

correlated traits and can be used to improve SNP effect size estimation on the trait of 

interest [99–101]. PGS methods that take advantage of pleiotropy are often based on the 

multivariate linear mixed model (mvLMM) [102,103], also known as the MT-BLUP in 

prediction settings. The mvLMM is an extension of LMM and assumes that the effects of 

j’th SNP across phenotypes follow a multivariate normal distribution, with a covariance 

matrix capturing the genetic covariance across traits. By jointly modeling SNP effect size 

similarity across traits, mvLMM can borrow information of effect size estimates from other 

traits to improve the estimates on the trait of interest. Li et al [104] implements a bivariate 

version of mvLMM that models two phenotypes jointly. MTGBLUP [100] implemented a 

general form of mvLMM with individual-level data as input. wMT-SBLUP [99] implements 

mvLMM with summary statistics as input. Besides mvLMM, CTPR [105] imposes a sparse 

effect size assumption on each trait and uses an L2 penalty to model effect size similarity 

across traits. Other methods also incorporate SNP functional annotations into pleiotropic 

modeling. For example, PleioPred [101] partitions SNPs into multiple annotation categories 

while jointly modeling two correlated traits together. PANPRS [106] specifies an annotation 

specific L1 penalty for SNPs in each annotation category to incorporate annotation into 

prediction and uses a group lasso type penalty to encourage SNP effect size similarity across 

traits.

Moving Beyond Multiple Linear Regression

While the multiple linear regression framework in Equation (1) includes majority of PGS 

methods, several notable exceptions exist. For example, the non-parametric shrinkage (NPS) 

method [81] performs a linear transformation on the SNP genotypes before placing a non

parametric effect size distribution on the transformed genotypes. Subsequently, the resulting 

prior distribution on the original genotypes from NPS is not straightforward to characterize 

and does not directly correspond to a known distribution. As another example, deep learning 

methods [107,108] rely on deep convolutional neural networks connected through the leaky 

rectified linear unit (ReLU) activation functions for modeling non-linear effects, which 

can be particularly effective for predicting traits with appreciable genetic heterogeneity 

[107].However, the performance of deep learning methods is heavily dependent on the 

availability of large-scale training data, the choice of network architecture, and tuning of 

hyper-parameters; the latter two require expertise and extensive trial and error due to a 

lack of standard theory guiding architecture selection and model training. For case-control 

studies, the binary case-control labels are often treated as continuous traits and directly 
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modeled through the multiple linear regression framework [66,68]. Such modeling could 

be justified by recognizing the linear model as a first-order Taylor approximation to a 

generalized linear model [66,68]. However, several recent PGS methods directly use either 

a logistic regression [106], its approximation [109], or a liability threshold model [66], 

to directly model ascertainment and the binary nature of case control outcome. Finally, 

recent studies have started to explore the development of PGS methods to predict a 

person’s absolute risk of developing a disease over a certain period of time using the Cox 

proportional hazard model [110]. Validating such absolute risk model in prospective studies 

will be of particular clinical importance [40].

Evaluating PGS Methods: Cross-validation and Cross-ethnicity 

Performance

Fitting and evaluating PGS methods rely on a multistage procedure commonly referred to 

as cross-validation (Figure 2). Cross-validation requires two or three datasets: a training 

data, an optional validation data, and a test data. PGS methods are fitted in a training 

data; if needed, have their hyper-parameters determined in a validation data (Supplementary 

Information Table S1); and eventually have their performance evaluated in a test data. The 

relative size of the training versus test data represents a bias-variance trade-off in estimating 

the prediction error. In particular, a small training data and a large test data would likely 

lead to an over-estimation of the prediction error. A large training data and a small test data, 

on the other hand, would result in less bias but higher variance in estimating the prediction 

error. In addition, methods that perform automatic inference on all parameters using the 

training data alone can potentially combine the validation data into the training data to 

benefit from the larger sample size. On the other hand, methods that tune hyper-parameters 

in a separate validation data are often computationally easier to fit, requiring estimating 

the SNP effect sizes conditional on the hyper-parameters in the training data instead of 

jointly estimating both, although their performance may also be influenced by the size of 

the validation data. In the cross-validation, the evaluation metrics in the test data include 

R2 and mean squared error (MSE) for quantitative traits, and area under the curve (AUC) 

and pseudo-R2 for binary traits. Among these metrics, AUC and R2 are easier to interpret 

as both range between zero and one, but neither account for the predicted trait mean like 

MSE does and thus may not be suited for settings where predicting the absolute trait value 

is of interest. Importantly, tuning of hyper-parameters in the validation data may only require 

summary statistics, as is computing R2 [56,65,99] or AUC [111] in the test data. Using 

summary statistics for hyper-parameter tuning and R2 computation facilitates the application 

of PGS methods towards a wide variety of datasets [56]. Finally, we note that an unfortunate 

mistake practitioners commonly make in the cross-validation procedure is to use the test 

data instead of a separate validation data to tune the hyper-parameters. Using the same test 

data to both tune hyper-parameters and evaluate PGS performance would lead to model 

over-fitting, resulting in underestimation of the prediction error.

Most cross-validations have thus far been performed on a single GWAS with samples of 

European ancestry [112]. Several recent studies have explored PGS evaluation either through 

cross-study validation where the training and test data are from two separate GWASs, or 
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through cross-ethnic group validation where the training and test data are from two GWASs 

with samples of different ethnicity [56]. Cross-study and cross-ethnicity PGS applications 

are challenging because of the potential mismatch in allele frequency and LD pattern 

between the training and test data [81]. Indeed, models trained with European individuals 

are often 2–3 times less accurate when applied to Asian or African populations as compared 

to European populations [56,113,114]. Consequently, special PGS methods have been 

developed to enhance cross-ethnicity prediction. For example, a weighted multi-ethnic PGS 

is proposed to combine PGS trained in Europeans and non-Europeans to improve prediction 

in both populations [115]. PolyPred and PolyPred+ [116] rely on functionally informed 

fine-mapping in different populations to improve causal effect estimation and subsequent 

cross-ethnicity prediction accuracy. PRS-CSx [117], an extension of PRS-CS, directly 

assumes shared causal effects and borrows information across populations for accurate 

effect size estimation. With methodological advances and increased availability of GWASs 

in under-represented populations [112,114], PGS accuracy in diverse populations will be 

further improved.

Concluding Remarks

We summarize the discussed PGS methods in a reference guide to facilitate practical 

applications (Figure 4). The performance of different PGS methods have been evaluated 

in multiple human traits in both PGS method studies (Figure 3, Figure S1) and method 

comparison studies [83,118,119]. These studies have shown that C+T is the mostly 

commonly compared method due to its simplicity and computational efficiency, while 

PRS-CS and BSLMM tend to have higher performance than the others whenever they are 

compared, presumably due to their flexible modeling assumptions. However, these studies 

have also shown that different PGS methods have distinct performance across traits and that 

the same method may have different performance on the same trait in different studies due 

to varying cross-validation designs. Therefore, comprehensive comparisons are needed to 

systematically evaluate the performance of various PGS methods in the future.

We note that the development of PGS methods is in close connection with the development 

of methods for SNP heritability estimation, with many common methods shared between 

the two areas [30]. For example, the sparse PGS methods BVSR [46] and BayesR 

[51] and the polygenic PGS methods LMM [20], BSLMM [66] and DPR [68] are all 

commonly used for SNP heritability estimation. Among them, LMM is perhaps the most 

widely applied one [20], with multiple software implementations [47,120] and multiple 

available fitting algorithms including REML and method of moments for SNP heritability 

estimation [121]. Besides analyzing a single quantitative trait, LMM has also been extended 

for SNP heritability estimation for binary [66,122,123] and count [124–126] traits as 

well as for genetic and environmental covariance estimation across multiple phenotypes 

[103,127]. With the same model, PGS methods focus on estimating SNP effect sizes while 

heritability estimation methods focus on estimating a variance component hyper-parameter 

that represents SNP heritability. The estimated SNP heritability depicts a potential up limit 

of PGS performance and is served as an initial input for many PGS methods [56]. As with 

PGS methods, the accuracy of SNP heritability estimation is highly dependent on how well 

the prior effect size distribution matches the truth [66]. Indeed, a similar trend in SNP 
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heritability estimation is to develop methods with flexible SNP effect size distributional 

assumptions, often by incorporating SNP annotations or modeling the SNP effect size 

dependence on the minor allele frequency (MAF) and LD score [121,128]. For example, 

LDAK assumes that the variance of SNP effect size is a function of MAF and LD, while 

GREML-MS [129] and stratified LDSC [128] induce such dependence by stratifying SNPs 

into different MAF and LD bins and assuming different per-SNP heritability values in 

different strata. Finally, several SNP heritability estimation methods have been developed to 

take GWAS summary statistics as input. These summary statistics-based methods include 

LDSC [130] and MQS [121] algorithms for LMM and SumHer algorithm [131] for LDAK, 

all of which rely on method of moments to achieve scalable computation. A recent review 

on SNP heritability estimation from a statistical perspective is available in [30]. Taking 

advantage of the methods developed for SNP heritability estimation and incorporating the 

lessons and experiences gained in that research area can potentially benefit the development 

of PGS methods.

While existing PGS methods have shown promising performance across many complex 

traits, many future improvements are warranted (See Outstanding Questions). For example, 

annotation facilitated PGS methods have thus far focused on a limited number and types 

of annotations. Evaluating a large variety of annotations and exploring the benefits of 

annotation selection [132] may improve prediction further. Incorporating other types of 

external information such as transcriptomics through other integrative analysis frameworks 

such as the transcriptome-wide association study may have added benefits. Combining PGS 

scores from different methods and across multiple GWAS sources and distinct populations, 

in a principled way, such as through bagging or boosting, may ensure robust prediction 

performance. Incorporating rare genetic variants especially the ones with high penetrance, 

modeling allele frequency and LD dependent effect size distribution, accounting for gene

gene interactions and gene-environmental interactions, may all improve prediction. Finally, 

recent studies have suggested that some fraction of the constructed PGS from certain PGS 

methods may be correlated with and accounted for by non-genetic risk factors [133]. 

Thus, investigating the benefits of including the constructed PGS on top of the existing 

non-genetic risk factors used in the baseline risk model for individual disease or all-cause 

mortality is especially important for assessing the practical performance of PGS methods 

and the clinical impact of PGS [133,134].
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Glossary

Best linear unbiased prediction (BLUP)
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BLUP is used in linear mixed models for estimating and predicting the random effects. 

BLUP is a linear function of the outcome, is an unbiased predictor of the random effects, 

and is best in the sense that the variance of the prediction error, in the form of the mean 

squared difference between the estimated values and truth, is not greater than that obtained 

from any other linear unbiased predictors. The BLUPs of random effects are similar to the 

best linear unbiased estimates (BLUEs) of fixed effects.

Breeding values
The expected phenotypic values of an individual’s offspring.

Clumping
The procedure of selecting a subset of SNPs that are approximately independent of each 

other.

Effect size
The coefficient of a SNP genotype on an outcome phenotype of interest. It is closely related 

to the proportion of phenotypic variance explained by the genotype.

Genome-wide association studies (GWASs)
An experimental design that aims to identify SNPs or other genetic variations associated 

with traits of interest based on samples collected from populations.

Linkage disequilibrium (LD)
LD describes the phenomenon that two alleles at different loci occur together in the same 

gamete more often than would be expected by chance alone. The coefficient of LD is 

defined as the difference between the frequency of gametes carrying the pair of two alleles at 

two loci and the product of the frequencies of those two alleles. For PGS studies, LD is often 

calculated as the correlation between SNP genotypes using potentially unphased genotype 

data.

Phenome-wide association study (PheWAS)
A study that focuses on identifying phenotypes associated with a covariate of interest, which 

is often a genetic variant or the PGS of another phenotype.

Restricted maximum likelihood (REML)
REML is a particular form of maximum likelihood estimation procedure for linear mixed 

models to produce unbiased estimates for variance and covariance parameters. It is based on 

a likelihood function defined on a restricted subset of parameters after integrating out the 

nuisance parameters.

Risk stratification
The procedure of systemically categorizing individuals into subgroups based on their 

predicted risks, with a special emphasis on identifying individuals with a particularly high 

disease risk for optimized medical decision making. Risk stratification is conceptually 

different from risk prediction which aims to predict disease risk well for all individuals 

in a population.

Single nucleotide polymorphisms (SNPs)
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The most common type of genetic variation at a single position in the DNA sequence. A 

SNP occurs when a single nucleotide in the genome differs between individuals or between 

paired chromosomes in an individual.

SNP heritability
The proportion of phenotypic variance in the outcome trait explained by measured SNP 

genotypes in a GWAS. Most often only additive genetic factors are considered.
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Outstanding Questions

• What is the best approach to borrow information across multiple ethnic 

groups to improve the portability of PGS across ethnicity while maintaining 

its accuracy in specific ethnic groups?

• What is the best way to approximate the LD matrix, so that we can maintain 

the accuracy of individual-level based PGS methods while keeping the 

computation benefits from summary statistics based PGS methods?

• Would modeling the SNP effect size dependence on the minor allele 

frequency and LD help improve PGS accuracy?

• Can we incorporate other integrative approaches recently developed in various 

omics studies into PGS modeling to improve prediction performance?

• Would selecting informative functional annotations and/or selecting correlated 

traits from a large group of candidates help further improve PGS performance 

on the trait of interest?

• Can we measure prediction uncertainty through the predictive posterior 

distribution in a computational efficient fashion, and can we quantify the 

calibration of such prediction uncertainty through posterior predictive checks?

• How do we extend the current PGS methods to predict a person’s absolute 

risk of developing a disease over a certain period of time?

• How do we appropriately communicate PGS results, especially its relatively 

low accuracy in the general population, to patients and consumers who 

obtained their PGS through clinical and lab tests?
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Highlights

• Polygenic scores (PGS) aggregates association information from genome

wide SNPs to enable genetic prediction of complex traits.

• PGS analysis is becoming increasingly popular with the abundant availability 

of genome-wide association studies and the development of PGS methods.

• Different PGS methods model the polygenic architecture underlying traits 

in different ways and often make distinct modeling assumptions on the 

effect size distribution. These modeling assumptions can help understand the 

performance of PGS methods across traits with distinct genetic architectures.

• Recent PGS methods focus on making use of summary statistics as 

input, specify flexible effect size assumptions, incorporate additional 

information including SNP functional annotations and pleiotropy association 

evidence across multiple traits, perform multi-ethnic prediction, and rely on 

computationally efficient algorithms for scalable inference.

• The development of PGS methods is in close connection with the 

development of methods for SNP heritability estimation, with many common 

methods shared between the two areas. Experience and lessons learned 

from SNP heritability estimation can potentially benefit the methodological 

development for PGS construction.

• For certain diseases, PGS have established initial clinical success and can be 

especially useful for risk stratification. For the majority of complex traits, 

however, PGS methods have yet to achieve high prediction accuracy in the 

general population.
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Box 1

Predicting New Observations through PGS Construction

We can predict phenotypes for newly observed individuals using the estimated SNP effect 

sizes β  from the above model. Specifically, once we obtained the p-vector of genotypes, 

xl, for a new individual l, we can simply plug in the SNP effect estimates to obtain the 

predicted phenotype value, i.e., PGS, as yl = xlβ .

Common Modeling Assumptions on SNP Effect Sizes

Because p >> n, we will need to make additional modeling assumptions on the effect 

sizes β to make the model in Equation (1) identifiable. Both sparse and polygenic 

modeling assumptions have been proposed on β. A common sparse modeling assumption 

on β is the point normal distribution, which assumes that the effect size of j’th SNP 

comes from a mixture of a normal distribution and a point mass at zero, denoted as

βj πN 0, σβ
2 + (1 − π)δ0, (2)

where, with proportion π, the SNP effect size follows a normal distribution with mean 

zero and variance σβ
2; and with proportion 1-π, the effect size is exactly zero – hence the 

point mass at zero, δ0. In the point-normal distribution, π is usually assumed to be small, 

representing the prior belief that a small proportion of SNPs have non-zero effects.

A common polygenic modeling assumption on β is the normal assumption, which 

assumes that all SNPs have non-zero effects and that each effect size follows a normal 

distribution:

βj N 0, σβ
2 , (3)

with mean zero and variance σβ
2. The model in Equation (1), when paired with the 

normality assumption on β in Equation (3), has a wide variety of applications and has 

many names. For example, it is referred to as the linear mixed model (LMM) per the 

resulting random effects term of the combined genetic effects; as the infinitesimal model 

per its polygenic assumption on the effect sizes Xβ; as the ridge regression in statistics 

literature; as the L2 regularization when viewed as a penalized regression; as the best 
linear unbiased prediction (BLUP) when the focus is on the predicted values; or as 

the restricted maximum likelihood (REML) when the REML algorithm is used for 

inference. All these names are used interchangeably in the PGS literature and we simply 

refer to the model as the LMM in the present review.
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Box 2

Modeling of Summary Statistics

Two general strategies exist for fitting PGS models using summary statistics. The first 

strategy is to formulate the model with individual-level data and derive the inference 

algorithm using summary statistics. Specifically, the likelihood for the model in Equation 

(1) can be expressed as a function of two terms: XTy and XTX. Subsequently, instead of 

using individual-level data X and y as input for modeling fitting, one only needs to obtain 

these two forms of summary statistics. XTy can be obtained through the p-vector of 

marginal z-scores which is equivalently the marginal effect size estimate β when both the 

phenotype and the genotypes for each SNP are standardized to have mean zero and unit 

standard deviation. In that case, the z-scores are in the form of z = XTy
N  when SNP effect 

sizes are small, where N is the GWAS sample size. XTX for the standardized genotype 

matrix can be obtained through a p by p SNP correlation matrix D = XT X
N , which is also 

referred to as the LD matrix. With z and D as input, likelihood-based inference can be 

carried out as if individual-level data are available.

The second strategy for fitting PGS models with summary statistics is to model summary 

statistics directly. For example, the regression with summary statistics (RSS) models the 

marginal effect size estimates β as a function of the underlying effect sizes β in the form 

of

β ∣ β N Dβ, σe2D , (4)

where D = XT X
N , which is also referred to as the LD matrix; and σe2 is the same error 

variance as in Equation (1). The conditional likelihood of β given the hyper-parameters 

(e.g. σe2) based on Equation (4) is the same as the conditional likelihood of β based on 

Equation (1). Therefore, if the hyper-parameters are known, both strategies for fitting 

PGS models with summary statistics lead to the same likelihood on β. The likelihood 

for the hyper-parameters based on Equation (4), however, is different from that based on 

Equation (1). Note that a more complicated form of RSS is available in [80] when the 

SNP genotypes are not standardized.
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Figure 1. An overview of PGS methods.
(A) The number of publications on polygenic scores increased substantially from 2001 to 

2020, highlighting the popularity of PGS analysis. The number of publications is obtained 

by searching the key terms of “polygenic + score + or + polygenic + risk + score” on 

PubMed. (B) Timeline of the commonly used PGS methods that were developed in the 

past two decades. These PGS methods either use individual-level genotype and phenotype 

data as input (blue) or use summary statistics as input (orange). (C) PGS methods can be 

categorized into six categories based on their model and fitting strategy. Specifically, some 

PGS methods are model based and are described as a formal model with a corresponding 

fitting algorithm (colors other than red), while others are algorithm-based and are described 

as an algorithm or a fitting procedure without an explicit model (red). The model-based 
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PGS methods can be further categorized based on the underlying inference algorithm: 

some are fully Bayesian and use Markov chain Monte Carlo (MCMC) for model fitting 

(grey); some are partial/empirical Bayesian, optimizing certain hyperparameters through 

grid search while obtaining other parameter estimates through MCMC (light grey); some 

are approximate approaches that assume independence across SNPs and use optimization for 

effect size estimation (yellow); some are frequentist in nature and can obtain an analytic 

solution without optimization (blue); and some are based on penalized regression and 

use iterative algorithms for parameter estimation (purple). (D) PGS methods can also be 

categorized in terms of the information used for PGS construction. Most PGS methods 

use only genotype and phenotype information from the GWAS on the trait of interest 

(pink). Some recent PGS methods can use additional SNP annotation information obtained 

from external data sources (green) and/or other phenotype information in addition to the 

phenotype of interest (taupe and navy blue).
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Figure 2. A general pipeline for PGS construction and applications.
PGS methods require either two or three datasets as input: a training data, a test data, 

and if necessary, a validation data. These datasets need to undergo multiple steps of 

stringent quality control that include SNP filtering, overlap sample removal, adjustment 

of population stratification etc. The training data is then used to fit the desired PGS model 

for estimating the SNP effect sizes. For certain PGS methods, a validation data is needed to 

tune parameters in the model or perform model selection. The estimated SNP effect sizes are 

then used to construct PGS in a test data, where the predictive performance of PGS method 

is tested based on standard metrics. The constructed PGS are used for different applications, 

including risk stratification, PheWAS, and Mendelian randomization. Here, a dotted line box 

represents a step that is not necessary for all PGS methods.
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Figure 3. Predictive performance of common PGS methods as revealed in the PGS 
methodological publications.
(A) The bar plot shows the top five PGS methods that have been compared the most in 

the real data applications in the 26 PGS methodological publications listed in Figure S1. 

y-axis denotes the number of times a specific PGS method is compared in a different PGS 

methodological publication. Note that PGS methods developed earlier tend to be compared 

more often than methods developed later. (B) The bar plot shows the percentage of times 

a PGS method is ranked as the top two methods in terms of prediction performance in 

human traits in the PGS methodological publications. The percentage is calculated both 

across publications and across traits examined in all PGS methodological publications listed 
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in Figure S1. In both A and B, we only considered PGS methods that have been compared 

for at least one time in a PGS methodological publication from a different research group.
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Figure 4. A decision tree on which methods to use for PGS analysis.
The decision tree begins with input data type, followed by the choices of analyzing single 

versus multiple traits, using model-based methods versus algorithm-based methods, whether 

to incorporate information beyond genotype and phenotype, as well as the detailed SNP 

effect size assumptions (blue brackets). The choices include Yes/No answers (Yes in green 

circles and No in purple circles) or other qualitative options (orange brackets). Different 

choices lead to different PGS methods (grey brackets), which are implemented with different 

computing language (pink brackets).
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