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Abstract

Neurodegenerative diseases (NDDs) encompass a wide range of conditions that arise due to 

progressive degeneration and ultimate loss of nerve cells in the brain and peripheral nervous 

system. NDDs such as Alzheimer’s, Parkinson’s and Huntington’s disease negatively impact both 

length and quality of life, without effective disease-modifying treatments. Herein, we review 

the use of genome-scale metabolic models, network-based approaches and integration with multi­

omics data to identify key biological processes that characterize NDDs. We describe powerful 

systems biology approaches for modeling NDD pathophysiology by leveraging in silico models 

that are informed by patient-derived multi-omics data. These approaches can enable mechanistic 

insights into NDD-specific metabolic dysregulations that can be leveraged to identify potential 

metabolic markers of disease and pre-disease states.

Introduction

Neurodegenerative diseases (NDD) are a major cause of morbidity and dependency among 

older people. Over the past fifty years these diseases have become increasingly prevalent 

as global life expectancy increased from 66.2 to 73.0 years [1,2]. Without a change in 

our trajectory, the number of Alzheimer’s dementia cases in Americans age 65 and above 

is predicted to be 13.8 million by 2060 [3]. Parkinson’s disease case burden in the US 

is predicted to rise to more than one million people by 2030 [4]. Aging is a critical risk 

factor for many NDDs including Alzheimer’s disease (AD), Parkinson’s disease (PD), and 

Huntington’s disease (HD) that afflict millions of people worldwide [5,6]. By definition, 

these diseases involve progressive damage to cells in the brain and affect the sensory 

and/or motor functions and cognitive abilities of the individuals [7]. AD is characterized by 
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cognitive impairment, language difficulty, problems with orientation, attention, and carrying 

out simple daily tasks [8]. Parkinson’s signs and symptoms vary between individuals and 

can range from tremors, rigid muscles, bradykinesia, gradual decrease in unconscious 

movements and change in behavior [9]. HD affects the motor, cognitive, behavioral, 

psychological and emotional faculties of the individual [10]. As diseases with complex 

etiologies with many different known risk factors, it is important to understand the disease 

manifestation and pathophysiology in a systems context to inform the development of new 

therapies for the treatment of the diseases.

Aging is accompanied by progressive declines in energy metabolic capacity in the brain, 

which is accompanied by substantial individual variability in the rate of this decline [5,6,11]. 

This decline in metabolic capacity is one of the common physiological processes associated 

with NDDs. Longitudinal studies of NDDs are hampered by the prolonged prodromal 

period, and the clear safety issues that impede accessing primary CNS tissue during life. 

The lack of inexpensive, effective biomarkers coupled with the long prodromal period make 

it difficult to screen for adequate numbers of at-risk individuals from whom biological 

samples can be obtained and analyzed in a longitudinal manner. Subsequently, the field often 

utilizes data generated from postmortem brain tissue samples, from non-invasive imaging, or 

measures from peripheral sources such as the blood to investigate the physiological changes 

associated with initiation and progression of NDDs [12,13]. Most in vitro models focus 

on the function of a specific cell type and, while informative, are unable to adequately 

capture the complex interactions among immune, neuronal and other cell types important for 

vascularization, metabolism and aging. Animal model systems of NDDs are also frequently 

used and provide insight, but there are major challenges in translating findings from these 

model systems to humans due to profound differences in disease complexity, physiological 

response, lack of environmental and microbiome exposure and immunological response, and 

the different time scales of aging [14,15]. In this scenario, to bridge the gap between in vitro 
and in vivo approaches, in silico techniques that allow us to translate findings in the context 

of the surrounding systems hold promise to help identify marker patterns associated with the 

diseases, predict disease trajectories and design novel molecules or identify drugs that might 

be repositioned for treatment [16–18].

Metabolic dysfunction is an important factor associated with neurodegenerative 

disorders. Dysfunction in glucose homeostasis is associated with cognitive decline 

and pathophysiology in AD, PD and HD [19]. Additionally, altered lipid metabolism, 

mitochondrial dysfunction and endoplasmic reticulum stress are also associated with the 

negative endophenotypes of AD, PD and HD [20–22]. Challenges abound in performing 

experimental approach that capture the complexities of the human brain, making modeling 

an important framework piecing together disparate information to yield mechanistic insights 

and hypotheses to be tested through the means available in humans (e.g., postmortem 

brain tissue, peripheral measurements, and neuroimaging). One such computational tool 

is metabolic network modeling [23]. This approach integrates patient-derived multi-omics 

data in the form of transcriptomics, proteomics, and/or metabolomics within the context 

of the enzyme-catalyzed biochemistry of the cell [24,25]. Such models can be used to 

help identify metabolic changes in the brain contributing to human health and disease. 

These models include brain region-specific metabolic networks that have been developed 
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to analyze differences in the brains of people with AD compared with control samples 

[26]. About 30 different brain tissue-specific metabolic networks were constructed using 

metabolic network topology and expression data [27]. Such models can be used by the 

research community to explore in silico differences and identify potential metabolic markers 

that could be monitored prior to disease manifestation [26]. Transcription factors (TFs) are 

a critically important regulatory layer that drives the expression of metabolic genes and, in 

turn, influences metabolism. Transcriptional regulatory networks of the brain have helped 

to identify candidate TFs interacting with metabolic genes and exploring the metabolic 

regulatory landscape in NDD [26]. In this review, we focus on the initial advances in 

genome-scale metabolic models, transcriptional regulatory networks (TRNs) and multiscale 

causal network models for the investigations of NDD, highlighting challenges and scope for 

future developments.

Genome-scale metabolic models to identify metabolic signatures in neurodegenerative 
diseases

Genome-scale metabolic models are widely used tools for systems-level metabolic studies 

and have been used to predict cellular behavior under diverse biological conditions and 

identify metabolic targets that can inform drug development efforts [23]. These models 

contain annotated gene-protein-reaction relationships for organisms and are used to predict 

metabolic fluxes (the rate of enzyme-mediated molecular turnover through a biological 

reaction) under diverse conditions. Some approaches include a mass balance accounting of 

molecules as a means to identify differences in metabolic flux between normal and diseased 

states. Metabolic models have been built for many organisms across the three domains of 

life: bacteria, archaea and eukarya [28,29]. To understand the role of different types of brain 

cells in NDDs, in silico metabolic models of neurons, astrocytes, and microglia along with 

multi-omics data have been used to recapitulate the metabolic interactions between these cell 

types during normal and pathologic states [30,31]. The cell type-specific models have shown 

promise by recapitulating observed physiological changes, and simulations show positive 

concordance with experimental studies [32].

Astrocytes perform many functions in the brain, but primarily provide metabolic support for 

neurons [33]. The astrocyte metabolic model is a comprehensive representation of known 

metabolism, and it has been used to simulate the metabolic behavior of astrocytes under 

normal physiological and ischemia conditions [31]. Using brain cell-specific metabolic 

models, we can predict metabolic changes in different cell types, decipher metabolic 

coupling, synergistic activities, cellular interactions, and identify potential drug targets of 

drugs for NDDs [30]. A recent study used reconstructed brain region-specific metabolic 

networks to investigate the role of circulating bile acids that may contribute to AD, 

along with altered cholesterol metabolism [26]. Increasing evidence suggests a role for 

primary and secondary bile acids, the end-product of cholesterol metabolism as predictors 

of pathophysiology in AD and PD [26,34,35]. Brain region-specific metabolic networks 

[26] capture in silico metabolic changes and can potentially identify metabolic markers 

associated with these NDDs prior to disease manifestation, thus making them useful in 

interpreting the relevance of interactions and mechanisms between different classes of 
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metabolites and NDD associated pathobiology. Figure 1 shows the application of cell- and 

tissue-specific metabolic models to understand the metabolic changes in NDD.

Evaluation of peripheral lipidomic profiles can also offer a valuable perspective on 

metabolic dysregulation observed in preclinical and clinical AD states. Huynh et al 
[36] presented a comprehensive lipidomic analysis from plasma samples derived from 

two independent cross-sectional AD cohorts and reported dysregulation of lipid species 

including phosphatidylethanolamine and triglycerides that are also dysregulated in AD 

comorbidities such as type 2 diabetes [37] as well as ether lipids and GM3 gangliosides. 

This study demonstrated the critical importance of lipidomic profiling platforms that can 

differentiate between isomeric lipid species which demonstrate complex and heterogeneous 

associations with AD. Such profiling efforts also potentiate novel integrative opportunities 

to combine lipidomics with additional layers of multi-omics data collected on these same 

subjects to illuminate the genetic, epigenetic, transcriptomic, and proteomic context of these 

observed perturbations.

In order to better use these kinds of in silico models to interrogate NDDs, there is a critical 

need for longitudinal omics data and cell type-specific data (i.e. single cell RNA seq and 

metabolomics). To this end, the NIH and other funding agencies have created multiple 

consortiums to generate large, longitudinal omics datasets. These datasets take years to 

create, because of both cost and longitudinal nature, but are critical for providing a window 

into disease risk and progression. While many studies focus on the brain itself, there are 

also compelling data linking the gut-brain axis and transport of metabolites across the blood 

brain barrier (BBB) with physiological changes observed in NDD, especially in AD and PD 

[38]. In silico models of the gut microbiome have been successful in predicting the effect 

of diet, genetic predisposition and host-microbe interaction that may contribute to NDD 

[14,39].

Studying the metabolic regulatory landscape in NDD

With many of the loci identified in GWAS studies for NDDs found in non-coding regions 

enriched for eQTLs, there is an important need for understanding the role of transcriptional 

regulation of gene expression[40,41]. Transcription factors (TFs) play a key regulatory role 

in the expression of metabolic genes that encode enzymes [42]. Observed transcriptional 

changes and identified genetic associations with a disease generally converge on the same 

regulator TFs. For example, SREBF-1 and SREBF-2 are TFs that regulate lipid and 

cholesterol metabolism and their variants are associated with AD, schizophrenia, bipolar 

disorders and dementia risk [43–45]. A haplotype for the myeloid-specific transcription 

factor PU.1 (also known as SPI1) has been implicated in AD risk [46]. Genome-scale 

transcriptional regulatory network (TRN) models have been developed to predict TF-target 

gene interactions [47,48].

Using DNase footprinting data to help define gene regulatory regions, we constructed TRNs 

from multiple, independent post-mortem human brain RNA-seq cohorts, to help identify 

network differences that support a role for herpes viruses in AD [47]. In our aforementioned 

work looking at the metabolic differences in AD, the same brain TRNs associated TFs 

like SREBF2, PPARA, RXRG with bile acids and cholesterol metabolism genes previously 
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implicated in AD [26]. Widespread transcriptional changes have been detected throughout 

the progression of HD, and these kinds of changes are amongst the earliest known 

phenotypes in HD mouse models [49]. Analysis using TRNs of mouse striatum followed 

by experimental validation identified SMAD3 as regulating HD-related gene expression with 

many of SMAD3 target genes found to be downregulated early in HD [49]. A genome-scale 

human brain has been used to identify key regulator TFs that are associated with both 

psychiatric disorders and NDDs [47]. Brain gene expression changes have also been studied 

for psychiatric disorders such as schizophrenia, bipolar disorders, major depression disorder 

and autism [47]. This network-based approach identified key regulator TFs such as POU3F2, 
SOX2, NPAS3 and RFX4 that also harbor risk associated DNA variants for schizophrenia 

and bipolar disorders [47]. Figure 2 represents the generation of genome-scale TRN models 

for the identification of TFs in the brain.

Using cell type-specific data, it is feasible to generate TRN models for different brain 

cells [48]. Such models are broadly applicable to future genetic and genomic studies of 

human diseases and there is scope for their improvement over time as open chromatin data 

like ATAC-seq [50] and DNase-seq [51] becomes widely available. Integration of these 

data types will likely provide insights into how variants in non-coding regions convey risk 

or protection for various NDDs. Using systems approaches that model and integrate both 

metabolic and the regulatory landscape enable a mechanistic framework to understand the 

disease etiology of NDDs.

Multiscale causal network models of NDDs

The neurodegenerative patterns in NDDs and the observations of disease-perturbed 

functional networks indicate a causal relationship, but little is known about the primary 

pathogenic mechanisms in these diseases across their progression [52]. The information 

available in causal biological network databases such as PD map and NeuroMMSig have 

mainly focused on causal relationships between genes, proteins and other biological entities 

[53]. Using multi-omics datasets (genome, transcriptome, proteome, and/or metabolome) 

and clinical features of NDDs, multiscale causal networks have been constructed to identify 

novel critical genes and pathways important in NDD [53,54]. In one such study, probabilistic 

causal reasoning was employed on a dataset of late-onset AD individuals and controls to 

construct a predictive multiscale network model of AD that identified VGF as a key driver of 

AD pathophysiology [53]. Thus, using a priori knowledge of metabolic and transcriptional 

changes, causal networks can help in generating hypotheses around novel targets, and derive 

mechanistic insights furthering our understanding of NDDs.

Future perspectives

Systems biology is an important tool to advance neuroscience research, elucidate 

mechanisms of NDD pathology, and improve clinical outcomes for patients. Although this 

review focuses on network approaches to understand metabolic dysregulation in NDD, 

there are many other computational studies of the brain in health and NDD, including 

drug designing aimed to target multiple drug intervention points in NDDs as well as 

computational neurotoxicology [55,56]. Machine learning frameworks have been developed 

to evaluate associations between disease and any biological process that can be described 
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by a set of genes, metabolites or proteins [57]. Increasingly sophisticated approaches that 

leverage heterogeneous multi-omic and clinical data types for patient subtype identification 

[58,59] and pseudotemporal trajectory mapping [60] in AD are also emerging. Such 

frameworks are expected to help accelerate the identification of predictive biomarkers 

that can improve early diagnosis, track disease progression and help prioritize candidate 

therapeutic strategies for further evaluation [59].

Summary

This review highlights the importance of in silico models such as genome-scale metabolic 

and regulatory networks in neuroscience research. We focused on the application of 

genome-scale metabolic networks of human brain and brain cells to identify alterations 

in NDD. We also described the importance of TRN models of the brain to identify 

key transcriptional regulators in HD, AD, and other psychiatric disorders. As the rapid 

generation of richly phenotyped, patient-derived multi-omic data continues apace, new 

and increasingly powerful in silico modelling opportunities will continue to emerge that 

can offer new glimpses into the earliest drivers of NDD. The reciprocal refinement and 

validation of in silico models with complementary multi-omics, and the exploitation of those 

models to prioritize the collection of additional molecular data can offer a powerful push­

pull relationship that capitalizes on broad cross-disciplinary efforts and expertise within the 

NDD research community. Though challenging, the coordination of such efforts will be 

vital for building a cohesive multiscale understanding of NDD that is capable of spanning 

molecular and clinical domains, and will represent a valuable step towards the development 

of disease-modifying therapies for these devastating disorders.
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Figure 1: 
A systems approach for investigating metabolic changes in the brain. Brain cell type­

specific and region-specific data has been used to generate metabolic networks and identify 

metabolic dysregulation in NDDs.
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Figure 2: 
Genome-scale TRN model of brain. Brain-specific DNase footprinting data and 

comprehensive TF-gene co-expression datasets have been used for generating the TRN 

model for identifying TF-target genes implicated in NDDs.
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