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Machine learning for early 
discrimination between transient 
and persistent acute kidney injury 
in critically ill patients with sepsis
Xiao‑Qin Luo1, Ping Yan1, Ning‑Ya Zhang2, Bei Luo3, Mei Wang1, Ying‑Hao Deng1, Ting Wu1, 
Xi Wu1, Qian Liu1, Hong‑Shen Wang1, Lin Wang1, Yi‑Xin Kang1 & Shao‑Bin Duan1*

Acute kidney injury (AKI) is commonly present in critically ill patients with sepsis. Early prediction of 
short-term reversibility of AKI is beneficial to risk stratification and clinical treatment decision. The 
study sought to use machine learning methods to discriminate between transient and persistent 
sepsis-associated AKI. Septic patients who developed AKI within the first 48 h after ICU admission 
were identified from the Medical Information Mart for Intensive Care III database. AKI was classified 
as transient or persistent according to the Acute Disease Quality Initiative workgroup consensus. Five 
prediction models using logistic regression, random forest, support vector machine, artificial neural 
network and extreme gradient boosting were constructed, and their performance was evaluated by 
out-of-sample testing. A simplified risk prediction model was also derived based on logistic regression 
and features selected by machine learning algorithms. A total of 5984 septic patients with AKI were 
included, 3805 (63.6%) of whom developed persistent AKI. The artificial neural network and logistic 
regression models achieved the highest area under the receiver operating characteristic curve (AUC) 
among the five machine learning models (0.76, 95% confidence interval [CI] 0.74–0.78). The simplified 
14-variable model showed adequate discrimination, with the AUC being 0.76 (95% CI 0.73–0.78). At 
the optimal cutoff of 0.63, the sensitivity and specificity of the simplified model were 63% and 76% 
respectively. In conclusion, a machine learning-based simplified prediction model including routine 
clinical variables could be used to differentiate between transient and persistent AKI in critically ill 
septic patients. An easy-to-use risk calculator can promote its widespread application in daily clinical 
practice.

Acute kidney injury (AKI) is a common and severe complication in critically ill patients, especially in patients 
with sepsis1,2. The complex condition in which patients meet consensus criteria for sepsis and AKI simultaneously 
is recognized as sepsis-associated AKI (SA-AKI), which is associated with significantly higher risks of mortal-
ity and chronic renal insufficiency3–5. Up to now, the prophylactic and therapeutic options for SA-AKI are still 
limited. Both severity and duration of SA-AKI can affect short- and long-term adverse outcomes.

Most recently, the Acute Disease Quality Initiative (ADQI) 16 Workgroup suggested that AKI be classified as 
transient (a complete reversal of AKI within 48 h) or persistent (the continuance of AKI beyond 48 h)6. Compared 
to transient AKI, persistent AKI is related to enhanced and sustained host response dysregulation and adverse 
consequences in critically ill septic patients7,8. Early recognition of persistent AKI is significant for risk stratifica-
tion and individualized therapy, such as fluid management and the use of renal replacement therapy (RRT)6,9. 
However, since complex mechanisms including microcirculatory dysfunction and inflammatory response may 
co-exist in the pathophysiology of SA-AKI, traditional indicators for renal blood flow have been reported to play 
a limited role in differentiating between transient and persistent AKI10–13. Additionally, a few studies assessing 
the predictive value of function or damage biomarkers for persistent AKI have suggested that most biomarkers 
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showed poor performance while the others need further clinical validation14–17. At present, there is a lack of 
clinical information on how to identify patients who are likely to develop persistent AKI.

The development of machine learning algorithms may provide an opportunity for early prediction of per-
sistent AKI by integration of a large quantity of data from electronic health records, such as demographics, 
diagnoses, routinely collected measurements and interventions. These advanced data-driven approaches can 
deal with high-dimension data, fit complex relationships and identify important variables associated with the 
outcome. They outperform conventional modeling methods which require the independence between predic-
tors and include variables selected mainly according to their statistical significance or known clinical relevance. 
Machine learning has been applied in the biomedical domain, such as disease diagnosis, outcome prediction, 
medical image analysis and treatment18–21.

The primary objective of this study was to use machine learning methods to develop a prediction model for 
the persistence of SA-AKI in an attempt to identify patients at high risk of persistent AKI in daily clinical practice.

Methods
Source of data.  Data were extracted from the Medical Information Mart for Intensive Care III (MIMIC-
III) database v1.422. MIMIC-III is a large and openly accessible database comprising electronic health records 
of 61,532 intensive care unit (ICU) stays from the Beth Israel Deaconess Medical Center (BIDMC, Boston, MA) 
between 2001 and 2012. The database was approved by the Institutional Review Boards of BIDMC and Mas-
sachusetts Institute of Technology and informed consent was waived by them because all patient identifiers in 
the database were removed. One of the authors has completed the required training course and obtained access 
to the database (certification number: 40010711). The study was performed in accordance with the Declaration 
of Helsinki.

Study population.  This study included adult patients who were admitted to ICU with sepsis and developed 
AKI within the first 48 h of the ICU stay. Sepsis was defined based on the updated Sepsis-3 criteria as suspected 
infection (the concomitant administration of antibiotics and sampling of body fluid culture) with the Sequen-
tial Organ Failure Assessment (SOFA) score ≥ 2 points23,24. Patients with suspicion of infection more than 24 h 
before or after ICU admission were excluded. The microbiology information was extracted to verify the locations 
and pathogens of positive cultures taken during the suspected infection time. SOFA score was calculated using 
data within the first 24 h after ICU admission. AKI was diagnosed and staged according to the Kidney Disease: 
Improving Global Outcomes (KDIGO) guideline using both serum creatinine (SCr) and urine output (UO) 
criteria25. Baseline SCr was defined as the lowest SCr value during 7 days before ICU admission26,27. For patients 
without available pre-admission SCr, we used the first SCr measurement after ICU admission as the baseline 
SCr26. UO rate was calculated by dividing the volume of UO into 6-h, 12-h and 24-h time periods. We analyzed 
only the first ICU stay for patients who were admitted to ICU more than once. We also excluded patients with 
age < 18 years old, end-stage renal disease, ICU stay < 48 h, non-AKI and missing data for AKI during the first 
48 h.

Outcomes.  The primary outcome was the persistence of AKI, which was determined in accordance with the 
ADQI 16 workgroup consensus6. Transient AKI was defined as reversal of AKI within 48 h after AKI diagnosis 
and for at least 48 h. In contrast, AKI was considered persistent if AKI criteria or RRT use remained present 
beyond 48 h after AKI diagnosis, or if the condition reversed within 48 h but relapsed within the next 48 h6,7. 
Patients with follow-up time < 48 h or missing data for the persistence of AKI were excluded from the analysis. 
Secondary outcomes included 28-day mortality, 90-day mortality and use of RRT within 28  days after ICU 
admission.

Data extraction.  We obtained demographic and clinical data within the first 48 h after ICU admission using 
PostgreSQL tools (version 9.6.20) and Navicat Premium (version 15.0.12). Comorbidities and diagnoses were 
identified based on the recorded International Classification of Diseases 9th Edition code. Vital signs including 
temperature, heart rate, respiratory rate and mean arterial pressure were extracted from the electronic charted 
data. Laboratory data including hemoglobin, white blood cell count, platelet count, bilirubin, albumin, arterial 
pH, partial pressure of oxygen, partial pressure of carbon dioxide, anion gap, serum electrolytes (sodium, potas-
sium, chloride and bicarbonate), lactate, international normalized ratio and partial thromboplastin time were 
also recorded. We used the values related to the greatest disease severity for variables measured more than once 
during the first 48 h. Accordingly, both the maximum and minimum values of some variables were included. 
In addition, the use of mechanical ventilation, vasopressors, diuretics and RRT and the volume of mean daily 
intravenous infusion within the first 48 h were collected. We left out RRT initiation when determining the AKI 
stage, as we chose to record it as another variable.

Statistical analysis.  Baseline characteristics and outcomes were compared between patients with transient 
and persistent AKI. Continuous variables were presented as medians (with interquartile ranges) and compared 
using Mann–Whitney U test. Categorical variables were presented as numbers (with percentages) and compared 
using chi-square tests. To ensure the facticity and reliability of the prediction model, we removed two variables 
with > 30% missing data from model construction, namely maximum bilirubin and minimum albumin (see 
Supplementary Table S1 online). Random forest (RF) method was used to impute missing values in variables 
with ≤ 30% observations missing (R package missForest, version 1.4). Supplementary Table S2 online lists all 44 
candidate predictors included for application to machine learning.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20269  | https://doi.org/10.1038/s41598-021-99840-6

www.nature.com/scientificreports/

The sample was randomly divided into the training and testing set by the ratio of 7 to 3. Five machine learn-
ing algorithms were used to develop prediction models for persistent AKI in the training set, including logistic 
regression, RF, support vector machine (SVM), artificial neural network (ANN) and extreme gradient boosting 
(XGB). RF is a tree-based algorithm, which integrates multiple decision trees through majority voting to deter-
mine the results of classification28. Gini index was used as the criteria for impurity measurement during the train-
ing process. SVM is a supervised classifier, the purpose of which is to establish the optimal maximum-margin 
hyperplane as decision boundary29. We chose Gaussian kernel function as the kernel when developing the SVM 
model. ANN is a mathematical model simulating the structure and function of biological neural networks, which 
contains connected nodes named artificial neurons and multiple layers (typically input layer, hidden layer and 
output layer)30. XGB is also a tree-based ensemble classifier, which obtains the final output by weight of multiple 
weak learners (decision trees) and gradient descent algorithm for minimizing the loss function31. Before model 
construction, categorical variables were preprocessed by one-hot encoding and the prediction variables were 
standardized. For each machine learning algorithm, we firstly set default hyper-parameters to establish an initial 
model. After that, parameter tuning was performed by manual grid search. We used five-fold cross-validation 
to identify optimal hyper-parameters and avoid over-fitting. Briefly, the training set was randomly divided into 
5 roughly equal-sized subsets, and then 4 of them were fit into the model while the other was used for model 
validation. This process was repeated 5 times so that every subset could serve as a validation set. Subsequently, the 
performance of the final model was assessed on the testing set. We calculated several evaluation indexes of each 
model, including the area under the receiver operating characteristic curve (AUC), accuracy, precision, recall 
and F1 score. AUC was selected as the primary performance metric, which was considered an ideal evaluation 
metric for classifiers independent of threshold setting.

To further extend the clinical applicability of machine learning methods, we also developed a risk prediction 
model by simplifying the input variables. Firstly, all features were sorted by XGB according to their contribu-
tion to each tree in the learning process, and the top 20 important features were selected31. Then we used least 
absolute shrinkage and selection operator (LASSO) method for further feature selection32. During the process, 
cross-validation was performed and the value of λ was identified according to the most regularized model, in 
which the cross-validated error is within one standard error of the minimum. Fourteen variables were selected 
as predictors of persistent AKI. Finally, logistic regression was used to construct the simplified prediction model. 
Model performance was evaluated in the testing set, with the optimal cutoff identified by the maximum Youden 
index in the training set.

Statistical analyses were conducted using R 4.0.4 (https://​cran.r-​proje​ct.​org) and Python 3.8 (https://​www.​
python.​org). P value < 0.05 was considered statistically significant.

Results
Patient characteristics.  A total of 5984 SA-AKI patients were enrolled in our study from 24,225 septic 
patients admitted to ICU during the study period. Among them, 2179 (36.4%) patients had an early complete 
reversal and 3805 (63.6%) developed persistent AKI (Fig. 1).

Baseline characteristics and outcomes of patients stratified by the persistence of AKI are shown in Table 1. 
Compared to patients with transient AKI, patients with persistent AKI had a higher proportion of emergency 
admission and medical ICU stay. The prevalence of diabetes mellitus, congestive heart failure, liver disease and 
chronic kidney disease (CKD) were higher in the persistent AKI patients. Most of the vital signs and laboratory 
data differed significantly between the two groups, and the measurements were mainly associated with higher 
disease severity in the persistent AKI group. Furthermore, a larger percentage of the persistent AKI patients 
received mechanical ventilation, vasopressors and RRT during the first 48 h. Renal dysfunction was more severe 
in the persistent AKI group, as reflected by higher AKI stage according to SCr or UO criteria. The locations and 
pathogens of microbiology cultures in SA-AKI patients are shown in Supplementary Tables S3, S4 online, and 
the 20 most common diagnoses in SA-AKI patients are shown in Supplementary Table S5 online.

Prediction models using machine learning algorithms.  We randomly allocated 70% of SA-AKI 
patients to the training set and the remaining 30% to the testing set. Baseline characteristics were not sig-
nificantly different between the training and testing set (see Supplementary Table S6 online). Among the five 
machine learning models, the ANN model and the logistic regression model exhibited the highest AUC (0.76, 
95% confidence interval [CI] 0.74–0.78) in the testing set (Table 2, Fig. 2). The ANN model achieved the highest 
accuracy of 0.71. Moreover, the XGB model showed the highest recall of 0.81, while the RF model showed the 
highest precision and F1 score of 0.89 and 0.80 respectively (Table 2).

Simplified risk prediction model.  The simplified risk prediction model was established based on the 
features selected by XGB and LASSO algorithms. The top 20 important features derived from the XGB model 
are shown in Fig. 3. Ultimately, fourteen variables were selected and entered into the logistic regression model 
(Table 3). The simplified model showed adequate discrimination, with an AUC of 0.76 (95% CI 0.74–0.77) in the 
training set and 0.76 (95% CI 0.73–0.78) in the testing set (Fig. 4). The calibration of the model was overall good, 
except that it underestimated the risk of persistent AKI when the observed frequency was relatively low (Fig. 5). 
At the optimal cutoff of 0.63, the simplified model achieved a sensitivity of 63%, specificity of 76%, positive pre-
dictive value of 83% and negative predictive value of 53% in the testing set (Table 4).

We used Matlab software (version 9.2) to establish a risk calculator, which could be applied to automatically 
compute the risk of persistent AKI for SA-AKI patients in clinical settings (see Supplementary Fig. S1 online).

https://cran.r-project.org
https://www.python.org
https://www.python.org


4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20269  | https://doi.org/10.1038/s41598-021-99840-6

www.nature.com/scientificreports/

Discussion
In the present study, we explored the applicability of machine learning methods to differentiate between transient 
and persistent AKI in a large population of SA-AKI patients. The ANN and logistic regression models exhibited 
the highest AUC among the five machine learning models. Additionally, a simplified risk prediction model was 
proposed, based on the combination of machine learning algorithms and logistic regression, and could be easily 
implemented using the risk calculator in daily routines.

A growing body of evidence suggests that duration of AKI or renal recovery is associated with outcomes in 
critically ill septic patients2,7,8,33,34. Several clinical tools, including urinary indices10–12, imaging techniques13,17, 
prediction models35,36, and biomarkers14–17, were investigated in previous studies to predict renal recovery or 
its surrogate, namely progression to severe AKI. Nevertheless, they were found to be poorly effective or have 
not been validated in patients with sepsis9. A recent study enrolling 184 septic shock patients with AKI found 
a poor performance of urine cell cycle arrest biomarkers for predicting persistent AKI, with an AUC of 0.67 
(95% CI 0.59–0.73). Of note, they also proposed a prediction model combining SCr, UO, norepinephrine dose 
and extrarenal SOFA at baseline, which performed well with an AUC of 0.81 (95% CI 0.74–0.86)16. Due to the 
complexity of SA-AKI, the clinical model integrating routine parameters may be more effective for predicting 
short-term reversibility of AKI than any parameter considered alone. A possible way to achieve this is to utilize 
advanced machine learning approaches, which have been applied in the prevention and management of AKI, 
such as predicting the development of AKI37–41, volume responsiveness in patients with oliguria42 and mortality 
in critically ill AKI patients43–45. Our study corroborated the promise indicated by these previous studies and 
extended them by demonstrating the applicability of machine learning methods for predicting persistent AKI 
in a large cohort of SA-AKI patients.

In the current study, ANN and logistic regression achieved the highest AUC among the five machine learning 
methods. Compared with traditional modeling methods, ANN has the advantages of strong nonlinear mapping 
ability, great adaptability and high fault tolerance. Several recent studies have shown the effectiveness of neural 
network-based models in predicting the development of AKI. Le et al. proposed a convolutional neural networks 
prediction system, which outperformed the XGB model and the SOFA score in predicting AKI 48 h before 
onset in ICU patients40. Similarly, Kim et al. used recurrent neural network to assess future AKI occurrence and 

Figure 1.   Flow diagram of patient selection, model establishment and internal validation. MIMIC-III, Medical 
Information Mart for Intensive Care III; ICU, intensive care unit; AKI, acute kidney injury.
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Variables Transient AKI (n = 2179) Persistent AKI (n = 3805) P value

Age (year) 68 (56–79) 69 (57–80) 0.12

Sex, male, n (%) 1210 (55.5) 2145 (56.4) 0.55

Ethnicity, n (%) 0.74

White 1616 (74.2) 2849 (74.9)

Black 158 (7.3) 279 (7.3)

Other 405 (18.6) 677 (17.8)

ICU type, n (%) 0.002

MICU 811 (37.2) 1592 (41.8)

SICU/TSICU 659 (30.2) 1039 (27.3)

CCU/CSRU 709 (32.5) 1174 (30.9)

Admission type, n (%)  < 0.001

Elective 373 (17.1) 488 (12.8)

Emergency 1767 (81.1) 3222 (84.7)

Urgent 39 (1.8) 95 (2.5)

Comorbidities, n (%)

Hypertension 1224 (56.2) 2073 (54.5) 0.22

Diabetes mellitus 559 (25.7) 1226 (32.2)  < 0.001

Congestive heart failure 691 (31.7) 1558 (40.9)  < 0.001

Peripheral vascular disease 283 (13.0) 534 (14.0) 0.27

Chronic pulmonary disease 468 (21.5) 843 (22.2) 0.56

Liver disease 163 (7.5) 496 (13.0)  < 0.001

AIDS 16 (0.7) 41 (1.1) 0.24

Metastatic cancer 115 (5.3) 228 (6.0) 0.28

Chronic kidney disease 227 (10.4) 578 (15.2)  < 0.001

Vital signs

Minimum temperature (℃) 36.0 (35.6–36.4) 35.9 (35.5–36.4)  < 0.001

Maximum temperature (℃) 37.9 (37.3–38.4) 37.8 (37.3–38.4) 0.10

Maximum heart rate (bpm) 110 (98–126) 114 (99–129)  < 0.001

Maximum respiratory rate (bpm) 30 (26–34) 30 (26–35) 0.001

Minimum MAP (mmHg) 54 (48–60) 52 (47–59)  < 0.001

Laboratory data

Minimum hemoglobin (g/dL) 9.3 (8.2–10.5) 9.1 (8.1–10.4) 0.003

Minimum WBC (× 109/L) 9.6 (7.0–12.7) 9.7 (6.9–13.2) 0.90

Maximum WBC (× 109/L) 14.1 (10.6–18.6) 14.5 (10.5–19.6) 0.19

Minimum platelet (× 109/L) 160 (109–224) 147 (94–220)  < 0.001

Maximum bilirubin (mg/dL) 0.8 (0.5–1.7) 1.0 (0.5–3.0)  < 0.001

Minimum albumin (g/dL) 2.8 (2.4–3.2) 2.7 (2.3–3.2)  < 0.001

Minimum pH 7.33 (7.27–7.38) 7.30 (7.23–7.37)  < 0.001

Minimum PaO2 (mmHg) 82 (68–106) 75 (63–94)  < 0.001

Minimum PaCO2 (mmHg) 34 (30–39) 33 (29–38)  < 0.001

Maximum PaCO2 (mmHg) 46 (41–53) 47 (41–55) 0.001

Maximum anion gap (mmol/L) 14 (12–17) 16 (13–19)  < 0.001

Minimum sodium (mmol/L) 136 (133–139) 136 (133–139) 0.48

Maximum sodium (mmol/L) 141 (138–143) 141 (138–143) 0.40

Maximum potassium (mmol/L) 4.5 (4.1–5.0) 4.6 (4.2–5.2)  < 0.001

Minimum chloride (mmol/L) 103 (100–107) 103 (99–106)  < 0.001

Maximum chloride (mmol/L) 109 (106–112) 109 (105–112)  < 0.001

Minimum bicarbonate (mmol/L) 22 (19–24) 21 (18–24)  < 0.001

Maximum lactate (mmol/L) 2.2 (1.5–3.4) 2.5 (1.6–4.3)  < 0.001

Maximum INR 1.4 (1.2–1.6) 1.5 (1.3–1.9)  < 0.001

Maximum PTT (sec) 35.0 (29.1–46.8) 38.7 (30.8–59.7)  < 0.001

Interventions

Mechanical ventilation, n (%) 1587 (72.8) 2938 (77.2)  < 0.001

Vasopressors, n (%) 1062 (48.7) 2152 (56.6)  < 0.001

RRT initiation, n (%) 10 (0.5) 247 (6.5)  < 0.001

Diuretics, n (%) 1145 (52.5) 2035 (53.5) 0.50

Continued
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individualized AKI risk factors in real time among hospitalized patients41. Hofer et al. applied the deep neural 
networks to create models for postoperative AKI, mortality, reintubation, and the combined outcome, which 
exhibited superior performance to the ASA score46. However, due to its “black box” characteristic, ANN is also 
hard to calculate and interpret. It is difficult to exhibit the complex association between different layers and nodes 
intuitively and to explain the exact impact of each input variable on the final result, which may limit its rapid clini-
cal application. In this study, the conventional logistic regression showed higher AUC than several novel machine 
learning algorithms. The results were mainly determined by the nature of the dataset, as any specific modeling 
approach could not be the optimal method for all tasks47. In the logistic regression model, each variable’s influ-
ence on outcome can be directly reflected by the regression coefficient. Hence, we further utilized it to propose 
a simplified prediction model with features selected by XGB and LASSO algorithms. The high interpretability 
and promising performance of the simplified model make it suitable to be applied. Since the present study is an 
initial attempt, future studies will investigate the extensibility of advanced approaches from other domains48 and 
improvement of the existing algorithms49,50 in predicting the persistence of AKI.

Our study has important clinical significance. The prediction model for persistent AKI can assist risk stratifi-
cation and therapeutic strategies of SA-AKI patients at an early stage9. For high-risk patients, large fluid infusion 
should be cautious to avert detrimental fluid overload. The requirement and optimal timing of RRT can be evalu-
ated for patients without the indication of urgent hemodialysis. Constant monitoring is necessary, especially for 
high-risk patients, to assess the hemodynamic and fluid status, kidney function, complications of AKI and the 
risk of long-term adverse sequelae. Additionally, high-risk patients may be the ideal population for AKI clinical 
trials because they tend to experience no spontaneous and rapid reversal of AKI.

Many factors, including demographics, comorbidities and disease severity, can affect short-term renal 
recovery51. In this study, fourteen predictors of persistent AKI were identified by XGB and LASSO algorithms. 
The SCr and UO criteria of AKI stage were both strong predictors of persistent AKI. The results further sup-
ported that patients who meet both the SCr and UO criteria for AKI are at higher risk of death or RRT​52. Among 
patient-related variables, age, CKD, diabetes mellitus and congestive heart failure were identified as predictors 
of persistent AKI, as they may cause reduced glomerular reserve and delayed or incomplete renal recovery51. 

Variables Transient AKI (n = 2179) Persistent AKI (n = 3805) P value

Daily fluid infusion (mL) 2922 (1916–4199) 3194 (1958–4840)  < 0.001

AKI stage by SCr criteria, n (%)  < 0.001

1 543 (24.9) 1242 (32.6)

2 46 (2.1) 359 (9.4)

3 28 (1.3) 444 (11.7)

AKI stage by UO criteria, n (%)  < 0.001

1 528 (24.2) 379 (10.0)

2 1147 (52.6) 1815 (47.7)

3 167 (7.7) 1172 (30.8)

Outcomes, n (%)

RRT use 18 (0.8) 463 (12.2)  < 0.001

28–day mortality 238 (10.9) 992 (26.1)  < 0.001

90–day mortality 374 (17.2) 1330 (35.0)  < 0.001

Table 1.   Baseline characteristics and outcomes of patients stratified by the persistence of AKI. AKI, acute 
kidney injury; ICU, intensive care unit; MICU, medical intensive care unit; SICU, surgical intensive care unit; 
TSICU, trauma surgical intensive care unit; CCU, coronary care unit; CSRU, cardiac surgery recovery unit; 
AIDS, acquired immune deficiency syndrome; MAP, mean arterial pressure; WBC, white blood cell; PaO2, 
partial pressure of oxygen; PaCO2, partial pressure of carbon dioxide; INR, international normalized ratio; 
PTT, partial thromboplastin time; RRT, renal replacement therapy; SCr, serum creatinine; UO, urine output. 
Continuous variables were presented as median (interquartile range) and categorical variables were presented 
as n (%).

Table 2.   Performance comparison of the machine learning models in the testing set. AUC, area under the 
receiver operating characteristic curve; CI, confidence interval.

Models AUC (95% CI) Accuracy Precision Recall F1 score

Logistic regression 0.76 (0.74–0.78) 0.70 0.80 0.75 0.78

Random forest 0.75 (0.72–0.77) 0.70 0.89 0.72 0.80

Support vector machine 0.74 (0.72–0.76) 0.70 0.83 0.74 0.78

Artificial neural network 0.76 (0.74–0.78) 0.71 0.80 0.76 0.78

Extreme gradient boosting 0.75 (0.73–0.77) 0.66 0.62 0.81 0.70
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During sepsis, systemic disease status and distant organ dysfunction may affect the evolution of AKI53. Recent 
studies have suggested that acute respiratory distress syndrome is associated with a strong trend toward develop-
ing AKI54,55. A close relationship between mechanical ventilation and worsening of renal function was observed 
in a large cohort of ICU patients56. Metabolic acidosis is common in SA-AKI patients and can directly influence 
cardiac contractility and sensitivity of adrenergic receptors57. Coagulopathy, mainly caused by the activation 
or injury of endothelial cells, plays an important role in the pathogenesis of SA-AKI through microcirculatory 
dysfunction58. Our results further demonstrated that sepsis-related factors, including those relevant to respira-
tory failure, metabolic acidosis and coagulation disorder, could contribute to the prediction of persistent AKI. 
Further studies are required to investigate the exact pathophysiological mechanisms of reversibility of SA-AKI 
and determine whether modification of these factors can facilitate renal recovery and improve prognosis.

There are some strengths of our study. Firstly, with the combination of logistic regression and feature selec-
tion by machine learning algorithms, we established a simplified risk prediction model with high practicability 
and interpretability. Secondly, fourteen predictors of persistent AKI were selected by state-of-the-art algorithms. 
The unbiased machine learning methods can help identify important features, which are clinically significant 
but may be ignored by clinicians according to their traditional experience. Thirdly, an easy-to-use risk calculator 
was developed to allow automatic quantified assessment of the risk of persistent AKI, which is a useful tool for 
clinicians to identify high-risk patients and improve clinical decision-making abilities.

However, this study is also subject to some limitations. Firstly, it was a single-center retrospective study 
based on a publicly accessible database, which may limit the generalizability of the prediction model in patients 
with differently distributed features. External validation is still necessary, and clinical impact studies should be 
conducted to assess the model’s effectiveness before its clinical implementation. Secondly, although we only 
included variables with ≤ 30% missing values, there were still 2.2% of all observations missing. Some candidate 
variables were excluded owing to a large percentage of missing values. Finally, similar to other machine learning 
models, the performance of our model was not perfect38,45,47. Possible reasons include the limited set of predic-
tors, retrospective study design and heterogeneity of SA-AKI patients. Novel biomarkers, which were potential 
predictors of persistent AKI but not routinely measured in clinical settings, were not included in the prediction 
model. Based on this study, there is a continuing need for future studies to combine the clinical prediction model 
and biomarkers to predict persistent AKI.

Figure 2.   Receiver operating characteristic curves of the machine learning models in the testing set. LR, logistic 
regression; RF, random forest; SVM, support vector machine; ANN, artificial neural network; XGB, extreme 
gradient boosting; AUC, area under the receiver operating characteristic curve.
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Figure 3.   The top 20 important features derived from the XGB model. UO, urine output; SCr, serum creatinine; 
PaO2, partial pressure of oxygen; RRT, renal replacement therapy; ICU, intensive care unit; CCU, coronary 
care unit; CSRU, cardiac surgery recovery unit; INR, international normalized ratio; PaCO2, partial pressure of 
carbon dioxide; PTT, partial thromboplastin time.

Table 3.   Simplified risk prediction model for persistent AKI. AKI, acute kidney injury; CI, confidence 
interval; PaO2, partial pressure of oxygen; PaCO2, partial pressure of carbon dioxide; INR, international 
normalized ratio; PTT, partial thromboplastin time; RRT, renal replacement therapy; SCr, serum creatinine; 
UO, urine output.

Variables Coefficient

CI

P value2.5% 97.5%

Age 0.0062 0.0015 0.0108 0.009

Diabetes mellitus 0.2597 0.1012 0.4189 0.001

Congestive heart failure 0.3208 0.1650 0.4771  < 0.001

Chronic kidney disease 0.1475  − 0.0764 0.3740 0.20

Minimum PaO2  − 0.0021  − 0.0041  − 0.0001 0.038

Maximum PaCO2 0.0093 0.0028 0.0159 0.005

Maximum anion gap 0.0261 0.0039 0.0484 0.021

Maximum lactate 0.0209  − 0.0214 0.0640 0.34

Maximum INR 0.0690  − 0.0067 0.1505 0.09

Maximum PTT 0.0027 0.0003 0.0051 0.030

Mechanical ventilation 0.2707 0.0948 0.4468 0.003

RRT initiation 1.3618 0.6010 2.2734 0.001

AKI stage by SCr criteria

1 0.8567 0.6653 1.0511  < 0.001

2 2.3339 1.9111 2.7885  < 0.001

3 2.5851 2.0773 3.1443  < 0.001

AKI stage by UO criteria

1 0.4943 0.2012 0.7887  < 0.001

2 1.2795 1.0217 1.5397  < 0.001

3 2.1690 1.8653 2.4789  < 0.001
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Figure 4.   Receiver operating characteristic curve of the simplified risk prediction model in the training and 
testing set.

Figure 5.   Calibration curve of the simplified risk prediction model in the training set. The Brier score of the 
model was 0.189 (95% confidence interval 0.184–0.194).
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In conclusion, machine learning algorithms are helpful to distinguish between transient and persistent AKI 
and identify the predictors of persistent AKI in critically ill septic patients. A simplified 14-variable risk pre-
diction model was developed and validated with high practicability and interpretability. A risk calculator was 
established to facilitate its widespread application in daily clinical practice, which may help identify high-risk 
patients, guide treatment decisions and improve prognosis. Future prospective studies are needed to demonstrate 
the model’s generalizability and effectiveness and determine whether the addition of novel biomarkers could 
improve the predictive ability.

Data availability
The datasets analyzed during the current study are available in the MIMIC-III database (https://​mimic.​physi​
onet.​org/).
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