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Joint single-cell multiomic analysis in Wnt3a
induced asymmetric stem cell division
Zhongxing Sun1,3, Yin Tang1,3, Yanjun Zhang 1,3, Yuan Fang1,3, Junqi Jia1, Weiwu Zeng1 & Dong Fang 1,2✉

Wnt signaling usually functions through a spatial gradient. Localized Wnt3a signaling can

induce the asymmetric division of mouse embryonic stem cells, where proximal daughter

cells maintain self-renewal and distal daughter cells acquire hallmarks of differentiation. Here,

we develop an approach, same cell epigenome and transcriptome sequencing, to jointly

profile the epigenome and transcriptome in the same single cell. Utilizing this method, we

profiled H3K27me3 and H3K4me3 levels along with gene expression in mouse embryonic

stem cells with localized Wnt3a signaling, revealing the cell type-specific maps of the epi-

genome and transcriptome in divided daughter cells. H3K27me3, but not H3K4me3, is

correlated with gene expression changes during asymmetric cell division. Furthermore, cell

clusters identified by H3K27me3 recapitulate the corresponding clusters defined by gene

expression. Our study provides a convenient method to jointly profile the epigenome and

transcriptome in the same cell and reveals mechanistic insights into the gene regulatory

programs that maintain and reset stem cell fate during differentiation.
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Stem cells undergo self-renewal to maintain their plur-
ipotency but also give rise to lineage-specific daughter cells
that generate differentiated cells1,2. Through this asym-

metric cell division process, stem cells reside in cellular niches
that impart chemical and physical signals to divide asymme-
trically, generating one stem cell and one differentiated cell from
the parental cell. Stem cells can segregate their cell fate deter-
mination components into one of the two daughter cells to
accomplish this function. Alternatively, they adopt a positioning
strategy in which one daughter cell moves away from the stem
cell niche and undergoes differentiation3–5.

Wnt signaling is conserved from metazoans to vertebrates and
plays important roles in stemness maintenance, development,
cell survival, tumorigenesis, tumor metastasis, and cellular
metabolism6,7. Wnt ligands, which comprise a large family of
hydrophobic glycoproteins, are usually secreted locally to form an
adjacent gradient8. Wnt ligands are inactivated if tagged with
canonical protein tags, and thus in vivo studies of Wnt signaling
are difficult9. In addition, our understanding of Wnt signaling is
mainly based on the manipulation of the whole population of
cells using biochemical or genetic approaches4. Mouse embryonic
stem cells (mESCs) are cultured in supporting medium that
activates Wnt signaling globally to maintain pluripotency10.
Moreover, inhibition of Wnt signaling leads to the differentiation
of mESCs toward an epiblast stem cell-like status11. Thus, mESCs
represent a powerful model to study the functions of localized
Wnt signaling rather than global signaling. Previous studies have
shown that Wnt3a-coated beads provide a spatially restricted
Wnt signal12,13. This localized Wnt signal is transmitted by the
Wnt receptor Lrp6 and coordinates with ionotropic glutamate
receptor activity, leading to membrane protrusion14. After one
cell cycle, two daughter cells asymmetrically divide. Cells prox-
imal to Wnt3a beads retain high expression levels of pluripotency
markers, such as Nanog and Rex1. Distal cells exhibit a pro-
gressive differentiation status. Parental and newly synthesized
histones are segregated into proximal and distal cells with a
nonoverlapping pattern, resulting in differential inheritance of
histones in two daughter cells15. Using single-cell-based high-
resolution imaging, several lines of evidence have been proposed
to address the response to Wnt signaling. However, the detailed
transcriptional and epigenomic changes underlying this asym-
metric cell division have not been elucidated.

Recent studies have shown that histone modifications, one of
the storage vehicles for epigenetic information, are dramatically
changed during early development, germ cell reprogramming,
pluripotent cell generation, and stem cell differentiation16–21. The
profile of the epigenome has mainly been identified using chro-
matin immunoprecipitation followed by massively parallel
sequencing (ChIP-seq)22. A large number of cells are required for
canonical ChIP-seq, and thus this assay is difficult to conduct
with limited input samples23. Decreasing the input sample size
would unlock a unique aspect of this application. Single-cell level
epigenomic and transcriptional profiles can be used to classify
lineage-specific regulatory elements, define differentiation trajec-
tories, and identify rare spatiotemporal progenitor cells24,25. Over
the last decade, several low-input epigenomic profiling methods
have been successfully developed, including but not limited to
STAR ChIP18, MOWChIP26, Drop-ChIP27, ULI-NChIP28, Nano-
ChIP-seq29, ChIL-Seq30, ACT-Seq31, scChIP-Seq32, scChIC-
seq33, TAF-ChIP34, muChIP-seq35, LIFE-ChIP-seq36, TCL37,
SurfaceChIP-seq38, CUT&RUN39, CUT&Tag40, CoBATCH41,
and it-ChIP42. With the expansion of single-cell technologies in
epigenome and transcriptome profiling, emerging needs are to
map the epigenome and transcriptome in the same sample. Using
this approach, we can save limited samples and, more impor-
tantly, avoid batch effects during the experiments. Paired-Tag and

CoTECH were recently established to profile histone modifica-
tions and gene expression in single nuclei as a method for this
joint analysis43,44. These techniques provide the nuclear RNA
transcriptome with a comparable number of genes as detected
using 10x genomics43–45.

In this work, we develop SET-seq (same cell epigenome and
transcriptome sequencing), which extends the directed tagmen-
tation of mRNA/cDNA hybrids46,47 and chromatin40. SET-
seq can be used to simultaneously profile cytoplasmic RNA
expression and epigenomic information in a limited number of
cells, even in single cells. Using this method, we jointly map the
histone modifications and transcriptome of mESCs that undergo
Wnt3a-induced asymmetric cell division. Our results reveal cell
type-specific maps of the epigenome and transcriptome in
asymmetrically divided daughter cells. Additionally, H3K27me3,
but not H3K4me3, is rapidly altered and displays a strong cor-
relation with gene expression during asymmetric cell division.
Knockout of Aebp2, the regulatory element in PRC2 (Polycomb
Repressive Complex 2) that is responsible for the methylation of
H3K27me3, increases the ratio of daughter cells asymmetrically
expressing Nanog-mCherry. Together, our results provide
mechanistic insights into the gene regulatory programs required
for maintaining and resetting stem cell fate during differentiation.

Results
The mRNA/cDNA hybrid is directly tagmentated in a repro-
ducible and time-saving manner. We aimed to separate nuclear
DNA and cytoplasmic RNA before library preparation to map the
genome-wide transcriptional and epigenetic profiles in the same
cell (Fig. 1a). After cell lysis, cytoplasmic RNA and nuclei were
separated using concanavalin A (ConA)-coated magnetic beads.
The ConA bead-bound nuclei were subjected to antibody binding
and tagmentation with CUT&Tag40, while the cytoplasmic RNA
was reverse transcribed and used for direct tagmentation46,47. The
epigenomic and transcriptional libraries from the same sample
were then constructed by performing indexed PCR. We took
advantage of the direct tagmentation of Tn5 to reduce the com-
plexity and cost of library construction. The usage of Tn5 for
tagmentation of mRNA/cDNA hybrids is recently developed46,47,
although the Tn5 transposome has been widely used to profile
double-stranded DNA for years. Therefore, we tested different
reaction conditions to improve the reproducibility and stability of
transcriptional libraries.

First, we analyzed the effects of temperature and time on the
tagmentation and sequencing results. We used mRNA/cDNA
hybrids that were reverse transcribed from the total RNA of
mESCs by oligo dT as the templates for tagmentation. The
mRNA/cDNA hybrids were tagmentated to approximately 100 to
400 base pairs when the reactions were incubated at 4 °C, 16 °C,
and 37 °C for 5 to 30 min (Supplementary Fig. S1a). The
tagementated fragments became shorter with higher temperatures
and prolonged incubation times. We then constructed and
sequenced libraries produced by tagmentation at 16 °C and 37 °C
for 5 to 30 min because, when samples were tagmentated at these
temperatures, less time was needed for library preparation
compared to tagmentation at 4 °C. Two biologically independent
libraries were constructed and sequenced for each condition to
increase the sequencing strength. These libraries showed strong
correlations with conventional ligation-based RNA-seq library
(Methods) and among each library (Fig. 1b). We also detected a
similar number of genes (Supplementary Fig. S1b and c) and
similar gene expression profiles (Supplementary Fig. S1d). More-
over, we found that a prolonged tagmentation time at 37 °C
slightly reduced the ratio of detected reads at exons compared to
those at introns (Supplementary Fig. S1e). Then, we chose 37 °C
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and 5 min as the tagmentation conditions for subsequent
experiments to reduce the reaction time and avoid the loss
of exons.

Second, we evaluated the potential effect of the amount of Tn5
(25, 50, or 100 ng/µl) on the sequencing results. Higher amounts
of Tn5 resulted in slightly shorter fragment lengths after
tagmentation (Supplementary Fig. S2a). The correlations among
sequencing results from different amounts of Tn5 were quite high
(Supplementary Fig. S2b). In addition, the identified gene
numbers, gene expression profiles, and ratios of reads mapped
to exons and introns were similar when different amounts of Tn5
were used (Supplementary Fig. S2c–e), suggesting that the
amount of Tn5, ranging from 25 to 100 ng/µl, had a minor
effect on the sequencing results.

Third, using a series of 100-fold dilutions starting from 300 ng
of total RNA, we analyzed the minimum amount of RNA needed
for sequencing library construction. We obtained sufficient DNA
for sequencing with as low as 30 pg of total RNA, which was

similar to the amount of total RNA in a single mESC48

(Supplementary Fig. S3a). We sequenced the libraries constructed
from 300 ng, 3 ng, and 30 pg of total RNA. The correlations
among each library were high, and the ratios of reads mapped to
exons and introns were stable (Supplementary Fig. S3b and c). A
total of 17,097, 14,659, and 9,371 genes were detected from
300 ng, 3 ng, and 30 pg of total RNA, respectively (Supplementary
Fig. S3d), indicating that fewer genes were identified with less
starting RNA. Together, we established a timely and reproducible
reaction condition, incubation at 37 °C for 5 min, for the direct
tagmentation of mRNA/cDNA hybrids, and this condition might
be applied at the single-cell level.

SET-seq can be used to jointly profile the epigenome and
transcriptome in a low number of cells, even in single cells.
Thereafter, we applied this reaction condition to profile cyto-
plasmic RNA extracted using the SET-seq method in vivo. The
sequencing results were stable and highly correlated when
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Fig. 1 SET-seq can be used to profile epigenome and transcriptome in the same sample. a Schema showing the process of SET-seq. b The Pearson
correlations among gene expression libraries constructed from different tagmentation time and temperatures. c The Pearson correlations among gene
expression libraries constructed from different numbers of cells. d Heatmaps showing the clustering results of H3K27me3 and H3K4me3 SET-seq. Genes,
at which the epigenomic and transcriptional signals were detected, were clustered by hierarchical clustering algorithms using row scaled signal scores.
Heatmaps were plotted with column scaled signal scores. e Number of detected genes in scSET-seq and Smart-seq2 in 48 mESCs. Smart-seq2 data were
downloaded from GSE151334 [https://www.encodeproject.org/experiments/ENCSR059MBO/] and 48 cells were randomly selected. f Venn diagram
showing the overall detected genes between scSET-seq and Smart-seq2 in 48 mESCs. Smart-seq2 data were as in e. g Examples of IGV views of
H3K27me3 and H3K4me3 scSET-seq. Signals of histone marks from 200 individual single cells were shown below the signals from aggregated 480 cells.
H3K4me3 and H3K27me3 SET-seq results from 10,000 cells (10^4 H3K4me3 and 10^4 H3K27me3) were shown as controls. h The fraction of reads in
peaks (FRiPs) of scATAC-seq and scSET-seq. scATAC-seq data were downloaded from GSE100033 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE151334]. scSET-seq cells were filtered with a mapping ratio >10%. Paired-Tag and 10x genomics data was same as previous reported43. The boxes
were drawn from lower quartile (Q1) to upper quartile (Q3) with the middle line denoting the median, and whiskers with maximum 1.5 IQR (interquartile
range). n= 45 (H3K27me3 scSET-seq), 200 (H3K4me3 scSET-seq), 447 (H3K27me3 Paired-Tag), 1,659 (H3K4me3 Paired-Tag), and 93 (scATAC-seq)
cells. Source data are provided as a Source Data file.
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10,000 1,000, 100 and 10 cells were used as starting materials
(Fig. 1c and Supplementary Fig. S4a–c). Additionally, we ana-
lyzed the stabilities of epigenomic profiles of SET-seq using
H3K27me3 antibodies in 10–10,000 cells and performed SET-
seq to analyze H3K27me3 profiles in four replicates. The peak
distributions of H3K27me3 SET-seq were similar to H3K27me3
ChIP-seq in the ENCODE project ENCSR059MBO [https://www.
encodeproject.org/experiments/ENCSR059MBO/] (Input control
data ENCSR326ULS [https://www.encodeproject.org/experiments/
ENCSR326ULS/ENCSR326ULS) (Supplementary Fig. S5a). More-
over, the SET-seq signals from 10, 100, and 1,000 cells were highly
enriched at the peaks corresponding to 10,000 cells (Supplementary
Fig. S5b). We measured the SET-seq accuracies by constructing a
receiver operating characteristic curve (ROC)49 and detected high
area under the curve (AUC) values ranging from 0.801 to 0.982
(Supplementary Fig. S5c). These results indicate that the transcrip-
tional and epigenomic libraries constructed using SET-seq are
reproducible when different numbers of cells are used as starting
material.

We applied H3K4me3 and H3K27me3 SET-seq in 100 to 10,000
cells. We assigned epigenomic signals to the closest promoter and
then selected genes with both epigenomic and transcriptional
signals in H3K27me3 and H3K4me3 SET-seq to jointly compare
gene expression levels and enrichments of histone marks. We then
scaled the epigenomic and transcriptional signals in the same
sample with the Z score and clustered the genes based on
H3K4me3 and H3K27me3 signals. The corresponding expression
levels of each gene were marked accordingly (Fig. 1d). Three major
clusters were generated from H3K4me3 and H3K27me3 signals. In
Cluster 1, genes showing low H3K4me3 and high H3K27me3
enrichment were expressed at low levels. In Cluster 2, high
H3K4me3 and low H3K27me3 enrichment were detected at these
genes, which were expressed at high levels. Moderate H3K4me3
and H3K27me3 levels were detected as bivalent histone marks in
Cluster 3 genes, which were expressed at low levels. This pattern
recapitulated the correlations between histone marks and gene
expression, where the active histone mark H3K4me3 correlated
with high levels of gene expression, the repressive histone mark
H3K27me3 correlated with low gene expression levels, and bivalent
H3K4me3 and H3K27me3 were associated with repressed genes in
mESCs. In addition, we performed a Gene Ontology (GO) analysis
using the clustered genes from 10,000 cells (Supplementary
Fig. S5d). Genes in Cluster 1 with high H3K27me3 levels were
mainly enriched in ion transport-associated terms. Genes in
Cluster 2 with high H3K4me3 levels were enriched in cell cycle-
and signal transduction-linked terms. Cluster 3 genes with both
H3K27me3 and H3K4me3 signals were annotated as differentia-
tion- and development-associated terms. This result was consistent
with the findings that bivalent genes, which were enriched with
both H3K27me3 and H3K4me3, were mainly differentiation
marker genes in mESCs50. Because two histone marks,
H3K4me3 and H3K27me3, along with gene expression needed
to be detected for the same gene, fewer genes were detected when
100 cells were used as the starting material. The classified clusters
from 100 cells were less distinct than the clusters obtained from
larger numbers of cells. We detected approximately 2,000 to 5,000
genes in one cluster when 1000 or 10,000 cells were used. When
100 cells were used as the starting material, the genes with detected
H3K27me3, H3K4me3 and gene expression signals decreased to
approximately 300 to 800 in each cluster. These data indicate that
when bulk cells are used to detect both H3K4me3 and H3K27me3
along with gene expression signals, at least 1,000 cells are optimal
for this specific application.

We profiled gene expression in 48 single mESCs using single-cell
SET-seq (scSET-seq) in 3 independent experiments to extend our
SET-seq method to an even lower number of cells. Tn5

transposomes with different combinations of i5 and i7 barcodes
were applied to facilitate library preparation. Moreover, the structure
of the DNA library was designed to be similar to TruSeq libraries to
enable it to be sequenced with other conventional Illumina libraries
together (Methods)51. Compared to 4,206 genes detected using
Smart-seq2 GSE151334 [https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE151334], which revealed the most genes per cell
among commercially available approaches, scSET-seq had a similar
sensitivity, capturing an average of 4,665 genes per cell (Fig. 1e). The
diversity of the total detected genes across 48 single cells was similar
between scSET-seq and Smart-seq2 (Fig. 1f). These two methods
reached a plateau of saturation at approximately 2 million total reads
(Supplementary Fig. S6a). In addition, we compared the fractions of
intragenic and intronic reads among scSET-seq, Smart-seq2, Paired-
Tag43, and 10x genomics43. The library construction methods were
similar between scSET-seq and Smart-seq2, which were based on
whole cDNA fragments, and between 10x genomics and Paired-Tag,
which mainly detected the 3’ end of cDNAs. As previously
reported52, the ratios of intragenic reads and intronic reads were
both lower in Smart-seq2 data than in 10x genomics data
(Supplementary Fig. S6b and c). The scSET-seq and Paired-Tag
approaches were similar to Smart-seq2 and 10x genomics based on
the ratios of intragenic and intronic reads, respectively. Similar to
Smart-seq2, the gene expression libraries of scSET-seq were
constructed without unique molecular identifiers (UMIs), which
are widely used in 3’ RNA–seq techniques, such as 10x genomics, to
distinguish unexpected PCR duplications and rare mutation
variants.

Furthermore, we applied scSET-seq to H3K27me3 and
H3K4me3 in 480 mESCs. Five independent experiments with
96 cells in each batch were performed for H3K27me3 and
H3K4me3 scSET-seq (Supplementary Dataset 1). The aggregated
single-cell profiles recapitulated the bulk ChIP-seq data, as shown
in Integrative Genomics Viewer (IGV) examples (Fig. 1g). We
also compared scSET-seq to scATAC-seq and Paired-Tag to
determine the accuracy of signals detected in single cells. The
fraction of reads in peaks (FRiPs) was comparable and similar
between scSET-seq and Paired-Tag, both of which were higher
than scATAC-seq (Fig. 1h). We also noticed higher FRiPs for
H3K4me3 than for H3K27me3 in both Paired-Tag and scSET-
seq. The mean and median numbers of unique fragments
detected using H3K27me3 and H3K4me3 scSET-seq
(Mean: H3K27me3 2,682, H3K4me3 7,193, Median: H3K27me3
1,633, H3K4me3 4,601) were similar to those detected using
Paired-Tag (Mean: H3K27me3 3,992, H3K4me3 7,969, Median:
H3K27me3 3,067, H3K4me3 6,225), respectively (Supplementary
Fig. S6d). We sequenced more than 2 million reads per cell to
reach the saturation of unique fragments recovered. Moreover, we
called peaks from the bulk SET-seq data of 10,000 cells, merged
scSET-seq results, and ENCODE data for H3K27me3
ENCSR059MBO [https://www.encodeproject.org/experiments/
ENCSR059MBO/] and H3K4me3 ENCSR000CGO [https://
www.encodeproject.org/experiments/ENCSR000CGO/], respec-
tively. The peaks called from bulk SET-seq largely
overlapped with the corresponding ENCODE data. Peaks called
from merged scSET-seq data overlapped well with bulk SET-seq
and ENCODE data (Supplementary Fig. S6e and f). Together,
these results indicate that SET-seq is useful to analyze both the
epigenome and transcriptome in the same cells, even in
single cells.

Transcriptome analysis of H3K27me3 and H3K4me3 scSET-
seq identifies cell clusters in localized Wnt3a-induced asym-
metric mESCs division. Previous studies have shown that
Wnt3a-coated beads induce the asymmetric division of mESCs12.
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Using an mCherry-based reporter for Nanog, we also detected
that when parental cells were attached to Wnt3a-coated beads,
the divided daughter cells proximal to beads showed a higher
level of Nanog than the cells distal to beads (Supplementary
Fig. S7a). We further tested the activation mediated by Wnt3a-
coated beads by analyzing the expression of pluripotency markers
in bulk cells. We seeded cells with a large amount of Wnt3a-
coated beads such that almost all cells were attached to Wnt3a
beads when we collected samples. Cells treated with the WNT3a
protein were used as the positive control. Consistent with pre-
vious reports12, the expression of Nanog and Axin2, but not Oct4,
in cells treated with Wnt3a beads was increased compared to cells
treated without beads (Supplementary Fig. S7b). We then profiled
H3K27me3 and H3K4me3 levels in bulk cells with or without
WNT3a treatment. Interestingly, H3K27me3 peaks changed
dramatically upon WNT3a treatment, whereas H3K4me3 peaks
largely overlapped between untreated and treated cells (Supple-
mentary Fig. S7c). This difference in the change of H3K27me3
and H3K4me3 levels prompted us to further analyze how the
epigenome and transcriptome were altered during asymmetric
cell division.

Stem cells undergoing asymmetric cell division pose challenges
to single-cell analyses because, unlike the majority of cells, a small
portion of cells divide symmetrically12. The single-cell epigenome
and transcriptome provided a unique perspective to illustrate the
Waddingtonian landscape of cell fate decisions. We then
conducted H3K27me3 and H3K4me3 scSET-seq analyses of
mESCs with localized Wnt3a signaling. Since the cells proximal
and distal to beads were unable to be sorted using conventional
marker-based approaches, such as fluorescence-activated cell
sorting (FACS), we manually examined cells adjacent to beads
and transferred the proximal and distal daughter cells into 96-
well plates to perform indexed scSET-seq. We picked the cells
without predetermining the Nanog signal to avoid the biased
selection of mESCs. Tn5 transposomes with indexed i5 and i7
primers were used to barcode the individual cells (Supplementary
Dataset 2). After the direct tagmentation of mRNA/cDNA
hybrids and antibody-guide tagmentation of genomic DNA,
samples were pooled, PCR indexed, and sequenced (Fig. 2a). We
performed H3K27me3 and H3K4me3 scSET-seq in 384 and 368
cells, respectively, generating 1,504 genome-wide profiles.
H3K27me3 and H3K4me3 scSET-seq were conducted in 10 and
6 independent experiments, respectively.

We then filtered the cells with gene expression profiles and
obtained 335 and 210 cells in H3K27me3 and H3K4me3 scSET-
seq that passed the quality control criteria (Methods), respectively
(Supplementary Dataset 3). We merged the transcriptional
profiles of H3K27me3 and H3K4me3 scSET-seq to improve the
reproducibility of dimensional reduction. We performed batch
correction by conducting a canonical correlation analysis (CCA)
to address technical variances, such as processing and individual
variation of single cells. Three main clusters were then identified
by the shared nearest neighbor modularity optimization algo-
rithm in Seurat53 (Fig. 2b). Because we indexed the proximal and
distal cells with distinct barcodes, we then marked the clustered
cells with proximal and distal tags (Fig. 2c). Interestingly, cells in
Cluster 0 were enriched with both proximal and distal cells.
Cluster 1 was mainly composed of cells proximal to Wnt3a beads,
while cells in Cluster 2 were labeled as distal to Wnt3a beads. We
then marked Cluster 1 with the most proximal cells as Proxi,
Cluster 2 mainly with the distal cells as Dista, and Cluster 0 with
mixed cells as Mix. The GO enrichment analysis showed that
marker genes in the Mix cluster were enriched for neuron
interaction- and differentiation-associated terms, while marker
genes in the Dista and Proxi clusters were enriched for RNA
processing (Supplementary Fig. S8a–c). In particular, the GO

terms in the Dista cluster were annotated to several nucleoside
triphosphate metabolic process terms. This process participates in
erythroid differentiation54, T cell lineage differentiation55, and
neurogenesis56. Differentiation-associated terms may have been
overridden by the nucleoside triphosphate metabolic process
terms. Previous studies12 and our bulk cell analysis using
RT–PCR (Supplementary Fig. S7b) have shown that Nanog and
Rex1 are expressed at high levels in proximal cells. We then
analyzed the expression of Nanog and Rex1 among different
clusters of cells and found that they were expressed at higher
levels in Proxi cells, which were enriched with proximal cells
(Supplementary Fig. S9).

We then split the cells based on their profiled histone marks:
H3K27me3 (Fig. 2d) and H3K4me3 (Fig. 2e). Not surprisingly,
three clusters were segregated well into proximal and distal cells
when divided based on H3K27me3 scSET-seq (Fig. 2f) and
H3K4me3 scSET-seq (Fig. 2g) data. Furthermore, the expression
profiles of marker genes in each cluster were similar between
H3K27me3 and H3K4me3 scSET-seq results (Supplementary
Fig. S10a–d). Because the two daughter cells were picked as pairs,
we projected the cells in the same pair to examine how the
daughter cells were distributed among cell clusters (Fig. 2h, i).
Most daughter cells were paired between the Proxi and Dista
clusters, as well as inside the Mix cluster. No cells were paired
inside the Proxi or Dista clusters. Nevertheless, we found that
half of the cells in the Proxi/Dista cluster were paired with cells
in the Mix cluster, suggesting that one of the daughter cells is at a
modest differentiation stage in these pairs. The proportions of
clustered cells were 24.4% for the Proxi cluster, 22.2% for the
Dista cluster, and 53.4% for the Mix cluster. Notably, we
observed a small number of proximal cells in the Dista cluster
and distal cells in the Proxi cluster, accounting for approximately
10% of the total cells. These data suggest that these cells are
segregated as a reversed asymmetric division. Indeed, previous
studies12,15 showed that approximately 15% of cells asymme-
trically underwent reversed cell division, whereas distal cells
showed higher Nanog signals than proximal cells. Moreover, the
ratio of paired cells within the Mix cluster was 56.7% of cells in
the Mix cluster. Therefore, the ratio of paired cells in the Mix
clusters was 30.3% of the total cells. This result was similar to
previous reports12,15,57 showing that approximately 25–30% of
cells divided symmetrically. Other cells comprised approximately
60% of the total cells, similar to the previously reported ratio of
asymmetrically divided cells (~60%). The annotated clusters
reflected the previously reported cell division modes at the level
of ratios of cell behaviors.

We generated pseudotemporal ordering by ranking single cells
with marker genes to identify trajectories of cell stages underlying
Wnt3a-induced asymmetric cell division. Consistent with the
observed cell division pattern, pseudotime reconstruction ordered
sequentially Proxi and Dista clusters, with the Mix cluster
branching in the middle stage (Fig. 2j). The Proxi cluster was
located at the beginning of the trajectory, and the Dista cluster
was located at the end of the trajectory. In addition, the Mix
cluster, which initiated in the middle of the differentiation stage,
was detected in one branch alongside the trajectory. This
trajectory indicated differentiation progress from the early Proxi
cluster to the late Dista cluster, whereas the Mix cluster occurred
as a distinct differentiation lineage that differed from the
asymmetrically divided cells. We also labeled cells with their
positions relative to Wnt3a beads in the trajectories. Compared
with distal cells, proximal cells were enriched at earlier stages.
Proximal and distal cells were sorted at the middle branch
corresponding to the Mix cluster. These patterns were revealed in
both H3K27me3 and H3K4me3 scSET-seq data, further support-
ing the hypothesis that the sequencing results were reproducible
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and stable. Moreover, we performed STREAM (single-cell
trajectory reconstruction, exploration and mapping) analysis58

to assign single cells for the reconstruction of developmental
trajectories. This analysis recapitulated the branched Mix cluster
and early Proxi cluster to the late Dista cluster, further supporting
the accuracy of pseudotime reconstruction (Supplementary
Fig. S11a). We merged the gene expression data from
H3K27me3 and H3K4me3 scSET-seq and then projected several
marker genes (Cracr2a, 4930438A08Rik, Aebp2, Rtl1, Rpl10a,
Rnf7, Ndufb10, Rpl37, and Rps4x) alongside the corresponding
pseudotemporal trajectories to precisely compare changes in gene
expression (Supplementary Fig. S11b). The marker genes of the
Proxi and Dista clusters were expressed at low levels during the
branched stages of trajectories, which corresponded to the Mix
cluster. Meanwhile, the marker genes of the Mix cluster were
expressed at low levels in the trajectory stages corresponding to
the Proxi and Dista clusters. Please also note that the clusters in
Supplementary Fig. S11b are presented in a one-dimensional plot
to show the changes in genes among these three clusters. The Mix
cluster, which branched from the Proxi cluster, was not an
intermediate between the Proxi and Dista clusters. Together,

using scSET-seq, we were able to identify the cell clusters and sets
of marker genes during mESC division with localized Wnt
signaling.

Gene expression is correlated with H3K27me3 levels during
mESC division induced by Wnt3a beads. We aggregated
H3K27me3 and H3K4me3 signals in different clusters of cells and
visualized their enrichments at the marker genes in each cluster to
investigate how histone modifications were detected using scSET-
seq. As shown in the IGV views, H3K27me3 and H3K4me3 were
distributed around the marker genes and were enriched to dif-
ferent degrees among cell clusters (Fig. 3a). We then sought to
annotate coassayed cells based on their epigenomic profiles at the
single-cell level. We used the aggregated histone mark signals
from each scSET-seq sample, called broad peaks for H3K27me3
and narrow peaks for H3K4me3, and then assigned the epige-
nomic signals to each gene utilizing the probabilistic topic
modeling method in cisTopic59. We coembedded epigenomic and
transcriptional datasets in the same cell for further analysis
(Fig. 3b).
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Fig. 2 scSET-seq is able to identify the cell clusters in Wnt3a beads induced asymmetric cell division in mESCs. a Schema showing the process of
scSET-seq. Epigenome and transcriptome were indexed by transposomes before pooling and library construction. b Uniform Manifold Approximation and
Projection (UMAP) embedding showing the clustering of cells from H3K27me3 and H3K4me3 scSET-seq by gene expressions. To increase the
reproducibility, the gene expressions of H3K27me3 and H3K4me3 scSET-seq were merged for clustering. Each dot represented a single cell. See main text
for the definition of clustering name. c Colored map showing the relative position of cells to Wnt3a beads. Cells proximal to beads were marked garnet and
distal to cells were marked cyan. d, e UMAP clustered cells were subdivided into H3K27me3 scSET-seq (d) and H3K4me3 scSET-seq (e). f, g Colored map
showing the relative position of cells to Wnt3a beads in H3K27me3 scSET-seq (f) and H3K4me3 scSET-seq (g). Cells proximal to beads were marked
garnet and distal to cells were marked cyan. h, i Paired daughter cells were lined up showing their distributions among cell clusters. Two daughter cells
from the same parental cell were identified by their index in H3K27me3 scSET-seq (h) and H3K4me3 scSET-seq (i). Red lines indicated the paired cells
were between Proxi and Dista cluster, green lines indicated the two daughter cells were between Proxi/Dista cluster and Mix cluster, and blue lines
connected cells inside the same cluster. j Pseudotime analysis of single-cell lineages using H3K27me3 and H3K4me3 scSET-seq transcriptional data. The
left panels showed the pseudotime scores across the branches. The cell clusters were marked in the middle panels. Relative positions to Wnt3a beads were
marked in the right panels. Source data are provided as a Source Data file.
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We selected marker genes with detected signals for both the
epigenome and transcriptome to visualize the H3K27me3 and
H3K4me3 scSET-seq results in heatmaps (Fig. 3c, d). We
noticed that fewer marker genes were selected in H3K27me3
scSET-seq data than in H3K4me3 scSET-seq data because
H3K27me3 was not detected around the marker genes.
H3K27me3 may represent a repressive mark for gene

expression, leading to its low enrichment at marker genes with
high expression levels. Gene expression heatmaps showed that
cells were clustered well by the marker genes in H3K27me3 and
H3K4me3 scSET-seq data. Cells were clustered well when we
used H3K27me3 signals at the marker genes to generate the
heatmap. However, H3K4me3 was distributed at marker genes
in a disordered manner throughout clusters, indicating that
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H3K4me3 was not altered accordingly with gene expression
changes.

Because the signals of the single-cell epigenome were low,
preventing us from easily and directly comparing the correlations
between epigenetic and transcriptional profiles, we sought to
conduct module assignments calculated based on the signals
detected in the transcriptome and epigenome. We integrated
genes into functional modules by performing a weighted gene co-
expression network analysis (WGCNA) and then calculated the
correlations between epigenetic and transcriptional profiles
(Supplementary Dataset 5). Similar to the heatmap visualizations
of gene expression and histone marks (Fig. 3c, d), H3K27me3-
signals were sorted into fewer modules than H3K4me3 signals
(Supplementary Fig. S12a–d). H3K27me3 modules were corre-
lated with the corresponding gene expression modules, showing
remarkable conservation of H3K27me3 and gene expression
(Fig. 4a and Supplementary Dataset 5). H3K4me3 modules were
less correlated with corresponding gene expression modules
(Fig. 4b and Supplementary Dataset 5). In addition, the ratio of
significantly correlated modules was higher in H3K27me3 scSET-
seq data (21.5%) than H3K4me3 scSET-seq data (10.7%).

We calculated the total signals for cluster marker genes in each
cell to further analyze how H3K27me3 and H3K4me3 were
distributed in individual single cells. The H3K27me3 signal was
high in the Mix cluster of cells when marker genes of three clusters
were calculated (Fig. 4c and d). Notably, H3K27me3 signals at Mix
cluster marker genes were higher in cells of the Proxi cluster than
in cells of the Dista cluster. Unlike H3K27me3, H3K4me3 signals
at marker genes were not significantly changed among the three
clusters of cells (Fig. 4e, f). Furthermore, we aggregated the
epigenomic profiles for each cluster of cells to detect the changes in
the epigenome at the total level. H3K27me3 was enriched at the
highest level at marker genes of the Mix cluster, while H3K4me3
was similarly enriched across each cluster of marker genes
(Supplementary Fig. S13a). Moreover, we marked the cells through
pseudotime trajectories with H3K27me3 and H3K4me3 signals of
all marker genes. High H3K27me3 signals were detected at the
branched stage corresponding to the Mix cluster compared with
the start and end points, which corresponded to the Proxi and
Dista clusters, respectively (Supplementary Fig. S13b). Meanwhile,
H3K4me3 signals were steadily distributed across the trajectories
(Supplementary Fig. S13c). Taken together, these results suggest
that, unlike H3K4me3, H3K27me3 is correlated with changes in
gene expression during Wnt3a-induced asymmetric cell division,
playing important roles in the different behaviors of daughter cells.

Clusters defined by H3K27me3 recapitulate the cell clusters
classified by gene expression. We performed cluster annotations
using the epigenomic datasets from H3K27me3 and H3K4me3
scSET-seq to further investigate the epigenomic changes during
asymmetric cell division. After dimensional reduction, cells were
classified into three main clusters based on H3K27me3 signals
(Fig. 5a). Cluster 0 was composed of both proximal and distal

cells, Cluster 1 was primarily composed of proximal cells, and
Cluster 2 was mainly composed of distal cells (Fig. 5b). There-
after, Clusters 0, 1, and 2 were named Mix, Proxi, and Dista,
respectively. Similar to the clusters defined by the corresponding
gene expression obtained from H3K27me3 scSET-seq data, two
divided daughter cells were distributed mainly between Proxi and
Dista clusters, between Proxi/Dista and Mix clusters, and inside
Mix clusters (Fig. 5c). Accordingly, dimensional reduction by
H3K4me3 signals clustered cells based on their positions relative
to Wnt3a beads (Fig. 5d, e). However, two daughter cells were
distributed completely between Proxi and Dista clusters and
inside the Mix cluster (Fig. 5f), which was different from the
results obtained from H3K27me3 scSET-seq.

We projected cluster annotations across the cell identities
between epigenetic and transcriptional clusters to explore how
our predictions of cellular classification from the epigenome and
transcriptome were integrated. Cellular clusters predicted from
H3K27me3 levels were mainly projected to their corresponding
clusters identified by gene expression (Fig. 5g). Unlike
H3K27me3, cells clustered based on H3K4me3 levels were
mainly projected to the Mix cluster identified by the transcrip-
tome analysis (Fig. 5h). We then calculated the projected ratios of
each cluster to more conclusively compare the enrichment
(Fig. 5I, j). We used the percentage of cells classified by
corresponding gene expression as the random distribution
control. If cells in a cluster defined by the epigenomic signal
were randomly distributed, they would recapitulate the ratio of
clusters identified by gene expression. Otherwise, cells would be
enriched in this specific cluster, which was different from the
random distribution. Ratios of clustered cells obtained from
H3K27me3 data, but not H3K4me3 data, were significantly
different from the random distribution control. Moreover, cells
classified by H3K27me3 levels were mainly enriched in the
corresponding clusters identified by gene expression in the
H3K27me3 scSET-seq analysis. On the other hand, cells in each
cluster classified by H3K4me3 levels were mostly enriched in the
Mix cluster identified based on gene expression, similar to the
random distribution. Together, these joint analyses of scSET-seq
datasets underscored the conserved representation of the major
cell types across histone modifications and gene expression,
further suggesting that H3K27me3 correlated with gene expres-
sion during Wnt3a-induced asymmetric cell division.

Knockout of Aebp2 increases the ratio of daughter cells
asymmetrically expressing Nanog. Because we observed that
H3K27me3 correlated with changes in gene expression and cell
clusters during asymmetric cell division, we carefully examined
the expression levels of components of PRC2 that were respon-
sible for the methylation of H3K27me3. PRC2 is composed of
core proteins, including EED, EZH2, SUZ12, RBBP4, and RBBP7,
and regulatory proteins, such as AEBP2 and JARID2. Among the
genes encoding proteins in PRC2, only Aebp2, one of the Mix
cluster marker genes, was expressed at high levels in the Mix

Fig. 3 Epigenomic profiles of H3K27me3 and H3K4me3 scSET-seq are differently correlated with corresponding gene expressions. a Joint views
showing the IGV examples of aggregated epigenomic signals and violin plots of expression levels. Three marker genes, which were labeled red at the
bottom, of each cluster were shown. The epigenomic signals were aggregated from cells of the indicated cluster. P values were calculated by Student’s
t-test, two-sided. n= 83 (H3K4me3 Mix cluster), 75 (H3K4me3 Proxi cluster), 52 (H3K4me3 Dista cluster), 208 (H3K27me3 Mix cluster), 58
(H3K27me3 Proxi cluster), and 60 (H3K27me3 Dista cluster) cells *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Exact P values were provided in
Supplementary Dataset 4. b Schema showing the process of co-embedding of epigenomic and transcriptional profiles from scSET-seq. See main text for
description. c Heatmaps showing the co-embedded signals in single cells. Marker genes with both H3K27me3 and transcriptional signals were shown. To
assign the H3K27me3 signals, peaks that were called from the aggregated data were preferably annotated to genes within 3 Kb from their transcription
starting sites, then to the closest genes within 500 Kb. d Same as in c, except H3K4me3 scSET-seq data were plotted. Source data are provided as a Source
Data file.
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cluster cells at average expression levels, consistent with the
observation of high H3K27me3 signals at marker genes in Mix
cluster cells (Fig. 6a). Conversely, Jarid2, Eed and Rbbp4 were
expressed at high levels in cells from both the Proxi and Dista
clusters. Ezh2 and Suz12 were upregulated in cells of the Dista
cluster. Notably, Rbbp7 was not detected using scSET-seq.

We then examined whether Aebp2 was enriched at
cluster marker genes using the GEO ChIP-seq dataset in
mESCs GSE83082 [https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE83082]. AEBP2 ChIP-seq peaks were detected
at the promoters of 200/344 marker genes. We utilized the
CRISPR/Cas9 system to knock out Ezh2 and Aebp2 and to further
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test the functions of Aebp2 in asymmetric cell division. Cell clones
were generated from two different sgRNAs for each gene
(Supplementary Fig. S14a and b). The total levels of H3K27me3
were inhibited in the Ezh2 knockout (KO) clones (Fig. 6b).
Accordingly, H3K27ac levels were slightly increased. Aebp2 KO
had no observable effects on the total levels of H3K27me3 or
H3K27ac, as detected using Western blotting. Thereafter, we
analyzed how Ezh2 and Abep2 KO clones were divided after
treatment with Wnt3a beads (Fig. 6c). As previously
reported12,15, 62.2% of cells had asymmetrically divided, 24.5%
of cells had symmetrically divided, and 13.3% of cells exhibited
reversed division among the 233 analyzed wild-type cells,
showing higher Nanog expression in distal cells (Fig. 6d). Nanog
expression was analyzed in approximately 150 cells from each KO
cell line. The ratios of symmetrically divided cells determined
based on the Nanog signal12,15,57 were decreased when Aebp2 was
knocked out. Ezh2 KO had no obvious effect on the ratios of
divided cells. Compared to parental cells, the ratios of reversed
cells were not significantly altered in all KO cell lines. Other
regulators, but not Ezh2 or Aebp2, might have been responsible
for the reversed division. These data suggest that Aebp2 is
important for symmetric cell division.

We conducted SET-seq to further identify genome-wide
changes in gene expression and H3K27me3 levels in Aebp2 KO
cells. Two independent experiments were performed using each
KO cell line. These two replicate analyses of gene expression and
H3K27me3 correlated well (Supplementary Tables 1 and 2). In
addition, the two Aebp2 KO clones showed a consistent gene
expression profile (Supplementary Fig. S14c). We then merged
the gene expression profiles of the two Aebp2 KO clones to obtain
consistently changed genes, which were defined based on an
absolute log2(FoldChange) > 1 and P value less than 0.05
(Supplementary Fig. S14d). A total of 1,414 genes were
upregulated, and 1,403 genes were downregulated. Among the
321 marker genes, only 33 and 47 were up- and downregulated in
Aebp2 KO cells, respectively (Supplementary Fig. S14d and e),
suggesting that the expression of cluster marker genes was not
substantially altered. The pluripotency marker genes Oct4, Nanog,
and Sox2 were not changed following Aebp2 KO.

The H3K27me3 sequencing results correlated well between the
two KO cell lines (Supplementary Fig. S14f). We then merged the
two cell lines and two replicates to detect consistent changes in
H3K27me3 levels. We called 43,747 and 59,770 H3K27me3
peaks in WT and Aebp2 KO cells, respectively. Although 30,332
peaks overlapped between WT and Aebp2 KO cells, 29,438 peaks
were unique to Aebp2 KO cells (Supplementary Fig. S14g). We
further analyzed the enrichment of H3K27me3 at peaks with or
without overlapping AEBP2 peaks that were detected in NCBI
Gene Expression Omnibus (GEO) AEBP2 ChIP-seq data-
set GSE83082 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE83082]. H3K27me3 was present at higher levels at the
H3K27me3 peaks that overlapped with AEBP2 peaks than at
those that did not overlap (Supplementary Fig. S14h). More

importantly, in Aebp2 KO cells, H3K27me3 levels increased at
the peaks overlapping with AEBP2 peaks but did not change at
the peaks without AEBP2 peaks. This result was consistent with
previous reports showing that although AEBP2 increased the
enzymatic activity of PRC2 in vitro, cells without AEBP2
exhibited elevated H3K27me3 levels at AEBP2 target sites60,61.
This result is possibly due to the increased presence of
other PRC2 subcomplexes or the formation of hybrid
PRC2 subcomplexes at AEBP2-depleted loci, leading to increased
PRC2 recruitment to target loci62. We then compared the
enrichment of AEBP2 and H3K27me3 at cluster marker genes
that were identified based on gene expression. Compared to Mix
cluster marker genes, AEBP2 was present at high levels at Proxi
and Dista cluster marker genes in wild-type cells (Fig. 6e).
Similar to AEBP2, H3K27me3 levels were higher at marker genes
of the Proxi and Dista clusters than at those of the Mix cluster. In
addition, H3K27me3 levels increased at Mix cluster marker
genes and were slightly decreased at Proxi cluster marker genes
when Aebp2 was knocked out (Fig. 6f). The compensation of
increased H3K27me3 levels may explain the observation that not
all daughter cells asymmetrically expressed Nanog following
Aebp2 KO.

Discussion
Here, we report a strategy, SET-seq, for jointly profiling gene
expression and histone modification in the same single cells.
mRNA/cDNA hybrids can be tagmentated by Tn5, probably
because of the structural similarity between Tn5 and RNase
H46,47. To utilize this feature for profiling gene expression, we
thoroughly surveyed tagmentation conditions, including tem-
perature, time, and enzyme concentration, to utilize this recently
identified feature for profiling gene expression. Through these
studies, we determined reproducible and time-saving conditions
for the tagmentation of mRNA/cDNA hybrids. Furthermore, the
constructed libraries with the same structures for the epigenome
and transcriptome are convenient, which might simplify the
downstream bioinformatics analysis. SET-seq is quite flexible for
transcriptome profiling and thus the library can be constructed
using any conventional strategy available in the laboratory, such
as the powerful and widely used Smart-seq263. In addition, the
epigenomic profiling method can be improved with small mod-
ifications. For example, two or more chromatin elements can be
recognized by corresponding antibodies and indexed using dif-
ferent transposomes for coprofiling. The other improvement
would be that once the first tagmentation is performed, sequential
ChIP could be conducted to map the concurrency of two chro-
matin binding proteins at the same loci.

The integrated scSET-seq analysis provides exclusive properties
to map cell clusters and trajectories during cell differentiation and
in heterogeneous populations. Similar to Smart-seq2, scSET-seq is
suitable for the throughput of hundreds of cells. Compared to
other single-cell-based methods, scSET-seq has a high gene
recovery rate and positive epigenetic signals (Fig. 1e–h),

Fig. 4 H3K27me3 is dynamically changed during mESC division with Wnt3a beads. a Heatmap showing the correlations between H3K27me3 modules
and transcriptional modules defined by WGCNA. Pearson correlation coefficient was calculated by module scores. b Heatmap showing the correlations
between H3K4me3 modules and transcriptional modules defined by WGCNA. Pearson correlation coefficient was calculated by module scores.
c Enrichments of H3K27me3 at cluster marker genes in individual cells of H3K27me3 scSET-seq. Total levels of H3K27me3 at the Mix, Proxi, and Dista
cluster marker genes were shown respectively. d Violin plots showing the summarized signals in each cluster of cells. Cells were divided into Mix, Proxi,
and Dista clusters and shown as the x-axis. H3K27me3 signals at all marker genes from Mix, Proxi, and Dista clusters were shown respectively. P values
were calculated by Student’s t-test, two-sided. N.S. Not Significant. n= 208 (H3K27me3 Mix cluster), 58 (H3K27me3 Proxi cluster), and 60 (H3K27me3
Dista cluster) cells. e Same as in c, except H3K4me3 scSET-seq was shown. f Same as in d, except H3K4me3 scSET-seq was shown. P values were
calculated by Student’s t-test, two-sided. N.S. Not Significant. n= 83 (H3K4me3 Mix cluster), 75 (H3K4me3 Proxi cluster), and 52 (H3K4me3 Dista
cluster) cells. Source data are provided as a Source Data file.
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Fig. 5 Cells clustered by H3K27me3 recapitulate their distributions clustered by gene expression. a UMAP embedding showing the clustering of cells
from H3K27me3 scSET-seq by H3K27me3 signals. Each dot represented a single cell. The cluster with a majority of proximal cells was defined as the Proxi
cluster, with abundant distal cells was defined as the Dista cluster, and with mixed proximal and distal cells was defined as the Mix cluster. b Colored map
showing the relative position of cells to Wnt3a beads in H3K27me3 scSET-seq. Cells proximal to beads were marked garnet and distal to cells were marked
cyan. c Line maps showing the paired daughter cells among cell clusters in H3K27me3 scSET-seq. Red lines indicated the paired cells were between Proxi
and Dista cluster, green lines indicated the two daughter cells were between Proxi/Dista cluster and Mix cluster, and blue lines connected cells inside the
same cluster. d Same as in a, except H3K4me3 scSET-seq was analyzed. e Same as in b, except H3K4me3 scSET-seq was analyzed. f Same as in c, except
H3K4me3 scSET-seq was analyzed. g Sankey plots showing the cell identities classified by H3K27me3 and joint transcriptional profiles. Epi, cell clusters
defined by epigenetic profiles. Exp, cell clusters identified by gene expression profiles. h Sankey plots showing the cell identities classified by H3K4me3 and
joint transcriptional profiles. i Bar graph showing the percentage of cells projected by gene expression profiles from H3K27me3 scSET-seq. Cell clusters
identified by H3K27me3 were shown as the x-axis. Exp, the percentage of cells classified by corresponding gene expression was used as a negative control.
P values were calculated by Student’s t-test, two-sided. j Same as in i, except H3K4me3 scSET-seq data were analyzed. N.S. Not Significant. Source data
are provided as a Source Data file.
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the median, and whiskers with maximum 1.5 IQR (interquartile range). n= 90, 108, and 200 Aebp2 peaks at Mix, Proxi and Dista markers, respectively.
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Data file.
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providing in-depth sequencing results for downstream analysis.
When we called peaks in scSET-seq and compared them with
bulk ENCODE data, much fewer peaks were called. A potential
explanation is that we used stringent conditions for peak calling,
and some low-quality peaks were excluded. Under this condition,
approximately 60% of peaks in scSET-seq data overlapped with
ENCODE peaks (Supplementary Fig. S6e and f). SET-seq, Paired-
Tag and CoTECH are similar in terms of the preparation of
epigenomic libraries but differ in the preparation of gene
expression libraries. SET-seq probes cytoplasmic RNA with a
large number of genes detected, while Paired-Tag identifies
nuclear RNA with a medium number of genes recovered. In
addition, SET-seq has a lower throughput than Paired-Tag and
CoTECH. Thus, SET-seq is suitable for situations in which single
cells cannot be sorted or selected using a high-throughput
approach. In Wnt-induced asymmetric cell division, the target
cells are distinguished based on their relative positions to Wnt3a
beads. Therefore, conventional FACS sorting, which is based on
fluorescence intensity, cannot be conducted for single-cell col-
lection. Cells attached to beads or not are manually picked and
subjected to scSET-seq for high recovery of epigenomic and
transcriptional profiles.

We used cisTopic to remove potential noise before we incor-
porated epigenomic signals into single cells. The calculated sig-
nals are more specific in single cells. The throughput of this
method is similar to Smart-seq2, which can be used to profile
several hundred cells in one experiment. The number of detected
cells is limited mainly by the asymmetric division system, as the
current technology cannot determine the relative positions of cells
to beads. Moreover, the FRiPs were slightly higher for H3K4me3
than for H3K27me3 in both scSET-seq and Paired-Tag analyses
(Fig. 1h). Considering the noise of sequencing results, the
accuracies of H3K27me3 would be lower than H3K4me3, and the
decrease in correlations of H3K27m3 with gene expression would
be larger than that of H3K4me3 with gene expression. Under this
condition, we still found that H3K27me3 was highly correlated
with changes in gene expression during asymmetric cell division.

Spatiotemporal cell fate determination is crucial for proper
tissue organization, especially in stem cell niches, where Wnt
signaling serves as a cue for stem cell self-renewal and cell fate
determination in an evolutionarily conserved manner7,64–67. The
effects of Wnt signaling on stem cells have been extensively
analyzed when Wnt signaling is globally activated/inactivated. In
vivo, Wnt signaling, which usually functions as a local gradient in
stem cells, is understudied due to technical limitations. Recent
technical progress in Wnt3a-coated beads and single-cell imaging
have provided insights into Wnt-induced asymmetric cell
division12. In addition to the finding that Wnt3a-coated beads
function through the activation of Lrp6 and crosstalk with
ionotropic glutamate receptor activity57, newly synthesized and
parental histones are segregated into daughter cells in a non-
overlapping pattern15, indicating an epigenomic alteration in
asymmetric cell division. Asymmetric division of stem cells has
been mainly elucidated in Drosophila, such as male germline stem
cells (GSCs). Interestingly, almost all Drosophila male GSCs
undergo asymmetric division to produce one GSC and one
gonialblast after a cell cycle68, while approximately 60% of mESCs
divide asymmetrically when cells are attached to Wnt3a
beads12,15 (Fig. 6d). The heterogeneity of mESCs may be
responsible for the different responses to the localized Wnt
signal69–71. Previous studies are mainly based on high-resolution
imaging to detect changes in gene expression and signaling
activation. An informative approach would be to profile the
epigenome and transcriptome of daughter cells for a mechanistic
understanding. Using scSET-seq, several genes were classified as
marker genes for asymmetrically divided cells, providing a list of

marker genes for future analyses of the molecular mechanisms of
asymmetric cell division. In addition, the identification of the Mix
cluster, which was branched from the main trajectory, provides
other insights into asymmetric cell division, where the divided
cells shifted to a different lineage other than the typical asym-
metrically divided cells.

During the progression of differentiation, stem cells become
restricted in their differentiation potential. Dynamic changes in
histone modifications and associated chromatin structure are
proposed to stabilize lineage-specific gene expression and regulate
differentiation potential. Remarkably, the differentiation process
might be reprogrammed through manipulation with small-
molecule inhibitors or transcription factors that transform cells
into a stem cell-like state or into different cell lineages. Chromatin
assembly factor-1 (CAF-1), a histone chaperone responsible for
the deposition of histone H3.1 to maintain chromatin structure, is
discovered to function as a potent barrier in the reversion of
pluripotent cells to a totipotent-like state, further implicating the
essential chromatin structure in the regulation of cellular
plasticity72. H3K27me3, which is usually linked to repressed gene
expression, plays important roles in mammalian embryonic
development and induced pluripotent stem cell (iPSC) genera-
tion. Generally, H3K4me3 is associated with active gene expres-
sion and regulates cell fate decisions. In mESCs, H3K27me3 and
H3K4me3 are enriched at the same promoters as bivalent histone
marks, which prime associated genes for rapid activation during
development. Studies have shown drastic differences in the epi-
genomic profiles of hESCs and primary fibroblasts, whereas
most changes arise from repressive histone marks, including
H3K27me373. Introduction of a heterozygous Y641F mutation in
EZH2, which modifies the ratio of H3K27me2 and H3K27me3 in
mESCs, is sufficient for the gain and suppression of cell lineage-
specific gene expression and cellular phenotypes74. Moreover, the
global loss of H3K27me3 marks facilitates the generation of iPSCs
in mice and humans75. Similar to H3K27me3, repression of
H3K4me3 improves the efficiency and blastocyst quality in
somatic cell nuclear transfer76. Knockout of Mll2, which is
responsible for the methylation of H3K4me3, results in impaired
embryoid body formation and a failure to activate or delay in the
activation kinetics of many bivalent genes that are key regulators
of embryonic development and differentiation77,78. Mechan-
istically, MLL2 methylates H3K4 on many bivalent genes and
protects these genes from repression by repelling PRC2 and the
DNA methylation machinery79. During early embryonic devel-
opment, the dynamic gain and loss of H3K4me3 and H3K27me3
occur at different embryogenesis stages. Cell context-dependent
relationships among histone modifications are also important for
the regulation of pluripotency and cell fate commitment, where
different histone marks are dramatically changed at specific
stages. When Wnt signaling is inhibited, mESCs are differentiated
toward epiblast stem cell-like (EpiLC) states. Previous reports
have shown that histone modifications are largely reorganized
during the induction of mESCs to EpiLCs80. EpiLCs exhibit
abundant bivalent gene promoters with decreased H3K27me3
levels compared to mESCs. Although EpiLCs are subsequently
induced to differentiate into primordial germ cell-like cells
(PGCLCs), H3K4me3 level initially decreases at the
differentiation-related genes but subsequently increases with a
concomitant increase in H3K27me3 levels. Consistent with the
transformation from mESCs to EpiLCs, we also detected that
mESCs treated without WNT3a showed substantial changes in
H3K27me3 peaks, while H3K4me3 peaks largely overlapped
(Supplementary Fig. S7c).

Using scSET-seq, we found that Aebp2 KO increases the ratio
of mESCs expressing Nanog asymmetrically with localized Wnt
signaling. The core components of PRC2 in mammalian cells do
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not have DNA binding capabilities but form complexes with
regulatory proteins, including AEBP2 and JARID261,81–83. Several
lines of evidence have suggested that AEBP2 and JARID2 are
critical for the enzymatic activities and recruitment of PRC2.
JARID2, which mainly interacts with EED, is methylated by
PRC2 and mimics a methylated H3 tail, whereas unmethylated
AEBP2 mimics an unmethylated H3 tail and interacts with
RBBP4 to stimulate PRC2 activity. AEBP2 is a conserved zinc
finger protein that directly targets PRC2 to chromatin through its
DNA binding ability84. In addition, JARID2 binds both DNA and
long noncoding RNAs to recruit PRC2 onto chromatin85,86.
Moreover, AEBP2 and JARID2 are assembled into the PRC2
complex together or independently, acting concurrently or indi-
vidually in the regulation of PRC2 and subsequent H3K27me3
levels. In this way, AEBP2 and JARID2 function in a synergistic
manner to promote enzymatic activity and to target PRC2 to
specific chromatin loci, silencing key regulatory genes during the
differentiation and development of mESCs85,87. Upon localized
Wnt signaling, the average expression level of Aebp2 is increased
in symmetrically divided cells, but the average expression level of
Jarid2 is high in asymmetrically divided cells. The combined
effects of Aebp2 and Jarid2 are not likely responsible for the cell
fate decision. As previously reported60,61, we also observed a
minor increase in H3K27me3 levels at promoters when Aebp2
was knocked out. AEBP2 is important for the formation of dis-
tinct PRC2 subcomplexes. Knockout of Aebp2, but not Ezh2,
increases the ratio of mESCs expressing Nanog asymmetrically
following localized Wnt signaling. The delicate and localized
programming of H3K27me3, as determined by AEBP2, is needed
during asymmetric cell division. In the Mix cluster, Aebp2
increased H3K27me3 levels at marker genes to repress the acti-
vation of genes that were important for asymmetrical cell divi-
sion. An interesting approach would to investigate how the
changes in epigenome information at subsets of chromatin loci,
but not the total levels, participate in the regulation of cell dif-
ferentiation. The prolonged KO of Aebp2 might also exert a
secondary effect. A rescue or acute KO assay may help to address
this possibility. In the rescue assay, Aebp2 must be expressed at
the original level, which is important to maintain cell fate
determination. Acute KO timing may affect the KO effects. If
Aebp2 is knocked out too early, the prolonged loss of Aebp2 may
lead to a secondary effect. If Aebp2 KO is induced too late in
single cells, the AEBP2 protein is not fully degraded. These assays,
if performed perfectly, might provide other clues to dissect the
effect of Aebp2 on cell fate determination.

Several improvements will help us to better understand the cell
fate decision during Wnt3a-induced asymmetric cell division. We
monitored the division of parental cells with white light to con-
firm that two daughter cells were derived from the same parental
cell. The intensities of Nanog were not recorded since we needed
to proceed the cells within a short time. Cells migrated fast, and
many of the two paired daughter cells moved to a slightly dif-
ferent distance in the Z axis, leading to the loss of imaging focus
for one of the cells when immunofluorescence images were
captured. The collection of a sufficient number of cells for scSET-
seq is very difficult if the immunofluorescence intensities must be
recorded in all cells. Studies recording this information for the
comparison of cell clusters and immunofluorescence intensities in
further experiments would be interesting. During Wnt3a bead-
induced asymmetric cell division, a small population of cells
divided in the opposite direction, exhibiting higher Nanog signals
in distal cells than in proximal cells. How this population of cells
is regulated is also interesting. Because of their rarities, we did not
obtain a sufficient number of cells to determine the epigenome
and transcriptome profiles of these cells using scSET-seq. The
technologies that can be used to sort the cells based on their

relative positions to beads should be developed to increase the
throughput for scSET-seq. In addition, with modifications of
pooling the samples before library construction, this method can
be improved to increase the throughput and reduce the cost. In
the future, an interesting approach would be to use this system to
analyze how parental and newly synthesized histones are inher-
ited during asymmetric cell division. These analyses would pro-
vide more evidence to understand the molecular mechanisms
underlying asymmetric cell division.

Methods
mESCs culture and incubation with Wnt3a beads. Mouse embryonic stem cell
ES-E14TG2a from ATCC (CRL-1821) were cultured on 0.1% gelatin-coated plates
in DMEM medium containing 15% Fetal Bovine Serum, 1% Penicillin/Strepto-
mycin, 1% Glutamax, 0.1 mM 2-mercaptoethanol, 1% MEM Non-Essential Amino
Acids, 1% Sodium Pyruvate, and 1,000 U/ml recombinant leukemia inhibitory
factor (LIF).

Wnt3a coated beads were prepared as described88. Localized Wnt3a beads with
mESCs were engineered in the 2 cm plates following the previous method15. To
achieve one cell and one bead contact, mESCs were seeded at a low concentration
before imaging or collecting. After seeding the cells and Wnt3a beads, samples were
collected at around 12 h.

Primers. Primers used in this study were listed in Supplementary Dataset 6.

RT-PCR. RNA was isolated by UNlQ-10 Column Trizol Total RNA Isolation Kit
(Sangon Biotech, Cat.# B511321) according to manufacturer instructions. 500 ng of
total RNA was used for reverse transcription by EasyScript® One-Step gDNA
Removal and cDNA Synthesis SuperMix (TransGen, Cat.# AE311-02) according to
manufacturer instructions. Two-step qPCR (95 °C for 30 s; 40 cycles of 95 °C for 5 s
and 60 °C for15 s) was performed in 10 μl reaction with 0.1 μl 10 mM RT-PCR
primers (Supplementary Dataset 6) and 5 μl Hieff qPCR SYBR Green Master Mix
(YEASEN, Cat.# 11201ES08) using Quantagene q225 qPCR system (Kubo Tech-
nology, Beijing). β-actin was used as a control to normalize the expression of
other genes.

pA-Tn5 protein purification. Plasmid expressing pA-Tn5 was constructed from
vector pTXB1. pA-Tn5 was purified as described before with minor
modifications89. Briefly, cells expressing pA-Tn5 were resuspended in 40 ml chilled
cell lysis buffer (20 mM HEPES pH 7.2, 0.8 M NaCl, 1 mM EDTA, 10% glycerol,
0.1% Triton X-100). The lysate was sonicated for 4 times (15 s on and 15 s off) on
ice and then centrifuged at 30,970 × g, 4 °C for 30 min. 500 μl 10% PEI was added
drop by drop with stirring. The precipitate was removed by centrifugation at 17,420
× g, 4 °C for 15 min. Cleared supernatant was incubated with 2 ml pre-washed IgG-
Sepharose beads (washed with 10 ml cell lysis buffer for three times) for 6 h. Then
the beads were washed with 10 ml Washing buffer (20 mM HEPES at pH 7.2, 0.3 M
NaCl, 1 mM EDTA, 10% glycerol 0.1% Triton X-100) for four times. pA-Tn5 was
eluted with 2 ml 0.5 M NH4Ac (pH 3.0) twice and then neutralized by 1M Tris-
HCl (pH 9.0) to pH 7.2 immediately. Protein was dialyzed twice to dialysis buffer
(40 mM HEPES pH 7.2, 0.2 M NaCl, 0.2 mM EDTA, 2 mM DTT, 20% glycerol)
at 4 °C.

Transposome assembly. Transposomes were assembled following the protocol as
described before90. To anneal adapters, Tn5ME-A and Tn5ME-B oligos at 100 µM
(I5_transposome and I7_transposome oligos for indexed transposome assembly)
was mixed with equal volume of Tn5MErev oligos at 100 µM respectively (Sup-
plementary Dataset 6). Oligos were placed in a thermal cycler at 95 °C for 5 min
followed by gradually cooling at 0.1 °C/s to 25 °C. Then equal amount of annealed
Tn5ME-A and Tn5ME-B (I5_transposome and I7_transposome for indexed
transposome assembly) oligos was mixed. 70 µl pA-Tn5 protein at around 0.5 mg/
ml was incubated with 10 µl of mixed primers at room temperature for 1 h.

In vitro mRNA/cDNA hybrid tagmentation and sequencing. Total RNA was
extracted by the UNIQ-10 Column Total RNA Purification kit (Sangon Biotech).
Genomic DNA was digested by 0.5 µl DNase I (NEB) at 37 °C for 30 min and then
inactivated at 75 °C for 10 min. mRNA/cDNA hybrids were reverse transcribed by
Thermo Fisher SuperScript™ IV kit under the manufacture’s instruction. Samples
were tagementated in DMF buffer (10% DMF, 10 mM Tris-HCl pH 7.5, 2 mM
MgCl2) by Tn5 transposomes at different temperature and time as indicated in a
20 µl reaction. To stop the reaction and release the tagmentated cDNA, 2.25 µl
0.5 M EDTA, 2.75 µl 10% SDS, and 0.5 µl 20 mg/ml Proteinase K were added to the
20 µl reaction and incubated at 55 °C for 30 min followed by 70 °C for 20 min.
DNA was purified by 1.2X AMPure XP beads. Library preparation was done as
described previously91. In brief, 20 µl purified DNA was mixed with 2.5 µl of
uniquely barcoded P5_nextera and P7_nextera primer (10 µM) (Supplementary
Dataset 6). 25 µl NEBNext HiFi 2X PCR Master mix was added and mixed.
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Samples were placed in a thermo cycler using the following cycling condition: 72 °C
for 5 min; 98 °C for 30 s; 15 cycles of 98 °C for 10 s and 63 °C for 10 s; final
extension at 72 °C for 1 min and hold at 8 °C. Post-PCR clean-up was performed by
adding 1.2X volume of AMPure XP beads. Libraries were sequenced in paired end
150 bp mode on the NovaSeq platform.

Ligation based RNA-seq. Ligation based RNA-seq libraries were prepared as
described before92. In brief, the poly-A mRNA was purified from the total RNA of
mESCs by poly-T oligo. Then, the poly-A mRNA was fragmented and reverse
transcribed into cDNA with random primers. A second strand cDNA was syn-
thesized with DNA Polymerase I and RNase H. The single A base was added for
the ligation of the cDNA to sequencing primers. The cDNAs were amplified for
sequencing with pair-end reads of 100 bp on the BGISEQ-500 platform.

Bulk SET-seq. Cells were harvested and then lysed in 1 ml NE buffer (20 mM
HEPES pH 7.5, 0.5 mM KCl, 0.5 mM Spermidine, 0.5% Triton X-100, 20% Gly-
cerol, 1 mM PMSF) on ice for 10 min. 10 μl Concanavalin A coated magnetic beads
(Bangs Laboratories, Inc) were washed twice with Binding buffer (20 mM HEPES
pH 7.5, 0.5 mM KCl, 0.5 mM Spermidine, 0.5% Triton X-100, 20% Glycerol, 2 mM
MnCl2 1 mM PMSF) before being added to each sample. Samples with beads were
then incubated at room temperature for 10 min.

Beads-bound nuclei were treated as CUT&Tag with modifications40. Samples
were blocked with 1 ml Blocking buffer (20 mM HEPES pH 7.5, 150 mM NaCl,
0.5 mM Spermidine, 0.5% BSA, 1 mM EDTA, 1 mM PMSF) at room temperature
for 10 min. Samples were then incubated with 1:200 diluted anti-H3K27me3 or
anti-H3K4me3 primary antibody in 50 μl Washing buffer (20 mM HEPES pH 7.5,
150 mM NaCl, 0.5 mM Spermidine, 0.5% BSA, 1 mM PMSF) at room temperature
for 2 h or at 4 °C overnight. The nuclei were washed with Washing buffer twice
(20 mM HEPES pH 7.5, 150 mM NaCl, 0.5 mM Spermidine, 0.5% BSA, 1 mM
PMSF) before incubated with 1:100 diluted anti-rabbit secondary antibody at room
temperature for 30 min. After washing with Washing buffer (20 mM HEPES pH
7.5, 150 mM NaCl, 0.5 mM Spermidine, 0.5% BSA, 1 mM PMSF) once, 50 µl of pA-
Tn5 binding reaction was conducted at room temperature for 1 h by 1:25 dilution
of assembled pA-Tn5 transposomes in Washing buffer (20 mM HEPES pH 7.5,
150 mM NaCl, 0.5 mM Spermidine, 0.5% BSA, 1 mM PMSF). Samples were
washed twice with Washing buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 0.5 mM
Spermidine, 0.5% BSA, 1 mM PMSF). Tagmentation was initiated by adding 50 µl
tagmentation buffer (Washing buffer with 300 mM NaCl and 10 mM MgCl2) and
incubating at 37 °C for 1 h. To stop the tagmentation and release DNA, 2.25 µl
0.5 M EDTA, 2.75 µl 10% SDS, and 0.5 µl 20 mg/ml Proteinase K were added to the
sample and incubated at 55 °C for 30 min followed by 70 °C for 20 min. DNA was
purified by QIAquick PCR purification kit. Libraries were constructed using
indexed P5_nextera and P7_nextera primers (Supplementary Dataset 6) as
described above in mRNA/cDNA hybrid tagmentation and sequencing.

The supernatant after Concanavalin A beads binding was transferred to another
RNase-free tube followed by centrifugation at 3,000 x g, 4 °C for 5 min to remove
the unbound nuclei carryover. The supernatant was carefully transferred to another
RNase free PCR tube and incubated with 1 μl DNase I (NEB) and 1 μl Recombinant
RNase Inhibitor (Takara Bio) at 37 °C for 30 min followed by 70 °C for 10 min to
further eliminate the genomic DNA carryover. The reverse transcription was done
by using Thermo Fisher SuperScript™ IV kit. 11 μl sample was mixed with 1 μl
50 μM Oligo d(T)20 and 1 μl 10 mM dNTP, incubated at 65 °C for 5 min, and then
cooled on ice for 2 min immediately. The sample was mixed with 4 μl 5X SSIV
Buffer, 1 μl 100 mM DTT, 1 μl Ribonuclease Inhibitor, and 1 μl SuperScriptTM

Reverse Transcriptase. Reactions were incubated at 42 °C for 90 min, 10 cycles of
50 °C for 2 min followed by 42 °C for 2 min, and 85 °C for 5 min. mRNA/cDNA
hybrids were then tagementated in DMF buffer (10% DMF, 10 mM Tris-HCl pH
7.5, 2 mM MgCl2) with 1 μg pA-Tn5 transposomes at 37 °C for 5 min in a 20 μl
reaction. Tagmentation was stopped by adding 2.25 µl 0.5 M EDTA, 2.75 µl 10%
SDS, and 0.5 µl 20 mg/ml Proteinase K to every 20 µl reaction. Samples were
incubated at 55 °C for 30 min followed by 70 °C for 20 min. DNA was purified by
1.2X AMPure XP beads for library construction using indexed P5_nextera and
P7_nextera primers (Supplementary Dataset 6) as described above.

scSET-seq. Four hours after seeding the mESCs with Wnt3a beads, cell culture
plates were mounted in live cell image system (DeltaVision Elite Deconvolution
Microscope). Cells connected to one Wnt3a beads were monitored until they were
collected for scSET-seq (Supplementary Movie 1). mESCs were washed with PBS
once and slightly trypsinized for 3 min. The trypsinization was stopped by adding
fresh medium. Single cells were picked by mouth pipette into the PBS with 0.04%
BSA drops. Until the cells were completely dispersed, single cells were transferred
under the stereoscopic microscope into 96 well-plate with 8 μl NE Buffer (20 mM
HEPES pH 7.5, 0.5 mM KCl, 0.5 mM Spermidine, 0.5% Triton X-100, 20% Gly-
cerol) plus 1:20 diluted Recombinant RNase Inhibitor (Takara Bio). Concanavalin
A coated magnetic beads were washed twice with Binding buffer (20 mM HEPES
pH 7.5, 0.5 mM KCl, 0.5 mM Spermidine, 0.5% Triton X-100, 20% Glycerol, 2 mM
MnCl2 1 mM PMSF). 1 μl pre-washed Concanavalin A coated magnetic beads were
added to each well, and incubated at room temperature for 10 min. The

supernatant was transferred to another RNase-free 96-well plate with 0.25 μl DNase
I (NEB) and 0.25 μl Recombinant RNase Inhibitor (Takara Bio) in each well.

Single nuclei were resuspended in 100 μl Blocking buffer (20 mM HEPES pH
7.5, 150 mM NaCl, 0.5 mM Spermidine, 0.5% BSA, 1 mM EDTA, 1 mM PMSF) at
room temperature for 10 min. The supernatant was discarded and nuclei were
resuspended in 10 μl Washing buffer (20 mM HEPES pH 7.5, 150 mM NaCl,
0.5 mM Spermidine, 0.5% BSA, 1 mM PMSF) with 1:200 diluted anti-H3K27me3
or anti-H3K4me3 primary antibody. Samples were incubated at 4 °C overnight.
After washing with Washing buffer once (20 mM HEPES pH 7.5, 150 mM NaCl,
0.5 mM Spermidine, 0.5% BSA, 1 mM PMSF), 1:100 diluted anti-rabbit secondary
antibodies were added in 10 μl Washing buffer and incubated at room temperature
for 1 h. Samples were then washed once with Washing buffer (20 mM HEPES pH
7.5, 150 mM NaCl, 0.5 mM Spermidine, 0.5% BSA, 1 mM PMSF) and mixed with
1:25 diluted pA-Tn5 transposomes with indexed i5 and i7 primers (Supplementary
Dataset 6) in 10 µl Washing buffer. After being incubated at room temperature for
1 h, genomic DNA was tagmentated in 10 μl Tagmentation buffer (Washing buffer
with 300 mM NaCl and 10 mM MgCl2) at 37 °C for 1 h. The reactions were
stopped by adding 1.12 µl 0.25 M EDTA, 1.37 µl 10% SDS, and 0.25 µl 20 mg/ml
Proteinase K. Samples were then pooled together. DNA was purified by QIAGEN
MinElute PCR Purification Kit.

The supernatant after Concanavalin A beads binding was used for gene
expression profiling. After mixed with 0.2 μl DNase I (NEB) and 0.2 μl
Recombinant RNase Inhibitor (Takara Bio), the supernatant was incubated at 37 °C
for 30 min followed by 70 °C for 10 min. Each sample was mixed with 1 μl 50 μM
Oligo d(T)20 and 1 μl 10 mM dNTP, incubated at 65 °C for 5 min, and immediately
put on ice for 2 min. Reverse transcription was conducted by mixing with 4 μl 5X
SSIV Buffer, 1 μl 100 mM DTT, 1 μl Ribonuclease inhibitor, and 0.2 μl
SuperScriptTM Reverse Transcriptase. Samples were incubated at 42 °C for 90 min;
10 cycles of 50 °C for 2 min and 42 °C for 2 min; 85 °C for 5 min. Reverse
transcribed mRNA/cDNA hybrids were then tagementated by 0.5 μg transposomes
with indexed i5 and i7 (Supplementary Dataset 6) in DMF buffer (10% DMF,
10 mM Tris-HCl pH 7.5, 2 mM MgCl2) at 37 °C for 5 min in a 20 μl reaction.
Reaction was stopped by adding 2.25 µl 0.5 M EDTA, 2.75 µl 10% SDS, and 0.5 µl
20 mg/mL Proteinase K and incubated at 55 °C for 30 min followed by 70 °C for
20 min. Samples were pooled and purified by QIAGEN MinElute PCR Purification
Kit to 30 µl H2O.

Libraries from epigenome and transcriptome were constructed with a structure
similar to TruSeq libraries for pooling with other samples as described before51.
20 µl eluted DNA was mixed with 2 µl connect forward primer and connect reverse
primer (10 µM) (Supplementary Dataset 6). 25 µl NEBNext HiFi 2X PCR Master
mix was added and mixed. Samples were amplified using the following cycling
condition: 72 °C for 5 min; 95 °C for 30 s; 15 cycles of 98 °C for 10 s, 63 °C for 30 s,
and 72 °C for 1 min; 72 °C for 5 min, and hold at 8 °C. 1 µl Exonuclease I (NEB)
was added and incubated at 37 °C for 30 min followed by 80 °C for 20 min. Samples
were then mixed with 1.25 µl Universal Primer (10 µM) and 1.25 µl P7_TruSeq
index primer (10 µM) (Supplementary Dataset 6), 2.5 µl H2O, and 5 µl NEBNext
HiFi 2X PCR Master mix. Amplification was conducted in a thermo cycler using
the following cycling condition: 95 °C for 30 s; 8 cycles of 98 °C for 10 s, 63 °C for
30 s, and 72 °C for 1 min; 72 °C for 5 min, and hold at 8 °C. Post-PCR clean-up was
performed by adding 0.5X volume of AMPure XP beads, incubating at room
temperature for 10 min, removing beads by magnet stand, and adding 0.5X volume
of AMPure XP beads again. Samples with beads were incubated at room
temperature for 10 min, washed twice by 80% ethanol, and eluted in 20 µl H2O.
Libraries were sequenced in paired end 150 bp mode on the NovaSeq platform.

Antibodies. Rabbit polyclonal anti-Histone H3 (Cat.# ab1791, Abcam), 1:5000
diluted for Western blot; Rabbit polyclonal anti-Histone H3K27me3 (Cat.# 9733,
Cell Signaling Technology), 1:1000 diluted for Western blot, 1:50 diluted for SET-
seq, 1:200 diluted for scSET-seq; Rabbit polyclonal anti-Histone H3K4me3 (Cat.#
ab8580, Abcam), 1:1000 diluted for Western blot, 1:50 diluted for SET-seq, 1:200
diluted for scSET-seq; Rabbit polyclonal anti-Histone H3K9me3 (Cat.# ab8898,
Abcam), 1:1000 diluted for Western blot; Rabbit polyclonal anti-Histone H3K27ac
(Cat.# ab4729, Abcam), 1:1000 diluted for Western blot; Rabbit monoclonal anti-
EZH2 (Cat.# 5246, Clone name D2C9, Cell Signaling Technology), 1:1000 diluted
for Western blot; Rabbit monoclonal anti-AEBP2 (Cat.# 14129, Clone name
D7C6X, Cell Signaling Technology), 1:1000 diluted for Western blot; Rabbit
polyclonal anti-JARID2 (Cat.# G-2, Novus Biologicals), 1:1000 diluted for Western
blot; Peroxidase AffiniPure Goat anti-Rabbit IgG (H+ L) (Cat.# 111-035-003,
Jackson ImmunoResearch Laboratories), 1:1000 diluted for Western blot.

Bulk transcriptional SET-seq data processing. Sequencing reads adapter and
low-quality bases were removed by Trim Galore (version 0.6.4) [https://
www.bioinformatics.babraham.ac.uk/projects/trim_galore] with the parameter
‘--paired’. Filtered reads were mapped to the mouse reference UCSC mm9 [https://
hgdownload.soe.ucsc.edu/goldenPath/mm9/bigZips/], which excluded mitochon-
dria and random chromosomes, by STAR (version 2.5.4b)93. Expression matrixes
were counted by featureCounts94 (version 2.0.0) and normalized as reads per
kilobase per million mapped reads (RPKM) by R package edgeR (version 3.28.1)95.
The differential analysis was done by R package DEseq296 (version 1.26.0). To
calculate the correlation of different RNA-seq samples, ellipse correlation plots
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were plotted by R package corrplot (version 0.84) [https://github.com/taiyun/
corrplot] after merging two repeats. Heatmaps were drawn by R package pheatmap
(version 1.0.12) [https://github.com/raivokolde/pheatmap] using top 2000 average
expression genes. The Venn plots were plotted by R package VennDiagram (ver-
sion 1.6.20) [https://github.com/cran/VennDiagram]. The number of reads map-
ped to exons or introns was calculated by Homer96 (version 4.11) with the
parameter ‘analyzeRepeats.Pl -count exons -raw’ or ‘analyzeRepeats.pl -count
introns -raw’. The correlations between two repeats were summarized in Supple-
mentary Table 1. The correlation was calculated by the coefficient of determination
(R^2) of their shared genes’ RPKM values. The number of total reads and unique
mapped reads were summarized in Supplementary Dataset 7.

Receiver operating characteristic (ROC) curve. ROC curves were used to
evaluate the qualities of bulk SET-seq of histone mark with different cell
numbers49. Particularly, peaks recovered in ENCODE H3K27me3 ChIP-
seq ENCSR059MBO [https://www.encodeproject.org/experiments/
ENCSR059MBO/] at promoter regions (3,000 bp downstream to 500 bp upstream
of gene TSS) were used as standard positives and promoter regions not overlapped
with ENCODE H3K27me3 ChIP-seq peaks were defined as standard negatives.
Following the standard, ROC curves were constructed by the following definition:
true positives (TPs), peaks that overlapped with standard positives; false positives
(FPs), peaks that did not overlap with standard positives; false negatives (FNs),
peaks that did not overlap with standard negatives; true negatives (TNs), peaks that
overlapped with standard negatives. The true positive rate (TPR) was defined as
TP/(TP+ FN) and the false positive rate (FPR) was defined as FP/(FP+ TN). TPR
and FPR value sets were used to construct ROC curves by varying the peak-calling
threshold.

Bulk epigenomic SET-seq data processing and peak calling. Adapters and low-
quality bases in data were removed by Trim Galore (version 0.6.4) [https://
www.bioinformatics.babraham.ac.uk/projects/trim_galore] with the parameter
‘--paired’ after merging two repeats. Trimmed reads were then mapped to the
mouse reference genome UCSC mm9 [https://hgdownload.soe.ucsc.edu/
goldenPath/mm9/bigZips/] using Bowtie297 (version 2.3.5.1). PCR duplicates were
removed by GATK (version 4.1.4.0) [https://github.com/broadinstitute/gatk] with
the parameter ‘--REMOVE_DUPLICATES= true’. The reads mapped to mito-
chondria and random chromosomes were filtered out. Peaks were identified using
MACS2 (version 2.2.6)98 to call broad peaks for H3K27me3 and narrow peaks for
H3K4me3. ENCODE H3K27me3 ChIP-seq and its input data were downloaded
from ENCSR059MBO [https://www.encodeproject.org/experiments/
ENCSR059MBO/] and ENCSR326ULS [https://www.encodeproject.org/
experiments/ENCSR326ULS/] as reference data. Peaks overlapped among different
samples were generated by Homer with the parameter ‘mergePeaks –venn -d 3000’.
Peak structures of different concentrations were generated by R package
ChIPseeker99 (version 1.22.1).

BEDTools100 (version 2.92.2) and bedGraphToBigWig (version 4) [https://
www.encodeproject.org/software/bedgraphtobigwig/] were used to normalize
mapped reads and calculate the coverage of signals with the following parameters
‘genomecov --scaleFactor 10,000,000/mapped_reads_number’. Heatmaps were
generated by computeMatrix and plotHeatmap with reference-point mode in
deepTools101 (version 3.4.3). Library complexity was estimated and predicted using
the preseq102 (version 2.0.3). The number of total reads and unique mapped reads
were summarized in Supplementary Dataset 7. The correlations between two
repeats were summarized in Supplementary Table 2. A 1 Kb sliding window across
the whole genome was used to calculate the Pearson product moment correlation.
Peak qualities were summarized in Supplementary Dataset 8.

Transcriptional scSET-seq data processing. To get the single-cell gene expres-
sion matrixes, pipeline tool zUMIs103 (version 2.7.1c) was used to split reads into
each cell by cell-specific barcode and map reads to mouse genome UCSC mm9
[https://hgdownload.soe.ucsc.edu/goldenPath/mm9/bigZips/], which excluded
mitochondria and random chromosomes. The expression matrixes were analyzed
by R package Seurat53 (version 3.2.1) using genes mapped to both exons and
introns. To compare the transcriptional scSET-seq with other conventional
scRNA-seq data, Smart-seq2 data were downloaded from GSE151334 [https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE151334] and 48 cells were ran-
domly picked from this data after quality control (filtering cells with detected gene
numbers less than 1000). Saturation curves were constructed with detected gene
numbers when reads were randomly gradient sampled 4 M, 3 M, 2M,1M, 0.5 M,
and 0.25M from total reads.

Epigenomic scSET-seq data processing and quality check. Epigenomic scSET-
seq data were de-multiplexed by in-house script by the combination of cell-specific
barcodes in read1 and read2. The single-cell data were processed analogously as the
bulk SET-seq data described above. To visualize scSET-seq signals, deepTools was
used to normalize mapped reads and calculate the coverage of genome-wide
continuous 50 bins with the following parameters ‘bamCoverage --scaleFactor
10,000,000/mapped_reads_number’ and signals were visualized in track view using

Integrative Genomics Viewer (IGV)104 (version 2.6.3). To evaluate the perfor-
mance of scSET-seq data, FRiPs was defined as the fraction of reads in peaks that
called from merged single cell data as the positive reference peaks. scATAC-seq
downloaded from GSE100033 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE100033] were used for comparisons with scSET-seq data.

Embedding epigenomic and transcriptional data in bulk SET-seq. deepTools
was used to calculate the normalized signal scores by ‘multiBigwigSummary BED-
file’ with SET-seq peak files from 10,000 cells as a reference. To define the
enrichments of epigenomic signals to individual genes, peaks were annotated to
nearby genes by R package ChIPseeker. Then signal scores were calculated at each
gene and further normalized by peak length. H3K4me3 and H3K27me3 signal
scores matrixes were merged according to their shared genes. Finally, epigenomic
and transcriptional data were merged by both detected genes. Genes were clustered
by hierarchical clustering algorithms using row scaled signal scores and heatmaps
were plotted with column scaled signal scores by pheatmap.

scSET-Seq data analysis for asymmetric cell division. Transcriptional scSET-
seq raw reads processing was performed as described above. R package Seurat was
used for analyzing transcriptional data. Quality control was done by removing cells
with less than 1,000 or more than 5,000 genes detected. To correct batch effect,
canonical correlation analysis (CCA) was performed with Seurat function ‘Inte-
grateData’. Datasets from H3K27me3 and H3K4me3 scSET-seq were aggregated
for better reproduction of dimensional reduction. Differential genes were chosen by
threshold (p value < 0.05 and the absolute value of log2(FoldChange) > 2) for linear
dimensional reduction and nonlinear dimension. Clustering was performed by a
shared nearest neighbor (SNN) algorithm with the function ‘FindClusters’. Marker
genes of each cluster were generated by function ‘FindAllMarkers’. GO analysis was
performed by clusterProfiler105 (version 3.14.3) using all marker genes of each
cluster. Marker genes ranked top 50 and top5 of each cluster were filtered
according to log2(FoldChange) to generate single-cell clustering plots and trajectory
plots combined with epigenomic scSET-seq and visualize the gene expression
distribution, respectively. For pseudotime analysis, differential genes (P value <0.05
and the absolute value of log2(FoldChange) > 2) were selected to order cells in
pseudotime by Monocle2106 (version 2.14) and STREAM58 (version 1.0). The
function ‘plot_genes_branched_heatmap’ in Monocle2 was used to visualize the
dynamics of differentially expressed genes. Violin plots of gene expression level
were generated by function ‘Vlnplot’ in Seurat. The significance of gene expression
across the three clusters was calculated by Student’s t-test.

Epigenomic data from scSET-seq were processed as follows. To get normalized
signature scores, cisTopic59 (version 0.3.0) was used with default parameters.
Aggregated cell peaks were used for counting reads and bulk SET-seq peaks from
10,000 cells were defined as signature regions. Peaks were preferably annotated to
genes within 3 Kb from the transcription starting site, then to the closest gene
within 500 Kb, as previously described107. To evaluate the correlation of scSET-seq
data, kME scores were computed by WGCNA108,109 (version 1.69) and gene
modules were generated for epigenomic and transcriptional SET-seq respectively.
The Pearson correlation coefficient matrix which was showed as a heatmap was
constructed using module scores. The chi-square test was used to identify the
significance between epigenomic and transcriptional modules from the same SET-
seq. Signature scores were used for downstream clustering and pseudotime
analysis. The top 2000 differential signature genes ranked by p value were used for
analysis with Seurat and Monocle2. To evaluate the clustering result, ggalluvial
[https://github.com/corybrunson/ggalluvial] (version 0.12.3) was used to show the
changes of cell number between epigenomic and transcriptional clusters. The chi-
square test was used to identify the significance between observed cell number
distributions.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The reference genome used in this study is available in UCSC [http://genome.ucsc.edu]
database under mouse reference genome mm9 [https://hgdownload.soe.ucsc.edu/
goldenPath/mm9/bigZips/]. The raw and processed sequencing data generated in this
study have been deposited in the NCBI Gene Expression Omnibus (GEO) database
under accession code GSE168637 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE168637]. Encode datasets were downloaded with the accession numbers:
H3K27me3 ENCSR059MBO [https://www.encodeproject.org/experiments/
ENCSR059MBO/], H3K27me3 input ENCSR326ULS [https://www.encodeproject.org/
experiments/ENCSR326ULS/], H3K4me3 ENCSR000CGO [https://
www.encodeproject.org/experiments/ENCSR000CGO/] and H3K4me3
input ENCSR095IPH [https://www.encodeproject.org/experiments/ENCSR095IPH/]
[https://www.encodeproject.org/experiments/ENCSR095IPH/]. The other external
datasets were downloaded from NCBI Gene Expression Omnibus (GEO) [http://
www.ncbi.nlm.nih.gov/geo/], with the accession numbers: Aebp2 ChIP-seq
GSE83082 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83082], Paired-
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Tag GSE152020 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152020],
scATAC-seq GSE100033 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE100033], Smart-seq2 GSE151334 [https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE151334]. 10x scRNA-seq datasets were downloaded from the 10x
Genomics website [https://www.10xgenomics.com/]. Source data are provided with
this paper.

Code availability
Custom scripts used in this study are available from [https://github.com/Fanglab-zju/
scSET-seq].
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