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A vehicle re‑identification 
framework based on the improved 
multi‑branch feature fusion 
network
Leilei Rong1,2, Yan Xu1,2*, Xiaolei Zhou1, Lisu Han1, Linghui Li1 & Xuguang Pan1

Vehicle re‑identification (re‑id) aims to solve the problems of matching and identifying the same 
vehicle under the scenes across multiple surveillance cameras. For public security and intelligent 
transportation system (ITS), it is extremely important to locate the target vehicle quickly and 
accurately in the massive vehicle database. However, re‑id of the target vehicle is very challenging due 
to many factors, such as the orientation variations, illumination changes, occlusion, low resolution, 
rapid vehicle movement, and amounts of similar vehicle models. In order to resolve the difficulties and 
enhance the accuracy for vehicle re‑id, in this work, we propose an improved multi‑branch network 
in which global–local feature fusion, channel attention mechanism and weighted local feature are 
comprehensively combined. Firstly, the fusion of global and local features is adopted to obtain more 
information of the vehicle and enhance the learning ability of the model; Secondly, the channel 
attention module in the feature extraction branch is embedded to extract the personalized features 
of the targeting vehicle; Finally, the background and noise information on feature extraction is 
controlled by weighted local feature. The results of comprehensive experiments on the mainstream 
evaluation datasets including VeRi‑776, VRIC, and VehicleID indicate that our method can effectively 
improve the accuracy of vehicle re‑identification and is superior to the state‑of‑the‑art methods.

Vehicle re-identification, an intelligent surveillance camera analysis technology, is indispensable to building 
smart and safe cities. Vehicle re-id is similar to pedestrian re-identification1–5, both of which belong to object 
re-identification, and are closely related to object recognition and fine-grained classification. The task of vehicle 
re-id is to retrieve a given vehicle among all gallery vehicle images captured across multiple surveillance cam-
eras. However, it is challenging to do so due to various viewpoints, occlusion, motion blur, illumination, and 
low resolution, as shown in Fig. 1a–e. Furthermore, vehicle re-id is particularly difficult in that different vehicles 
may have similar or even the same appearance especially for those with the same model, as shown in Fig. 1f.

Vehicle datasets. Liu et al.6 released the first vehicle dataset VeRi-776 which contains 37,778 images of 
576 vehicles as training set, 11,579 images of 200 vehicles as gallery set and 1678 images of 200 vehicles as query 
set. In addition to vehicle images, it also provides vehicles’ attributes (color and type) information and a part of 
license plate information. Liu et al.7 proposed a larger dataset VehicleID with 221,763 images of 26,267 vehicles 
from multiple real-world surveillance cameras, including the training set with 110,178 images of 13,134 vehicles 
and testing set with 111,585 images of 13,133 vehicles. More recently, Kanaci et al.8 introduced VRIC, a more 
realistic and challenging vehicle re-id benchmark which includes 54,808 images of 2811 vehicles as training set, 
2811 images of 2811 vehicles as probe set and 2811 images of 2811 vehicles as gallery set.

Vehicle re‑id methods. In the field of re-id, the mainstream method is feature learning, whose principal 
task is to learn and extract more discriminative and robust vehicle features. For example, Zhu et al.9 proposed 
a Shortly and Densely convolutional neural Network (VRSDNet), which utilized a list of short and dense units 
(SDUs), necessary pooling, and spatial normalization layers to enhance the feature learning ability. Liu et al.10 
encouraged the deep model to place emphasis on more details in local regions, so as to obtain more discrimina-
tive features. Cheng et al.11 introduced Multi-Scale Deep Feature Fusion Network (MSDeep) to conduct both 
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multi-scale and multi-level features for precise vehicle re-id. Chen et al.12 extracted more robust and discrimina-
tive features via the view-aware feature learning aligning and enhancing common visible regions. Khorramshahi 
et al.13 presented a dual-path adaptive attention vehicle re-identification (AAVER) model, which is a robust end-
to-end framework, combining macroscopic global features with localized discriminative features to efficiently 
identify a probe image in a gallery of varying sizes. Zheng et al.14 proposed a multi-scale attention framework 
(MSA) to fuse the discriminative local cues and effective global information. Wang et al.15 designed an attribute-
guided network (AGNet) with attention module which could learn global representation with abundant attrib-
ute features in an end-to-end manner. He et al.16 used a simple and efficient part-regularized discriminative 
feature preserving method to improve the recognition ability of subtle information. Huang et al.17 introduced a 
Position-Dependent Deep Metric unit, which is capable of learning a similarity metric adaptive to local feature 
structure. Cui et al.18 designed a network that combined attention mechanisms and long short-term memory 
network (LSTM) for the recognition of spatial relations.

Local feature. In the past, most vehicle re-id methods just used global features. Some detailed informa-
tion are often ignored due to the limited scale and weak diversity of vehicle datasets. To solve this problem, the 
accuracy of re-identification has been improved by locating significant vehicle parts from images in many previ-
ous  works5,19,20. Zhang et al.21 proposed a novel Part-Guided Attention Network (PGAN) for vehicle instance 
retrieval (IR) to extract part regions of each vehicle image from an object detection model. Khorramshahi et al.22 
and Liu et al.23 highlighted the importance of attending to discriminative vehicle regions. Liu et al.10 explored 
a Region-Aware deep Model (RAM) to extract regional features from three overlapped local regions and pay 
more attention to the details in local regions. Suprem et al.24 presented global and local attention modules for 
re-identification (GLAMOR), which extracts additional global features and performs self-guided local feature 
extraction using global and local attention, respectively.

Attention mechanism. Attention  mechanism25,26 is widely implemented in various fields of deep learn-
ing and it has been employed in  literature27 in vehicle re-identification field. Teng et al.27 proposed a spatial and 
channel attention network to mine the discriminative features in vehicle re-id task. As a kind of soft attention, 
channel attention mechanism’s final function is to give higher weight to areas containing different information. 
To this end, we introduce channel attention mechanism that can aggregate semantic similarity channels and 
attain more discriminative feature representations for vehicle re-id.

To extract more discriminative and robust features for vehicle images, we propose a vehicle re-id method 
based on global–local feature fusion, channel attention mechanism, and weighted local feature. We first choose 
ResNet-50 as the backbone network and construct three feature learning branches (Global Branch, Local 
Branch1, and Local Branch2) after res_conv5 layer. By fusing global and local features to obtain more complete 
information of the vehicle, the learning ability of the model is enhanced. In the second place, we insert the chan-
nel attention module in the Local Branch1 and the Local Branch2 so that the network can extract the personalized 
features of the vehicle. In the last place, the influence of background and noise information on feature extraction 
is weakened by weighted local feature. Finally, extensive experimental results on three vehicle datasets verify the 
promising performance of the proposed method compared to state-of-the-art methods.

Figure 1.  Illustration of challenges in vehicle re-id. The vehicle images(a–e) in each column are collected with 
the same vehicle, but their appearances are quite different due to various challenging factors, e.g., viewpoints, 
illumination, occlusion, low resolution and motion blur. The last column(f) illustrates the challenges of different 
vehicle identities with extremely similar appearance, where the red circles indicate the differences in local 
features.
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Our algorithm
The algorithm model framework of this paper is shown in Fig. 2. Firstly, the proposed multi-branch network is 
used to extract vehicle features of training set. Then the similarity between Query and Gallery vehicle features 
is calculated. Finally, the similarity scores are sorted to obtain the retrieval results of all the vehicle images of 
Query in the Gallery.

Multi‑branch network architecture. The architecture of multi-branch network is shown in Fig. 3. The 
first is a Global Branch, which learns the global feature representations without any partition information. The 
second and third are Local Branch1 and Local Branch2 respectively. They share a similar network architecture, 
and their difference is that the Local Branch1 divides the height of the feature map into two pieces, while the 
Local branch2 divides the height of the feature map into three parts. In particular, Local Branch1 and Local 
Branch2 all contain a global branch which aims to solve the problem of low robustness of learning local features 
by focusing on specific semantic regions.

In Local Branch1 and Local Branch2, we use the channel attention mechanism to give higher weight for 
important feature information. Global average pooling (GAP)28 is used to average each feature map and out-
put a value. GAP replaces the fully connected layer and greatly reduces the number of parameters. It is worth 
mentioning that we also used a 1*1 convolution before the GAP block of the global branches of Local Branch1 
and Local Branch2. This can not only reduce the number of channels, but also simplify calculations later. After 
the GAP block, 1*1 convolution block is used to increase the dimension, which can extract high dimensional 
features, and enhance the effect of feature extraction.

During the training, each branch trains separately and does not share the weight. But when testing, all branch 
information will be assembled into a comprehensive feature to improve network performance.

Feature map segmentation. Research has shown that the discriminative features of vehicle are mainly 
concentrated in some local regions of the  image10,19–24. In order to weaken the interference of noise and back-
ground and enhance the learning ability of the network, inspired by  literature19,20, we adopt the approach of 
horizontal segmentation feature map.

Figure 2.  The overall framework of the algorithm model.
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As shown in Fig. 3, in Local Branch1 and Local Branch2, we adopt the idea of horizontal segmentation from 
coarse to fine, and divide the feature map into two and three parts respectively. Deep learning strategies can 
capture the best response area from the entire image. Therefore, feature extraction is performed on each image 
after segmentation, which can capture more fine-grained vehicle features.

Weighted local feature. The vehicle usually locates in the middle of the image, the upper and lower parts 
of the image usually contain a lot of background information. Therefore, we assign the weight α to the upper and 
lower parts of the image, and the weight of the middle part to β ( α < β ), as shown in Fig. 4.

Channel attention mechanism. In addition to weighted local feature, we also introduce an attention 
module. This module can efficiently promote the network to extract the detailed features of the vehicle, such 
as windshield stickers, vehicle scratches. Figure 5 shows the channel attention module. The channel attention 
mechanism can be divided into three stages: channel operation stage, channel weighting stage, and channel 
superposition stage.

During the channel operation stage, the global average pooling is carried out on the original input matrix, 
so that the original input matrix with the dimension of H*W*C is changed into a channel descriptor of 1*1*C, 
which can reduce the computational cost and accelerate the network training speed. Then two 1*1 convolution 
modules are used to first reduce the dimension of channel descriptor and then increase the dimension. There 
is a dimensionality reduction factor r between the two 1*1 convolution modules, and the dimension change is 
controlled by r . Finally, through the rise and fall of dimensions, the characteristic information of different chan-
nels is fused and the correlation between channels is captured to obtain a 1*1*C channel weight matrix. Then the 
original input matrix is multiplied by the channel weight matrix to get the weighted matrix, this process is called 

Figure 3.  Multi-branch network architecture. GAP and 1*1 Conv refer to Global Average Pooling and 1*1 
convolutional layer, respectively.

Figure 4.  Segmentation and weighted vehicle image.
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channel weighting stage. Finally, the output matrix of the attention module is obtained by adding the weighted 
matrix to the original input matrix in the channel superposition stage.

Loss functions. In this paper, we introduce two loss functions: Softmax cross-entropy  loss19 and hard min-
ing triplet  loss30. The total loss combining Softmax cross-entropy loss with hard mining triplet loss is used to our 
training experiment. The loss can be described as:

where the meanings of the variates of (1), (2) and (3) are listed in Table 1.
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Figure 5.  Channel Attention Module (CAM)29. H,W,C represent the height, width, and channel number of the 
feature map respectively. r is the scaling factor.

Table 1.  The variate and meaning of loss function.

Variate Meaning

Ni The number of vehicle images per batch

Nid The number of vehicle identities

xj The output of fully connected layer for j th identity

y The ground truth identity of input vehicle image

Ai Anchor

Pi Positive

Ni Negative

δ Minimal margin

� Weight
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Experiment results and discussion
To evaluate the performance of our model, we conduct experiments on three large-scale vehicle re-id datasets: 
VeRi-776, VRIC, and VehicleID. Firstly, we report a set of ablation studies (mainly on VeRi-776) to validate the 
effectiveness of each component. Secondly, we compare the performance of our model against existing state-of-
the-art methods on three datasets. Finally, we discuss how our model achieves its effectiveness.

Implementation details and evaluation metric. In our experiments, the software tools are PyTorch, 
CUDA11.1, and CUDNN V8.0.4.30. The hardware device is a workstation equipped with AMD Ryzen 5 3600X 
CPU 32G, NVIDIA GeForce RTX 3080 and 256 GB + 2 TB memory. During training, the input images are re-
sized to 384*128 and then augmented by random horizontal flip, normalization, and random erasing. We set the 
training batch size to 32, the initial learning rate is 3*10−4 , and the learning rate decreases to 0.1 times at 20th 
and 40th epoch. At the same time, we choose the AMSGrad optimizer to train the network. The testing images 
are re-sized to 384*128 and augmented only by normalization. The weight of Local Branch 2 is 0.3 for α and 0.4 
for β . After many experiments, the attenuation factor r of the channel attention module is set to 4. The margin δ 
in triplet loss is set to 1.2 in all experiments and the parameter � in total loss is set to 0.1.

Following the evaluation protocol of re-identification  work6,31,32, we utilize the mean average precision (mAP) 
and Rank-n (the expected correct matching pair in the top n matches) as the evaluation metrics.

Ablation experiments. Feature map segmentation setup. The feature map segmentation plays an ex-
tremely important role in local fine-grained feature extraction. By segmenting the feature map, the network can 
pay more attention to the fine-grained features of one local area and filter out the interference information in 
other areas. In terms of local feature extraction, we adopt a coarser to finer strategy, which is completed by Local 
branch 1 and Local branch 2 respectively. To verify the effectiveness of our segmentation feature map settings on 
the two local branches, we conduct ablation experiments on VeRi-776 dataset. As shown in Table 2, the effect of 
horizontal segmentation is much better than that of vertical segmentation. And in the horizontal segmentation 
setup, the best recognition effect is that the feature map is divided into two parts in Local branch 1 and three 
parts in Local branch 2.

Weight coefficient setup. Extensive analysis shows that, in most cases, the discriminative features of vehicles 
are mainly located in the middle region of the image, and the upper and lower of the image contain little vehicle 
information. Therefore, in Local Branch 2, the feature map is divided horizontally into three parts. Meanwhile, 
the upper and lower parts are given a small weight α , while the middle part is given a large weight β . For the 
specific values of weights α and β , we conduct experiments on VeRi-776 dataset. As can be seen from Table 3, 
when the setting of α and β is 0.3 and 0.4, the detection results are the best.

Multi‑branch network architecture. We choose ResNet-50 with the global feature branch as the baseline. Seven 
variants are then constructed based on the baseline (Best view in color.):

(a) Baseline + Local Branch1(no red dotted area) + CAM;

Table 2.  The results of different feature map segmentation setup. Bold  indicate the best results for the 
corresponding metrics.

Equally-split direction Local branch 1 Local branch 2 mAP Rank1

Vertical

2 3 43.51 78.10

2 4 41.07 70.82

3 4 39.11 67.99

Horizontal

2 3 63.90 90.82

2 4 61.81 88.06

3 4 57.98 85.31

Table 3.  The results of different weight coefficient setup. Bold  indicate the best results for the corresponding 
metrics.

α β mAP Rank-1

0.2 0.4 74.01 95.33

0.2 0.5 74.89 95.22

0.2 0.6 75.14 95.28

0.3 0.4 77.12 96.30

0.3 0.5 72.19 94.50
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(b) Baseline + Local Branch2(no red dotted area) + CAM;
(c) Local Branch1(no red dotted area) + Local Branch2(no red dotted area and green dotted area);
(d) Local Branch1(no red dotted area) + Local Branch2(no red dotted area) + Green dotted area;
(e) Local Branch1(no red dotted area) + Local Branch2(no red dotted area) + Green dotted area + CAM;
(f) Baseline + Local Branch1(no red dotted area) + Local Branch2(no red dotted area) + Green dotted 

area + CAM;
(g) Baseline + Local Branch1 + Local Branch2 + Green dotted area + CAM.

The detailed results of the ablation studies on VeRi-776 dataset are illustrated in Table 4.
It can be observed from Table 4 and Fig. 6(1) that compared with the baseline network, our improved net-

work has increased by 7.94% and 3.09% on mAP and Rank-1 respectively. It proves that our network has strong 
robustness.

Compared with network c, network d performs weighting processing on local features, and mAP is improved 
by 5.67%, which proves the effectiveness of weighting processing, as shown in Fig. 6(2). In Fig. 6(3), compared 
with network d, mAP and Rank-1 of network e are improved by 1.60% and 2.20% respectively after adding chan-
nel attention block. Figure 6(4) shows that by compared with the experimental results of networks (e, f and g), 
the importance of global features can be proved.

As shown in Fig. 6(5), comparing the baseline network, network a and network b with our improved network, 
we can draw two conclusions: first, combining global and local features can greatly improve the recognition 
accuracy; second, better recognition effect can be achieved by using feature map segmentation to fully extract 
vehicle local features from coarse to fine.

Table 4.  The ablation studies on VeRi-776 dataset (in %). Bold  indicate the best results for the corresponding 
metrics.

Method

VeRi-776

mAP Rank-1

Baseline 69.18 93.21

(a) Baseline + Local Branch1(no red dotted area) + CAM 72.13 94.04

(b) Baseline + Local Branch2(no red dotted area) + CAM 73.05 94.16

(c) Local Branch1(no red dotted area) + Local Branch2(no red dotted area and green dotted area) 63.90 90.82

(d) Local Branch1(no red dotted area) + Local Branch2(no red dotted area) + Green dotted area 69.57 91.66

(e) Local Branch1(no red dotted area) + Local Branch2(no red dotted area) + Green dotted area + CAM 71.17 93.86

(f) Baseline + Local Branch1(no red dotted area) + Local Branch2(no red dotted area) + Green dotted area + CAM 76.32 95.83

(g) Baseline + Local Branch1 + Local Branch2 + Green dotted area + CAM (Ours) 77.12 96.30

Figure 6.  Ablation Experiment of the proposed framework on VeRi-776 dataset (in %).
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Performance comparison with state‑of‑the‑art methods
We compare our proposed method with multiple state-of-the-art vehicle re-identification approaches on three 
mainstream datasets, i.e., VeRi-776, VRIC, and VehicleID with corresponding evaluation metrics (mAP and 
Rank-n).

Results on VeRi‑776 dataset. Following the  literature31 on standard evaluation, a test is conducted 
on the VeRi-776 dataset. Table  5 presents the results of comparisons between current state-of-the-art 
 methods9,10,13–15,33–40 and our model on VeRi-776 dataset. Our proposed method achieves 96.30% on Rank-1 
accuracy, 98.11% on Rank-5 accuracy and 77.12% on mAP without re-ranking. These results surpass current 
state-of-the-art models on almost all three metrics, especially on mAP. In this paper, our method only relies on 
the supervised information of ID, while VGG + C +  T33, GS-TRE34, VAMI +  ST35 and AGNet-ASL +  STR15 exploit 
spatial–temporal information, and other methods also utilize extra annotations, but the accuracy of our model 
still exceeds all others. A good mAP score demonstrates that our model has a stronger potential to retrieve all 
the corresponding images of the same identity in the gallery set.

Results on VRIC dataset. VRIC is a relatively newly released dataset, hence, few results have been reported 
about it. For VRIC dataset, the test is conducted following the standard  evaluation8. We compare the results of 
our proposed method with other  models8¸21,24,38 on VRIC dataset. As shown in Table 6, by comparison, we can 
find out that our model outperforms the latest  method24 by 1.39% in Rank-1 and 0.46% in Rank-5, respectively, 
and significantly improves the recognition effect of vehicle re-identification on both Rank-1 and Rank-5 accu-
racy.

Results on VehicleID dataset. For VehicleID dataset, all the tests are conducted following the standard 
 evaluation7. Generally speaking, larger testing sets (1600 and 2400 test size) introduce more challenging and 
complex scenarios in real life, therefore, most methods perform better on smaller size (800) testing set. Table 7 
shows our model outperforms other  methods9,10,13–15,33–40 in all testing sets (800, 1600, and 2400 test size), and 
improves about 4.0% in mAP, Rank-1, and Rank-5 on all three testing sets, compared with the second-best 
methods achieved by  AAVER13 and  MSA14, respectively. These results demonstrate the robustness and superior-
ity of our method.

Table 5.  The mAP, Rank-1 and Rank-5 on VeRi-776 dataset (in %). Bold  indicate the best results for the 
corresponding metrics. N/A indicates that no data is provided.

Method mAP Rank-1 Rank-5 References

VRSDNet9 53.45 83.49 92.55 Multimed Tools Appl 2019

VGG + C +  T33 58.78 86.41 92.91 ICME 2017

GS-TRE34 59.47 96.24 98.97 IEEE TMM 2018

AAVER13 61.18 88.97 94.70 ICCV 2019

VAMI +  ST35 61.32 85.92 91.84 CVPR 2018

RAM10 61.50 88.60 94.00 ICME 2018

GRF +  GGL38 61.7 89.4 95.0 CVPR 2018

QD-DLF36 61.83 88.50 94.46 IEEE TITS 2019

MSA14 62.89 92.07 96.19 Neural Computing and Applications 2020

SPAN w/  CPDM40 68.9 94.0 97.6 ECCV 2020

TCL +  SL37 68.97 93.92 97.44 IEEE TIP 2019

AGNet-ASL +  STR15 71.59 95.61 96.56 arXiv 2020

UMTS39 75.9 95.8 N/A AAAI 2020

Ours 77.12 96.30 98.11 Proposed

Table 6.  The mAP, Rank-1 and Rank-5 on VRIC dataset (in %). Bold  indicate the best results for the 
corresponding metrics.

Method mAP Rank-1 Rank-5 References

MSVF8 47.50 46.61 65.58 arXiv 2018

GRF +  GGL38 71.66 63.68 81.85 CVPR 2018

PGAN21 84.80 78.00 93.20 arXiv 2020

GLAMOR24 76.48 78.58 93.63 arXiv 2020

Ours 82.75 79.97 94.09 Proposed
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Discussion. In this paper, the approaches of global–local feature fusion, channel attention mechanism, and 
weighted local feature are introduced into our vehicle re-id framework to obtain more rapid and accurate results. 
The problem-solving pattern is close to those reported in related  literature5. The main idea of this paper is to real-
ize a robust feature learning network which takes the advantage of advanced methods to make full use of vehicle 
appearance attributes, and finally achieve good re-id effect; Previous  literature5,23,40 mainly uses the method of 
target feature alignment to adjust the images to the same scale. This approach can reduce the intra-class differ-
ences and facilitate the comparison between target features, and finally simplify the subsequent re-id task. By 
contrast, our vehicle re-id model can not only accurately identify the same vehicle, but also effectively deal with 
various vehicle challenges in real life.

Beyond that, it can also be adopted to re-identify other rigid and large target objects under urban surveillance 
cameras, such as non-motorized vehicle re-identification, etc. This technology provides important technical 
support for intelligent transportation system and the construction of smart and safe cities.

Computation time. Our model has achieved good recognition results on three mainstream datasets. However, 
in real-world applications, accuracy is just one index for performance evaluation of a model. In re-id task, the 
computation time for the model is critical and nonnegligible for practical usage. Hence, we analyze the train-
ing epochs required by different models to converge to stable values. Taking VeRi-776 dataset as an example, 
the comparison results are shown in Table 8. Compared with those  methods22,23,40,41, our model needs the least 
number of training epochs to achieve convergence, that is, our method is the most efficient in training stage. At 
the same time, we also calculate our training and inference time, as shown in Table 9.

Table 7.  The mAP, Rank-1, and Rank-5 on VehiceID dataset (in %). Bold  indicate the best results for the 
corresponding metrics. N/A indicates that no data is provided.

Method

Test800 Test1¸600 Test2¸400

ReferencesmAP Rank1 Rank5 mAP Rank1 Rank5 mAP Rank1 Rank5

VRSDNet9 63.52 56.98 86.90 57.07 50.57 80.05 49.68 42.92 73.44 Multimed Tools Appl 2019

VAMI35 N/A 63.12 83.25 N/A 52.87 75.12 N/A 47.34 70.29 CVPR 2018

VGG + C + T +  S33 N/A 69.90 87.30 N/A 66.20 82.30 N/A 63.20 79.40 ICME 2017

AGNet-ASL15 74.05 71.15 83.78 72.08 69.23 81.41 69.66 65.74 78.28 arXiv 2020

GS-TRE34 75.40 75.90 84.20 74.30 74.80 83.60 72.40 74.00 82.70 IEEE TMM 2018

QD-DLF36 76.54 72.32 92.48 74.63 70.66 88.90 68.41 64.14 83.37 IEEE TITS 2019

AAVER13 N/A 74.69 93.82 N/A 68.62 89.95 N/A 63.54 85.64 ICCV 2019

RAM10 N/A 75.20 91.50 N/A 72.30 87.00 N/A 67.70 84.50 ICME 2018

TCL +  SL37 80.13 74.97 87.44 77.26 72.84 81.98 75.25 71.20 79.29 CVPR 2018

GRF +  GGL38 N/A 77.1 92.8 N/A 72.7 89.2 N/A 70.0 87.1 IEEE TIP 2019

MSA14 80.31 77.55 90.50 77.11 74.41 86.26 75.55 72.91 84.35 Neural Computing and Applications 2020

Ours 87.70 81.96 95.35 84.26 77.85 92.44 80.87 74.07 89.55 Proposed

Table 8.  Comparison of training efficiency of different methods. Bold  indicate the best results for the 
corresponding metrics.

Method Training Epochs Rank-1

PVEN40 150 95.6

SAVER22 120 96.4

PCRNet23 100 95.4

VehicleNet41 72 96.78

Ours 60 96.30

Table 9.  Training and inference computation times of our model for the three vehicle datasets. Inference 
time = TestingSize(img) ÷ BatchSize(img) × BatchTime(s).

Dataset VeRi-776 VRIC VehicleID

Training time 6.3 h 8.73 h 10.19 h

Inference time 0.4349 s 0.2240 s 0.8318 s
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Visualization of model retrieval results. To verify the retrieval ability of the model, we make visual 
processing on the retrieval results of the model, as shown in Fig. 7. The first column represents the target vehicle 
in Query set, and the other columns represent the retrieval results from Gallery set (the retrieval times are set to 
10). Red border vehicle represents an incorrect retrieval and Green represents a correct retrieval. We can see that 
our model is robust to the challenges (e.g., viewpoints, occlusion, low resolution).

Conclusion and future work
In this work, we propose a multi-branch network for vehicle re-identification. First of all, a channel attention 
mechanism strategy integrates discriminative information with global and local features. At the same time, 
feature extraction is optimized through attention mechanism and weighted local feature, so that more discrimi-
native features are extracted. Results of extensive comparative evaluations have indicated that our method not 
only exceeds state-of-the-art results on three challenging vehicle re-id datasets, but also pushes the performance 
to an exceptional level.

At present, most of the deep learning algorithms are supervised learning, which requires a large number of 
annotations of datasets in the early stage. Unsupervised learning has been studied in many fields. Future vehicle 
re-identification field studies need to explore the related algorithms of unsupervised learning, which can greatly 
reduce the calibration of datasets and improve the utilization rate of vehicle images.
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