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Abstract

Women are ubiquitously exposed to non-persistent endocrine disrupting chemicals (EDCs) from 

food contact materials and personal care products. Understanding the impacts of exposure to these 

chemicals on pregnancy and long-term health outcomes in women is a critical area of research 

that has been largely overlooked. This brief review focuses on the epidemiological literature 

exploring associations of non-persistent EDCs – including phthalates, parabens, bisphenols, and 

triclosan – with maternal pregnancy outcomes and long-term health outcomes in women. We focus 

on the challenges of this research, particularly assessing non-persistent EDC exposures, aspects 

of study design, and analyses. We conclude by reviewing the best practices for non-persistent 

EDC research with regards to pregnancy and women’s health. Though limited, we found some 

evidence indicating that exposure to non-persistent EDCs is associated with pregnancy health. 

However, findings from these studies have been inconsistent and require corroboration. Recent 

studies have also proposed that non-persistent EDC exposures in pregnancy may adversely affect 

postnatal maternal health. To date, only a few studies have been conducted and have only focused 

on postpartum weight. More research is needed in this area to inform efforts to promote optimal 

health across the lifespan of women.
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Introduction

As many as 86% of women will give birth at least once in their lifetime (2016). The 

very acts of achieving and maintaining a pregnancy are important determinants of women’s 

long-term health (Dassanayake, et al. 2020, Rich-Edwards, et al. 2013, Walker, et al. 2020). 

For example, pregnancy complications, including gestational diabetes mellitus (GDM) and 

pregnancy hypertension/preeclampsia, are associated with long-term maternal metabolic 

changes, such as adiposity, insulin resistance, type 2 diabetes, high blood pressure, and 

dyslipidemia (Dassanayake, et al. 2020, Rich-Edwards, et al. 2013, Walker, et al. 2020). 

Current clinical recommendations in pregnancy generally focus on healthy pregnancy and 

offspring outcomes, but little is understood about modifiable lifestyle factors in pregnancy 

that could safeguard women from developing chronic diseases long after they deliver.

Pregnancy is a period of heightened susceptibility to environmental stressors (Boyles, et 

al. 2020) and one modifiable lifestyle factor is exposure to endocrine disrupting chemicals 

(EDCs). EDCs are characterized by their ability to dysregulate endocrine pathways critical 

for hormonal homeostasis. Biomonitoring data of non-persistent EDCs, such as phthalates, 

phenols, and parabens, from the National Health and Nutrition Examination Survey 

(NHANES) indicate that women have ubiquitous exposure to many chemicals found in 

personal care products (Bellavia, et al. 2019), often at higher levels than men, likely due 

to their greater use of cosmetics and other personal care products (Braun, et al. 2014, 

Calafat, et al. 2010). These EDCs are found in lotions, cosmetics, perfumes, sunscreens, 

hair products, feminine hygiene products, and soaps (Table 1). In addition, some of these 

chemicals (e.g., phthalates and bisphenols) originate from the diet due to their use in food 

processing and packaging, or are found in consumer products or household furnishings, 

resulting in ingestion of dust and contaminated food, as well as dermal absorption.

In pregnancy, exposure to several EDCs has been associated with poor pregnancy outcomes 

(e.g. preterm birth) and long-term consequences for infant and child health (Karwacka, 

et al. 2017, Philippat, et al. 2017). However, several recent observational studies have 

identified associations between exposure to some non-persistent EDCs in pregnancy and 

adverse maternal outcomes, including maternal glucose disruption (James-Todd, et al. 2018, 

James-Todd, et al. 2016, Shaffer, et al. 2019, Yang, et al. 2020) and maternal thyroid 

and sex hormone concentrations in pregnancy (Johns, et al. 2015). These dysregulations 

in pregnancy can have long-term deleterious consequences for women’s health. Yet, little 

is known about the contribution of EDC exposures in pregnancy for maternal health after 

parturition.

This review will evaluate the impacts of non-persistent EDCs (phthalates, parabens, phenols, 

and triclosan) on women’s health, with a special focus on pregnancy as a critical window of 

exposure for women’s long-term health. We will specifically focus on non-persistent EDCs 

because women may be able to modify their exposure to these chemicals through behavioral 

changes (e.g., changing or reducing personal care product use or dietary modifications) 

(Harley, et al. 2016). We posit that the associations of non-persistent EDCs with women’s 

health may be partially mediated by EDC-targeted disruptions to maternal health during 

pregnancy, but current limitations in study design, EDC exposure measurements, and 
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statistical methods to this point make it difficult to definitively conclude this. In this review, 

we first briefly discuss pregnancy history and women’s long-term health to set the stage 

for pregnancy outcomes as an important view into the future health of women. Second, 

we discuss patterns of associations of exposure to non-persistent EDCs in pregnancy in 

relation to pregnancy outcomes and highlight the challenges that contribute to the difficulty 

in establishing a cohesive picture of non-persistent EDC exposure and pregnancy outcomes. 

Third, we explore in more detail the limited literature on non-persistent EDC exposure in 

pregnancy and maternal health after pregnancy. Lastly, we provide guidance for moving this 

research field forward in order to achieve the ultimate goal of identifying pregnancy-related 

factors that will protect women’s long-term health.

Methods

For this narrative review, we searched PubMed using keywords including (but not limited 

to) pregnant, EDCs, specific classes of EDCs (e.g. phthalates, bisphenol), post-natal, and 

post-partum. We selected epidemiologic studies that illustrated challenges or best practices 

in designing and interpreting the exposure-outcome relationships of interest and attempted 

to summarize associations by class of chemical. We included articles that were published 

before January 2021. For all studies reviewed here, we only described associations that were 

adjusted for important confounders, including sociodemographic characteristics, lifestyle 

factors, and health conditions (specific example of such details can be found in Table 2).

Pregnancy outcomes as an important view into the future health of women

Pregnancy is a time of significant physiological change that is experienced by most women 

during their lifetime. This unique period can also be accompanied by health complications 

that offer a warning for maternal health risks and long-term outcomes. Thus, it is critical 

to identify interventions that prevent pregnancy complications and support women’s health 

in the future. Several recent reviews suggest that various pregnancy pathologies, as well as 

the act of being pregnant, may be a “stress test” – in that pregnancy may serve as a first 

glance into potential long-term health outcomes in women (Ananth 2014, Cunningham and 

LaMarca 2018, Dassanayake, et al. 2020, Durnwald 2015, Leslie and Briggs 2016, Rich­

Edwards, et al. 2013, Troisi, et al. 2018). Specifically, pregnancy outcomes such as ischemic 

placental disease, shortened gestation/preterm birth, GDM, and pregnancy hypertensive 

disorders have been shown to have consistent, positive associations with later cardiovascular 

disease and mortality in women. Several reviews have noted associations of GDM with the 

subsequent development of type 2 diabetes mellitus, with the greatest risk of developing 

type 2 diabetes mellitus occurring within five years of a pregnancy complicated by GDM 

(Dassanayake, et al. 2020, Rich-Edwards, et al. 2013). Evidence also suggests that extremely 

shortened gestation (20–31 weeks) is associated with subsequent risk of type 2 diabetes 

mellitus in the ten years after pregnancy (James-Todd, et al. 2013). A recent meta-analysis 

noted that associations of GDM and cancer varied depending on the geographic location 

of study participants and the type of cancer studied, with breast cancer being the most 

commonly studied cancer in this context (Wang, et al. 2020); although another recent meta­

analysis found no overall association between gestational hypertension or preeclampsia and 

breast cancer (Sun, et al. 2018). Together, this body of work suggests that factors that impact 
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pregnancy outcomes in women may have lasting consequences for their health, making this 

a susceptible period of life (Leslie and Briggs 2016, Rich-Edwards, et al. 2013).

Non-persistent EDCs in pregnancy and maternal pregnancy health

Non-persistent EDCs dysregulate pathways governed by hormones. Given the indispensable 

role of hormones in establishing and maintaining a pregnancy, there has been keen interest 

in the potential for non-persistent EDCs to interrupt pregnancy and fetal development. 

However, much of this research has considered how various maternal morbidities impact 

fetal or child outcomes but have not specifically addressed the consequences of exposure 

for the health of the mother. Recent studies have begun to address these gaps. Among 

epidemiological studies examining associations of non-persistent EDCs and pregnancy 

health outcomes, the most commonly studied pregnancy health outcome is GDM. 

Other important pregnancy health outcomes that have been studied in relation to non­

persistent EDC exposures include preeclampsia, other pregnancy hypertensive disorders, 

and gestational weight gain.

Gestational Diabetes Mellitus—Recently, several epidemiological studies have 

explored associations between non-persistent EDCs and GDM, which reported mixed 

results. In relation to GDM, impaired glucose tolerance, and increased blood glucose 

concentrations, three studies reported positive associations with monoehtyl phthalate (MEP), 

monobutyl phthalate (MBP), and monocarboxyoctyl phthalate (MCOP) (James-Todd, et 

al. 2018, James-Todd, et al. 2016, Shaffer, et al. 2019) and negative associations with 

monocarboxyoctyl phthalate (MCOP) (Shaffer, et al. 2019), monoisobutyl phthalate (MiBP) 

(James-Todd, et al. 2018), and the sum of di-2-ethylhexyl phthalate (DEHP) metabolites 

(James-Todd, et al. 2016). MEP was the only metabolite consistently and positively 

associated with GDM, impaired glucose tolerance, and blood glucose concentration 

across these studies. However, another study reported no associations between phthalate 

metabolites and either GDM or impaired glucose tolerance (Shapiro, et al. 2015). Studies 

evaluating associations of phenols and parabens with pregnancy glucose complications are 

similarly mixed (Bellavia, et al. 2019, Fisher, et al. 2018, Li, et al. 2019b, Liu, et al. 2019, 

Ouyang, et al. 2018, Shapiro, et al. 2018, Shapiro, et al. 2015, Yang, et al. 2020, Zhang, 

et al. 2019). The interpretation and synthesis of results across studies are challenged by 

differences in exposure assessment and outcome definitions used to characterize pregnancy 

glucose homeostasis endpoints. Additional inconsistencies in findings across studies may 

be related to the use of single pollutant models that may produce statistically significant 

estimates that are the result of multiple testing.

Preeclampsia and pregnancy hypertensive disorders—The epidemiological 

literature of associations between non-persistent EDCs and preeclampsia/pregnancy 

hypertensive disorders is sparse. Of available studies, bisphenol A (BPA) was most 

consistently associated with preeclampsia. Urinary BPA concentrations at 10 weeks 

gestation were associated with a 1.53-fold (95% CI: 1.04, 2.25) risk of preeclampsia 

(Cantonwine, et al. 2016), and women with high serum concentrations of BPA at 16–20 

weeks had 16.46-fold (95% CI: 5.42, 49.85) increase in odds of pre-eclampsia compared to 

women with low concentrations (Ye, et al. 2017). However, serum BPA levels are subject to 
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exogenous contaminations and are unlikely to be a useful biomarker of exposure (Calafat, et 

al. 2013, Calafat, et al. 2015), thus it is difficult to interpret the findings from this study.

Associations between phthalate metabolites and preeclampsia are not consistent across 

studies. MEP, mono(3-carboxypropyl) phthalate (MCPP), and the metabolites of DEHP 

were associated with increased risk of preeclampsia, while MiBP was associated with a 

decreased risk (Cantonwine, et al. 2016). However, MiBP measured in the first trimester 

was associated with elevated diastolic blood pressure only among women carrying male 

fetuses (Han, et al. 2020). In another study, the butyl benzyl phthalate (BBzP) metabolite 

monobenzyl phthalate (MBzP) was positively associated with diastolic blood pressure 

throughout gestation, and was also associated with an increased risk of a combined 

outcome of pregnancy hypertension, preeclampsia, eclampsia, and HELLP syndrome 

(Werner, et al. 2015). As with gestational diabetes, it is difficult to draw conclusions about 

these associations because of the variability in the measures used to identify pregnancy 

hypertensive disorders, the timing of exposure assessment, and the use of single pollutant 

models that may result in significant findings simply from chance. Additionally, the limited 

number of studies makes it difficult to discern patterns of associations.

Gestational weight gain—Both inadequate and excessive weight gain during pregnancy 

can have lasting implications for mothers and children (Kominiarek and Peaceman 2017, 

Oken, et al. 2007). Several studies have explored the associations between phthalate 

metabolites and gestational weight gain, also with mixed results. The phthalate metabolite 

MEP has been shown to be associated with gestational weight gain across multiple studies, 

but the direction of the association is not consistent. MEP was associated with 2.17 (95% 

CI: 0.98, 4.79) fold higher odds of excessive weight gain (James-Todd, et al. 2016), whereas 

women with inadequate gestational weight gain were shown to have lower concentrations 

of MEP (Li, et al. 2019a). Another study reported 1.18 (95% CI: 1.01, 1.39) fold higher 

odds of inadequate gestational weight gain with increasing low molecular weight phthalate 

concentrations prior to 18 weeks gestation (with MEP being the major component of the 

sum of low molecular weight phthalates in this study) (Philips, et al. 2020b). In addition to 

the common EDC-related challenges in study design that will be discussed in later sections, 

some of the inconsistency may be due to the variation in the associations across the outcome 

– such that the relationship between phthalates and gestational weight gain may differ in 

women with low vs. high gain. This is suggested by findings that higher MEP concentrations 

were associated with greater BMI change at the 75th percentile of early gestational weight 

gain (Bellavia, et al. 2017). This study also found associations of phthalate metabolites 

MCPP, MBzP, and sum of DEHP metabolites were associated with greater change in early 

pregnancy BMI among women whose BMI change was in the 50th and 75th percentiles, 

whereas the sum of DEHP metabolites was negatively associated with BMI change among 

women whose BMI change was in the 25th percentile (Bellavia, et al. 2017).

Fewer studies have investigated parabens and phenols in relation to gestational weight gain. 

Methyl-, ethyl-, and propyl paraben were all associated with first trimester gestational 

weight gain, but the association was strongest among women who were classified as 

overweight or obese (Wen, et al. 2020). One study found that bisphenol concentrations were 

generally associated with lower pregnancy weight gain. Early pregnancy (less than 18 weeks 
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gestation) BPA concentrations (log-unit increase) were associated with 132 gram (g) lower 

weight gain from mid- to late- pregnancy (95%CI: −231g, −34g), and higher concentrations 

of BPA replacement bisphenol S (BPS) was associated with 261g lower weight gain across 

pregnancy (95% CI: −466g, −56g) (Philips, et al. 2020b). As with previous outcomes, 

the varied time frame of exposure assessment and the differences in timing of outcome 

ascertainment contribute to the challenges in synthesizing the results. These studies suggest 

that identifying a relevant window for both exposure and outcome is important for research 

that seeks to understand associations of non-persistent EDCs and gestational weight gain.

Shortened gestational length—In addition to the immediate risks associated with 

shortened gestation (for both mother and baby), shorter gestational length (or preterm birth) 

has also been associated with long-term maternal health outcomes, including greater risk of 

developing type 2 diabetes and cardiovascular disease (James-Todd, et al. 2013, Tanz, et al. 

2019). The associations of pregnancy exposure to EDCs (including non-persistent EDCs) 

with shortened gestational length have been reviewed extensively (Ferguson and Chin 2017, 

Marie, et al. 2015). Overall, the associations of non-persistent EDCs and shortened gestation 

or preterm birth are not consistent, with the exception of triclosan exposure for which 

most studies found no statistically significant associations with shortened gestation (Ding, 

et al. 2017, Huo, et al. 2018, Jamal, et al. 2020, Khoshhali, et al. 2020). Consistency of 

association is lacking for summed DEHP metabolites and shortened gestation, which have 

been associated with increased risk of preterm birth (Ferguson, et al. 2014), decreased risk 

of shortened gestation (Chin, et al. 2019), increased risk of long gestation (Adibi, et al. 

2009), and no association with gestation duration (Shoaff, et al. 2016). The associations 

of BPA and parabens with shortened gestation and preterm birth are similarly conflicting. 

Understanding associations of non-persistent EDCs and length of gestation endpoints may 

be limited by the low prevalence of preterm birth and the characterization of preterm birth 

as a binary variable; this may decrease the sensitivity of a study to detect an association. 

Alternatively, if the effects of non-persistent EDCs on gestational length are non-linear, 

the use of linear regression models for gestational age at birth will mischaracterize the 

association. Though it is possible that EDC exposure has the potential to impact maternal 

health by disrupting the length of gestation, substantially more research is needed to address 

the inconsistencies in prior studies.

Non-persistent EDCs and maternal health after pregnancy

Pregnancy has lasting consequences for women’s health, so there is reason to posit that 

chemical exposures in pregnancy will impact women long after they give birth.

Hormonal disruption in pregnancy and women’s long-term health—One likely 

mechanism behind this hypothesis is that EDC exposure in pregnancy alters maternal 

hormones, which impacts women’s health long after pregnancy (Figure 1). Observational 

studies in pregnant women suggest that phthalates, phenols, and parabens may alter 

concentrations of estrogen, androgens, or both (Aker, et al. 2019, Johns, et al. 2015, 

Sathyanarayana, et al. 2017), and a prospective case-control study found that higher 

gestational estrogen concentrations were associated with increased risk of breast cancer 

in mothers after 38 years of follow-up (Cohn, et al. 2017). Changes in estrogens, as 
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well as androgens, may also be implicated in cardiovascular disease and osteoporosis, 

which are prevalent in post-menopausal women (Lello, et al. 2015); if these are caused by 

hormone disruption during pregnancy warrants further investigation. Data on the ability of 

non-persistent EDCs to bind to thyroid receptors are mixed (Paul-Friedman, et al. 2019, 

Zoeller 2007), but observational studies suggest that these same EDCs are associated with 

altered maternal triiodothyronine (T3) and thyroxine (T4) concentrations (Derakhshan, et 

al. 2019, Johns, et al. 2016, Romano, et al. 2018). Around 5–9% of women with a 

thyroid disorder in pregnancy may experience postpartum thyroiditis within the first year 

postpartum that can lead to permanent hypothyroidism, increasing the likelihood of fertility 

problems for subsequent pregnancies and more severe menopause symptoms during midlife 

(Kennedy, et al. 2010). Altered thyroid hormone and thyroid stimulating hormone (TSH) 

concentrations later in life may also be associated with increased risk of cardiovascular 

disease, although additional studies are needed to confirm this association (Cappola, et al. 

2019). Similarly, thyroid hormones and TSH are involved in maintaining bone health, and 

deviations from normal thyroid hormone concentrations, especially post-menopause, may be 

associated with increased risk of osteoporosis (Delitala, et al. 2020). Whether non-persistent 

EDCs modulate thyroid receptor in pregnancy warrants further investigation.

Pregnancy exposure to non-persistent EDCs and maternal long-term weight 
gain—To date, the epidemiological evidence that exposure to non-persistent EDCs during 

pregnancy is associated with long-term maternal health is limited, and mainly focuses 

on postpartum weight change with inconclusive results (Table 2). One study found that 

pregnancy concentrations of the plasticizers MCPP and MBzP were associated with annual 

weight change (through 10 years postpartum), but in opposite directions; MCPP was 

associated with annual gains of 0.33 kg/year, while MBzP was associated with decreases 

of 0.21 kg/year (Rodríguez-Carmona, et al. 2019). Another study found that BPA, total 

phthalic acid, low molecular weight phthalates, and high molecular weight phthalates were 

associated with weight gains ranging from 364 to 734 g six years postpartum (Philips, et al. 

2020a). As will be discussed later, these inconsistencies may be due to differences in timing 

of exposure assessment (both during pregnancy and postpartum). However, a key challenge 

for interpretation and synthesis of the information from these studies is the differences in 

how phthalate exposures were statistically analyzed; the first study approximated parent 

compound exposure, while the second study used total body burden of phthalates and 

categorized them based on molecular weight. Another recent study noted that BPA and 

phthalate metabolites measured across pregnancy were associated with slower weight loss 

through one-year postpartum, with effects ranging from 0.6 to 1.0 kg/year slower for an 

interquartile range change in metabolite concentration (Perng, et al. 2020).

Non-persistent EDC exposure in pregnancy and other long-term health 
outcomes in mothers—We found no epidemiological studies investigating non­

persistent EDC exposures during pregnancy and other postpartum health outcomes in 

women, such as heart disease or type 2 diabetes. One study estimated lifetime risk of breast 

cancer from exposure to non-persistent EDCs from plastic water bottles during pregnancy 

and found the risk to be minimal (Jeddi, et al. 2016), but the literature linking pregnancy 

exposure to EDCs and cancer is also sparse. One review has hypothesized a link between 
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pregnancy exposure to persistent EDCs and breast cancer (Terry, et al. 2019), but the impact 

of pregnancy exposure to non-persistent EDCs has been insufficiently studied.

Current limitations and best practices

Inconsistent results across studies make it difficult to determine if EDC exposure during 

pregnancy increases long-term chronic disease susceptibility in women. There are still 

considerable gaps in our knowledge of the long-term consequences of these exposures on 

women’s health during and after pregnancy. The study of women’s health in the context 

of non-persistent EDC exposures shares many challenges with other EDC-related research 

areas, but also has several unique considerations. It is also important to note that while 

the non-persistent EDCs reviewed here have been shown to have unique mechanisms of 

action in experimental models (Strakovsky and Schantz 2018), they are all classified as 

endocrine disrupting chemicals that share common exposure sources in human populations 

and are therefore more similar to each other than they are to other classes of chemicals. 

Therefore, the challenges described below related to study design must be addressed first 

before the field can move forward to asking chemical-specific mechanistic questions using 

epidemiologic studies.

Challenges in non-persistent EDCs research—As with most epidemiological studies 

of non-persistent EDCs, the field is challenged by the nature of the exposure. Metabolism 

and excretion of non-persistent EDCs is rapid, with half-lives ranging from hours to a 

few days (Frederiksen, et al. 2007, Moos, et al. 2016, Sandborgh-Englund, et al. 2006, 

Vandenberg, et al. 2007). Therefore, measurement of non-persistent chemical concentrations 

is highly dependent on timing (Lassen, et al. 2013), with studies recommending that 

exposure is best characterized by obtaining and pooling samples over a period of days 

or weeks during periods relevant to disease etiology (Vernet, et al. 2019, Vernet, et al. 2018). 

Alternatively, measurement-error correction techniques can be employed (e.g., regression 

calibration) (Jackson-Browne, et al. 2019). Several studies we noted here used single urine 

samples to characterize exposure, and a few studies of outcomes that occurred before birth 

(GDM for example) used exposure measures from urine samples obtained after the outcome 

had already occurred.

Along with the need to carefully consider timing of exposure assessment, the matrix in 

which these chemicals are measured is important, and urine is the optimal matrix for 

measuring most of these chemicals (Calafat, et al. 2013, Calafat, et al. 2015). Many of the 

studies included here evaluated chemical concentrations in urine, but a few used alternative 

matrices such as meconium (Baker, et al. 2020), and serum (Ye, et al. 2017). Serum 

and plasma are particularly poor choices for measuring non-persistent EDCs because of 

contamination from medical equipment and low/transient concentrations of the chemicals 

(Calafat, et al. 2013, Koch and Calafat 2009). Future studies should continue to use urine 

biomarkers unless more appropriate biomarkers are developed.

With regards to measuring non-persistent EDC concentration in urine, adjustment for 

urine dilution is another important consideration. In pregnancy especially, variation in 

individual hydration levels can affect non-persistent EDC metabolite concentrations in urine. 
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Without adjustment for urine dilution, hydration may confound or obscure associations of 

non-persistent EDC metabolite concentrations with the outcomes of interest. Some studies 

suggest the urinary dilution measure of specific gravity is most appropriate in pregnant 

women (Lee, et al. 2020, MacPherson, et al. 2018). Therefore, it is important to consider 

both the selection of the urinary dilution measure (e.g. creatinine, specific gravity) (Lee, et 

al. 2020, MacPherson, et al. 2018) and the statistical approach to adjustment (O’Brien, et al. 

2016).

Most studies reviewed here relied on single pollutant models or sums of related metabolites 

to characterize parent compound exposure. However, as discussed in the 2015 National 

Institute of Environmental Health Sciences workshop entitled “Statistical Approaches for 

Assessing Health Effects of Environmental Chemical Mixtures in Epidemiology Studies”, 

exposure to individual EDCs does not occur in isolation, and there are methods to address 

several questions related to exposure to chemical mixtures (Braun, et al. 2016). For example, 

methodologies are available to isolate the effect of an individual compound, to assess the 

cumulative effects of compound mixtures, and to evaluate interactions between various 

compounds in a mixture (Braun and Gray 2017). A recent study in 130 cases of preterm 

birth and 352 random controls assessed whether individual phthalate metabolites or their 

combination was associated with gestational age at delivery (Boss, et al. 2018). Authors 

reported that each interquartile range (IQR) increase in log- mono-2-ethyl-5-carboxypentyl 

phthalate (MECPP), was associated with a higher hazard ratio (HR) for preterm birth (HR: 

1.2; 95%CI: 1.1, 1.3) and a 1.2% (95% CI: 0.3, 2.1%) decrease in gestational age at birth. 

However, when an environmental risk score was calculated from weighted sum of phthalate 

metabolites, compared to the first quartile, being in the fourth quartile of the environmental 

risk score was associated with a HR for preterm birth of 1.4 (95% CI: 1.2, 1.8) and a 

2.6% (95% CI: 0.8, 4.3%) decrease in gestational age – suggesting that exposure to a 

cumulative mixture of phthalates elevated prematurity risk to a greater extent compared to 

the single pollutants (Boss, et al. 2018). Therefore, future studies should consider evaluating 

non-persistent EDCs as mixtures to better model exposure in human populations.

Challenges in study design specific to research evaluating non-persistent 
EDCs in pregnancy and pregnancy outcomes or maternal postnatal health
—As with all epidemiologic studies, valid study design is critical in research of non­

persistent EDCs and women’s health outcomes, especially becausethere are likely periods 

of heightened susceptibility during pregnancy for many of the health outcomes mentioned 

in this review. Although there are many statistical methods for identifying periods of 

heightened susceptibility (Buckley, et al. 2019), it is also important to develop studies that 

already account for the temporality of the exposure-outcome relationships within the design. 

Cross-sectional studies, though convenient, lack temporality of the exposure-outcome 

association, which is why conducting prospective cohort studies is critical. However, it 

can be challenging to design prospective studies as the disease latency and the critical 

timing of exposure are often unknown in pregnancy and long-term health. Additionally, 

prospective studies need to consider how exposure and other health behaviors change over 

time. To address this, some cohort studies developed protocols to collect multiple urine 

samples across pregnancy, but may miss timepoints of heightened susceptibility for an 
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outcome, especially around the time of implantation, as women are often recruited into 

research after they conceive (Chin, et al. 2019). This makes it challenging to evaluate 

associations of non-persistent EDC concentrations with early pregnancy outcomes, including 

implantation failure and early pregnancy loss. Preconception studies can sometimes 

overcome this limitation by capturing maternal non-persistent EDC concentrations during 

the preconception and early pregnancy windows, and several have demonstrated associations 

of non-persistent EDCs with early pregnancy loss (Messerlian, et al. 2016, Toft, et al. 2012). 

However, results from preconception cohorts may be difficult to interpret since women 

participating in these studies are often seeking fertility treatment. Unless the infertility is due 

to the male partner (and women are able to conceive naturally/with the use of intrauterine 

insemination), results from these studies may not be generalizable to naturally conceived 

pregnancies.

While early pregnancy will always be difficult to capture, an important approach for 

addressing inconsistencies in exposure assessment is for future studies to collect exposure 

data across multiple gestational timepoints, especially during critical windows of heightened 

susceptibility to the effects of non-persistent EDC (Pacyga, et al. 2021). With this 

approach, exposure can first be assessed in a cross-pregnancy pool, and then in more 

defined windows of susceptibility, if warranted. Another important consideration specifically 

related to evaluating exposure in pregnancy and long-term health outcomes is to capture 

exposure several times postnatally – including at the time of the health outcome measures. 

While challenging, it is critical to understand whether the EDC-outcome relationship is 

related to past (pregnancy) or current EDC exposure. Also potentially important, but 

infrequently studied, is paternal nonpersistent EDC exposure in the preconception period 

and its contribution to maternal health outcomes. Limited research also indicates paternal 

non-persistent EDC concentrations may be associated with shortened gestation (Mustieles, 

et al. 2020), but the paternal contribution has largely been overlooked for other conditions. 

As a result, future research may need to evaluate paternal contribution to women’s health 

outcomes. Careful consideration of these study design challenges is necessary to move the 

field of non-persistent EDCs and women’s health forward.

Conclusions

In this review, we noted a growing body of literature surrounding exposure to non-persistent 

EDCs during pregnancy and pregnancy outcomes in mothers, but it is thus far difficult to 

interpret. In contrast, recent studies have only begun to suggest that non-persistent EDC 

exposures in pregnancy adversely affect postnatal maternal health, but this is based on a 

limited number of studies focused on post-natal weight change. Therefore, while there is 

reason to posit that pregnancy exposures to non-persistent EDCs could impact women’s 

long-term health, we conclude that the current literature warrants substantial corroboration. 

To move the field forward, best practices using a sensitive-periods framework, valid 

epidemiological study design, and mixtures models, are needed in future research to 

maximize our ability to draw conclusions about the effects of non-persistent EDCs on 

women’s health. Use of these best practices will be crucial to unravelling the non-persistent 

EDC exposures that most impact future health outcomes in women.
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Figure 1: Proposed role of non-persistent endocrine disrupting chemical (EDCs) exposures in 
women’s long-term health (A) and future directions (B).
The current review outlines the potential for non-persistent EDC exposures in pregnancy 

to impact women’s health long after they give birth. One potential mechanism that 

would support this hypothesis is the role of maternal hormones as mediators of the 

relationship between non-persistent EDC exposure and women’s long-term health. Though 

substantially more data are needed to support this hypothesis, experimental and human 

epidemiological studies have found that non-persistent EDC exposure in pregnancy 

dysregulates maternal hormones in pregnancy. These disturbances in pregnancy can impact 

numerous health outcomes in women, including cancer development, gynecologic health, 

cardiometabolic outcomes, and likely numerous others. Given the inconsistencies in the 

current literature related to non-persistent EDC exposures and women’s health, several 

important methodological considerations should be kept in mind for future studies that aim 

to connect gestational exposures to women’s long-term health.
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Table 1:

Metabolites and uses of phthalates, triclosan, bisphenol A, and their replacements.

Compound Metabolites
a Uses in Commerce

DEHP
b MEHP, MECPP, MEHHP, 

& MEOHP
Plasticizer used in PVC plastics, food packaging, and plastic medical tubing & bags.

DiNCH MHiNCH Plasticizer used in PVC plastics, food packaging, medical tubing/bags (DEHP 
Replacement).

DEHTP MEHHTP & MECPTP Plasticizer used in PVC plastics, food packaging, medical tubing/bags (DEHP 
Replacement).

BBzP
b MBzP Plasticizer used in vinyl flooring, adhesives, food packaging, synthetic leather, & toys.

DEP MEP Scent retainer or emollient used in personal care products (cosmetics, lotions, & 
perfumes). Used as a medication excipient.

DnBP & DiBP
b MnBP & MiBP Scent retainer in personal care products (cosmetics, lotions, & perfumes). Used as a 

medication excipient. Plasticizer found in some cellulose plastics, & adhesives.

Triclosan
c Triclosan Antimicrobial compound used in soaps, personal care products, toothpaste, kitchen 

utensils, clothes, cleaning products.

Triclocarban
c Triclocarban Antimicrobial compound used in personal care & consumer products (Triclosan 

alternative).

Bisphenol A BPA Monomer used to manufacture polycarbonate plastics, resins, food cans linings, dental 
fillings, & medical equipment. Developer in thermal receipts.

Bisphenol F & 
Bisphenol S

BPF & BPS Monomer used to manufacture food can linings, plastics, resins, and food packaging. 
Used in cleaning products, industrial solvents, lacquer, varnish, & adhesives. 
Developer in thermal receipts. (BPA Replacements)

Parabens BP, EP, MP, PP Antibacterial compound used in medications, personal care products, and foods.

Benzophenones Benzophenones 1 & 3 Ultraviolet light filter used in sunscreens, cosmetics, consumer product packaging, 
sunglasses, and sports equipment.

a
All of these EDC metabolites are measured in urine and are either the parent compound or metabolic by-products of the parent compound

b
In the United States, the Consumer Product Safety Improvement Act of 2008 restricted the used of these phthalates in children’s toys and care 

articles to <0.1%.

c
The United States Food and Drug Administration has prohibited the use of triclosan and triclocarban in hand soaps and sanitizers.

Abbreviations: Di-2-ethylhexyl phthalate (DEHP), di-isodecyl/isononly phthalate (DiDP/DiNP), di-n/i-butyl phthalate (DnBP/DiBP), butylbenzyl 
phthalate (BBzP), diethyl phthalate (DEP), 1,2-cyclo-hexane dicarboxylic acid, diisononyl ester (DiNCH), bis(2-ethylhexyl) terephthalate 
(DEHTP), Bisphenols A, F, S (BPA, BPF, BPS). Mono-2-ethylhexyl phthalate (MEHP), mono-2-ethyl-5-carboxypentyl phthalate 
(MECPP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), mono-2-ethyl-5-oxohexyl phthalate (MEOHP), cyclohexane-1,2-dicarboxylic acid 
monohydroxy isononyl ester (MHiNCH), mono-2-ethylhydroxyhexyl terephthalate (MEHHTP), mono-2-ethyl-5-carboxypentyl terephthalate 
(MECPTP), mono-benzyl phthalate (MBzP), monoethyl (MEP), & mono-n/i-butyl (MnBP/MiBP) phthalate. Ethyl-, methyl-, butyl, and propyl­
parabens (BP, EP, MP, & PP).
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