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Abstract

Metabolomics, especially large-scale untargeted metabolomics, generate massive amounts of data 

on a regular basis, which often need to be filtered, screened, analyzed and annotated via a variety 

of approaches. Data-dependent acquisition (DDA) mode including inclusion and exclusion rules 

for tandem mass spectrometry (MS) is routinely used to perform such analyses. While parameters 

of data acquisition are important in these processes, there is a lack of systematic studies of 

these parameters that can be used in data collection to generate metabolic features for molecular 

network (MN) analysis on the Global Natural Product Social Molecular Networking platform 

(GNPS). To explore the key parameters that impacting the formation and quality of MNs, several 

data acquisition parameters for metabolomic studies were proposed in this study. The influences of 

MS1 resolution, normalized collision energy (NCE), intensity threshold, exclusion time to GNPS 

analyses were demonstrated. Moreover, an optimization workflow dedicated to Thermo Scientific 

QE Hybrid Orbitrap instruments is described, and a comparison of phytochemical contents from 

two forms of black raspberry extracts were performed based on the GNPS MN results. Overall, we 

expect this study to provide additional thoughts on developing natural product analysis workflow 

using GNPS network, and shed some lights to future analyses that utilizing similar instrumental 

setups.

Keywords

Metabolomics; molecular network; parameter optimization; mass spectrometry

Introduction

Mass spectrometry (MS) is a powerful technique for metabolomics research to explore 

small molecular compounds and achieve extensive metabolite/natural product analysis 1. In 

untargeted MS-based metabolomics, it remains a challenge to obtain high confidence in 

the identification/annotation of thousands of metabolites from the massive LC-MS /MS raw 
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data in the absence of prior knowledge 2. In data-dependent acquisition (DDA), precursor 

signals in MS1 spectra are interrogated and selected for fragmentation based on relative MS1 

signal intensity, giving rise to the MS2 spectrum 3. Then MS2 spectra are matched to online 

database or in-home standards for identification. During the process, the extend of data 

acquisition determines the comprehensiveness of metabolic profile, and the identification 

precision determines the accuracy of the subsequent biological analysis. Increasing the 

number and accuracy of identification is a long-term goal for metabolomics 4. There are 

many parameter settings in a DDA acquisition that affect the quantity and quality of MS2 

spectrum. For example, one study showed that meaningful MS2 spectra were collected under 

optimized DDA conditions at both high and low mass resolutions by manipulating collision­

induced dissociations 5. Another study optimized the intensity threshold, fragmented peaks, 

and exclusion after N scans, which suggested that these parameters affected the MS2 spectra 

quality under molecular network (MN) evaluation 6. In addition, some specific libraries, 

such as the polyphenol database that are of interest in this study, are incomplete, which also 

influence the identification result. For decades, there is no open access database containing 

the structure of all natural products produced by plants, which hinders the development of 

compound identification 7.

Therefore, inferring unknown compounds from known compounds is considered as an 

effective way to improve identification in metabolomics analyses. Global Natural Product 

Social (GNPS), the first full open access resource of this type, provides a central repository 

for the formation of known natural products and a tool for MN generation 8. MN is a 

visualized computing strategy that provides an intuitive view of all detected molecules, ions 

and the chemical relationships between these molecules and ions, playing an important role 

in large-scale compound identification and discovery of new compounds 9. As similar MS2 

spectra can be generated from compounds with similar structures, molecules of the same 

class of compounds tend to converge into clusters of nodes during MN analysis, which is 

conducive to the qualitative analysis of unknown compounds 9. Because of the intersectional 

connections between MNs, large-scale MS2 spectrogram analysis is also possible. For 

example, one study combined the LipidXplorer glycoalkaloids list and GNPS analysis 

was used in Cytoscape to label nodes in the molecular network, triggered the structure 

elucidation of closely related nodes leading to the identification of 30 compounds using 

the LipidXplorer output and four purified and structure elucidated compounds10. Another 

study focused on identification of a subset of polyphenols in Casearia using GNPS, and for 

the first time identified eight compounds in the family of flavonoid-3-O-glycosides 11. In 

addition, GNPS and molecular networks have also been shown to show cross-links between 

the chemistry of seemingly unrelated biological systems and used for drug discovery, drug 

metabolism and precision medicine 12. Despite these progresses, it is also well-recognized 

that MN results can be influenced by MS2 data quality as the MN is organized by spectral 

similarities 13, therefore, integrated MS parameter optimization and its consequential MN 

analysis should be carefully conducted to enable reliable MS2 data generation and efficient 

MN construction.

In this study, we aim to optimize several important parameters on the Thermo QE hybrid 

MS platform that can potentially increase both quantity and quality of MS2 spectra, so that 

enhanced natural product identification can be achieved. The parameters optimized in this 
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study include the resolution of MS1 resolution, normalized collision energy (NCE), intensity 

threshold, and exclusion time. These parameters of DDA were optimized based on GNPS 

MN results to generate better MS2 spectra for annotation. The MNs formed by the collected 

MS2 spectra were evaluated to determine the polyphenol compounds and derivatives of 

black raspberry (BRB) extracts in both liquid and powder forms from the same vendor. By 

comparing the optimization results of different data collection parameters, the importance of 

MS parameter optimizations for natural product analysis were also demonstrated.

Material and Methods

BRB Extract sample preparation

Both BerriHealth Premium Alcohol Free Black Raspberry Extract (BRB liquid) and Freeze­

Dried Black Raspberry Powder (BRB powder) were purchased from Berrihealth company 

(Corvallis, OR, US) and used in this study. One hundred and fifty mg of liquid BRB 

extract or one hundred mg of powder BRB extract was dissolved in 1 ml solution (contains 

20% HPLC water and 80% methanol). The mix were sonicated for 30 minutes at room 

temperature and then centrifuged for 10 minutes at 100g, 4°C. The supernatant was collected 

and filtered through 0.2 μm PTFE filter. The filtrate was immediately transferred to 1.5 ml 

LC-MS vials for detection.

Parameter setting on HPLC-Q-Exactive Mass Spectrometer system

LC-MS analysis was performed for prepared serum samples on an HPLC-Q-Exactive Mass 

Spectrometer system with XTERRA RP 18 Column (3.5 μm, 3.9 mm X 100 mm; Waters 

Corporation, Milford, MA) with gradient mobile phases for 12 minutes at a flow rate of 

0.9 ml/min. Mobile phase A consisted of water and acetonitrile at a ratio of 9:1 (containing 

5mM ammonium acetate and 0.1% acetic acid), mobile phase B consisted of water and 

acetonitrile at a ratio of 1:9 (containing 5mM ammonium acetate and 0.1% acetic acid). The 

injection gradients were as follows: mobile phase A was 99% at 0 minute, next decreased to 

1% in 8 minutes, then increased to 99% in 2 minutes, finally kept 99% to 12 minutes. BRB 

extract samples were tested in both positive and negative electrospray ionization modes. 

In this experiment, the data acquisition mode was full scan+ DDMS2, and high quality 

MS1 and MS2 data were obtained. The specific parameter setting was as below and shown 

in Table S1 in detail: MS1 resolution (17,500, 35,000, 70,000,140,000), NCE (10, 40, 70 

collision energy), intensity threshold (10E4, 10E5,10E6), exclusion time (10 s, 30 s, 60 s). A 

total of 432 injections were performed by applying the combination of these parameters in 

this study.

Molecular network analysis on GNPS

Proteo Wizard was applied to convert raw data to mzXL format prior to GNPS analysis. 

Converted data were then uploaded to GNPS 8 file transfer protocol (FTP, Host: ccms­

ftp01.ucsd.edu) through an FTP client named Forklift. Then, on the MN job submission 

webpage of GNPS, the uploaded data were divided into groups by gradient according to the 

parameters explored. For each sample under either positive or negative mode, the converted 

data were submitted in four grouping methods (corresponding to four parameters). For the 

comparison of different extracts, the converted data of liquid and powder BRB extracts 
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under the optimal parameter set, respectively, were submitted in 1 job with 2 groups. In the 

MN, the similarity between MS2 spectra were calculated and represented by cosine score 

(range 0-1; the higher the score, the higher the spectral similarity). Any spectra above the 

specified threshold were then connected to form a visualized MN graph. In each polarity, 

when one parameter setting was discussed, data from all other 3 parameters were aligned 

and averaged for generalized comparison according to default GNPS setting (minimum 

matched fragment ions: 6; minimum pairs cosine score: 0.7) 14.

Data analysis and visualization

After peak extraction, feature identification and MN generation in GNPS, MN was exported 

to Cytoscape for further observation, annotation and analysis. In a MN, each circle 

represents a compound, and each edge represents a connection between two compounds 

(related by structure similarity identified via MS2 spectra). Several networking statistics, 

including total nodes, identified nodes, nodes in network, self-loop nodes, pairs/edges, 

networks were collected directly. Networks (NW) is defined as total numbers of independent 

network clusters containing nodes >2. MN graphs were then downloaded for Cytoscape 

analysis 15 to calculate cosine score and cluster coefficient. Cosine score is the most 

widely used measures of spectral similarity 16. Cluster coefficients (CC) is defined as the 

average measurement for “cliquishness” of the neighborhood of node 17. These statistics 

were then summarized and used to generate eight-dimensional radar maps via MathWorks 

MATLAB (Natick, MA, USA). Cytoscape were also used to highlight nodes in different 

colors according to different parameters, samples, intensity levels or identification levels 

in MN diagrams. The mass spectra data has been deposited to MassIVE database (https://

massive.ucsd.edu/ProteoSAFe/static/massive.jsp ) with access # MSV000087069. Links to 

all molecular networking jobs run in GNPS have also been provided in the end of supporting 

information.

Results and discussion

A Thermo QE MS-based workflow for data acquisition parameter optimization

To reveal the variations of chemical compositions in different BRB extract products, two 

types of BRB extracts, liquid and powder samples, were obtained and evaluated in this study. 

Furthermore, data collected on a Thermo QE hybrid MS system using these samples were 

analyzed to highlight the importance of MS parameter optimization in establishing MNs 

for compound annotation. The schematic workflow of this study was shown in Figure 1, 

which can be divided into four modules: sample preparation, parameter setting comparison, 

data analysis and data visualization. First of all, two types of BRB samples were prepared 

for the detection of potentially different chemical profiles from these products. Next, 4 

parameters in DDA acquisition were chosen for optimization. For discrete parameter, such 

as resolution, of which the options are limited by the instrument, all 4 resolutions provided 

were applied. For other parameters, since the values are continuous, we took the default/

common value as a median, and a larger value and a smaller value were taken from both 

ends to observe their effects on the detection result. Collected raw data were uploaded 

to GNPS after conversion. The cosine score was generated by comparing it to the GNPS 

built-in database MS2 graph. Following common practice 18, cosine score cut off was 

Xu et al. Page 4

Mol Omics. Author manuscript; available in PMC 2022 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp
https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp


set at 0.7, which means that any feature with a matching score greater than 0.7 will be 

annotated, otherwise it will be used as an unknown feature to go to the next algorithm. 

In the next step, annotated compounds serve as the core of MN, through the comparison 

with the MS2 spectra of other unannotated features, to identify the adduct or isotope forms 

of the previously annotated compounds with the cosine score cut off at 0.7. In addition, 

GNPS built-in database also provide the reactions between compounds, through which 

reactants and products of chemical reactions can be linked. Based on the above algorithm, 

these features are successively linked together to form MNs with the core of annotated 

compounds. Figure S1 shows a cluster centered on kaempferol 7-O-glucoside in MN at and 

around m/z 449.101, in which the identified compounds were shown as blue dots, while the 

unidentified features were shown as gray dots. Centered with m/z 449.101, other compounds 

with a cosine score greater than 0.7 were annotated as its derivatives and connected. Then, 

each of these derivatives were centered, any features with a cosine score of more than 0.7 

were connected to them. In practice, all identified compounds are seen as the centers of the 

network from primary nodes to secondary nodes. Either identified or unidentified features, 

connected after the first matching, are seen as the centers of the network from secondary 

nodes to other nodes. As the network spreads, additional compounds are connected into the 

MN to maximize the annotation potentials of detected spectra. Finally, quality indicators of 

these MNs are extracted to reflect the overall performance of the MNs. To simultaneously 

reflect multi-dimensional indicators, including nodes, pairs/edges, and networks, radar maps 

were used in our analysis for data visualization and parameter optimization. At the same 

time, some representative MNs are also displayed to verify the optimized results of the radar 

map.

Evaluating MN performance indicators under different experimental conditions

To generate simplified comparisons of each variable tested, radar maps with 8 analytical 

indicators were used to display the parameters and overall quality of the MNs that produced 

by different MS datasets. Among them, total nodes, identified nodes, nodes in network 

reflected the number of detected features in MS experiments; self-loop nodes, pairs/edges, 

cosine scores reflected the degree of correlation for these features; network and cluster 

coefficient reflected the complexity of MNs. In general, a higher value of the cosine 

score between the nodes indicates a higher similarity of the detected spectra, and a higher 

similarity of the chemical structure of two metabolites. Meanwhile, a higher clustering 

coefficient of a node in the molecular network indicates that it has a larger number of 

chemicals that share similar structures, and a higher influence to the molecular network can 

be represented by this node based on its similarity to other chemical structures. In this study, 

all cosine scores and clustering coefficients were reported as an average value of multiple 

LC-MS runs to represent the strong correlations of nodes in the molecular network and 

the robustness of the molecular network. In general, except self-loop nodes, larger values 

of other parameters indicate better MS spectra that are suitable for MN analysis. However, 

since the self-loop nodes and total nodes were positively correlated, the evaluation criterion 

was set as the larger the octagon produced by the radar map, the better the MS2 spectrum 

quality under this parameter.
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As a starting example, the radar maps of parameter optimizations using liquid BRB extract 

were shown in Figure 2. The detailed data which was used to draw the radar map is listed 

in Table S2. For resolution of MS1, 17,500, 35,000, 70,000 and 140,000 were applied in 

this experiment. It is well-known that Q-Exactive mass spectrometer can achieve m/z 200 

resolution up to 140,000 and less than 2 ppm accuracy to achieve reliable identification 19. 

But too much resolution comes at the expense of reduced signal intensity 20. As shown 

in Figure 2A, in positive mode, the MS2 spectra of 70,000 resolution was significantly 

better as demonstrated by the largest octagon (yellow line). Compared to the second largest 

values, the identified nodes of MS2 spectra of 70,000 resolution increased the most (with 

an 84.3% increase on average comparing to that of resolution at 35,000), and the cluster 

coefficients only increased 2.4% comparing to resolution at 17,500. While in negative mode 

(Figure 2E), the impact of resolution was not as dramatic as the positive mode. Compared 

to the second largest values at 35,000, the largest increase at 17,500 was only 18.9% 

in pairs/edges. Meanwhile, identified nodes and cosine score at 17,500 even decreased 

by 1.5% and 2.7% from the maximum at 35,000. In NCE optimization, gradient of 10, 

40 and 70 were applied for the experiment. Different collision energies can result in the 

variations in fragmentation of ions, so the NCE value has a great potential to influence the 

MS2 fragmentation patterns and therefore often call for careful optimization 21. For NCE 

evaluation, NCE of 10 in both polarities was significantly better overall (Figure 2B and 2F). 

For both modes, almost all indicators except cosine scores and cluster coefficients reached 

to the maximum performance at NCE of 10. Most significantly, self-loop nodes increased 

about 230.9% in positive mode and networks increased about 196.9% in negative mode 

both compared to NCE of 40. The maximum of cluster coefficients was shown at NCE of 

40 in both polarities, which was increased by 6.1% and 9.0% than those at NCE of 10 in 

positive and negative mode, respectively. As for the intensity threshold, 10E4, 10E5, and 

10E6 were applied in the experiment. Intensity threshold refers to the MS1 signal intensity 

threshold selected for the MS2 spectrum generation. The intensity threshold is often used 

to remove the lower peaks of the signal because they may come from the noise and cannot 

generate meaningful MS2 data 22. As demonstrated in Figure 2C and 2G, the intensity 

threshold showed no significant difference between 10E4 and 10E5, while all indicators 

decreased significantly at 10E6 in both modes. In positive mode, the largest increase of 49.0 

% appeared on cluster coefficients when comparing 10E5 to 10E4 (Figure 2C), while in 

negative mode, the largest increase of 46.5% shown up on self-loop nodes when comparing 

10E4 to 10E5 (Figure 2G). Thus, 10E5 and 10E4 were recognized as the best options for 

positive and negative mode data collection, respectively. For exclusion time optimization, 

10, 30 and 60 seconds were applied in the experiment. Exclusion time refers to the duration 

of dynamic exclusion in the selection of MS1 signal for fragmentation. For example, if 10 

seconds is selected, the same MS peak selected for MS2 spectra generation in the top N 

list will not be fragmented for the second time within 10 seconds. The purpose of applying 

dynamic exclusion is to increase the compounds coverage by eliminating redundancy and 

allowing more precursor ions to be fragmented 23. The effect of exclusion time on MNs 

was relatively weak compared with other parameters, with slightly better MS2 performance 

in both polarities appearing at 60 s (Figure 2D and 2H). As the exclusion time increased, 

most indicators except cosine scores and cluster coefficients increased accordingly. For 

cosine scores, the maximum, appearing at 30 s in positive modes and 10 in negative mode, 
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increased by 0.2% and 0.7% than 60 s. For cluster coefficients, the maximum in positive 

mode still showed up at 60 s in positive mode and 10 s in negative mode.

Similarly, the radar maps of parameter optimization for powder BRB extract were shown 

in Figure S2 with the detailed data listed in Table S3. Compared with BRB liquid sample, 

powder BRB extract showed some different trends when optimizing the tested parameters. 

With the increase of resolution in both polarities, the number of total nodes, nodes in 

network, self-loop nodes, pairs and networks kept decreasing (Figure S2A and S2E). 

Identified nodes showed a little different pattern by reaching the highest value at 35,000 

(increased by 1.42% in positive mode and 20.5% in negative mode compared with that of 

17,500). The average cosine score coefficient reached its maximum at 140,000 (increased 

by 2.7% compared with that of 17,500) in positive mode and 70,000 (increased by 1.4% 

compared with that of 17,500) in negative mode. The maximum value of the coefficient 

correspondingly appeared at 35,000 (increased by 20.3% compared with that of 17,500) and 

17,500, respectively. Overall, the area of octagon decreased significantly as the resolution 

increase, and resolution of 17,500had the best MS2 spectral performance in both positive 

and negative mode. Because NCE value strongly influencing the patterns of fragmentation 

ions, and these patterns are often different in the two polarities, the patterns in MN 

statistics between the two modes were deemed to be different (Figure S2B and S2F). 

Overall, according to the size of these octogens in radar maps, the best MN performance 

occurred at 70 at positive mode and 40 at negative mode, respectively. Similar to liquid 

BRB extract, in powder BRB extract, the performance of intensity thresholds was highly 

comparable between 10E4 and 10E5, which were both larger in octagon size comparing to 

10E6 threshold (Figure S2C and S2G). The number of nodes, pairs and networks at 10E6 

was significantly reduced and the precision and complexity of the MN kept similar (cluster 

coefficients in positive mode is only lower than that of 10E5 by 5.1%) or even increased 

(cosine score increased by 1.8% compared to 10E4 and cluster coefficient increased by 

9.7% compared to 10E5 in negative mode). It can be inferred that most true MS1 peak 

has a signal intensity greater than 10E5. When the intensity threshold was set at 10E6, 

some of the true MS1 signals were not selected for fragmentation; meanwhile, those higher 

intensity peaks facilitated the formation of a MN with higher cosine scores and cluster 

coefficients. Although results at 10E6 showed more complex MN structure, that came at the 

expense of losing many of the nodes. Therefore, to achieve a balance between quality and 

quantity, 10E5 was the best setting for intensity threshold for both polarities in the powder 

BRB extract analysis. Exclusion time was still not a key factor in the powder BRB extract 

analysis, which is similar to the liquid BRB extract analysis in positive mode (Figure S2D 

and S2H). In terms of polarity, the negative mode performed better in MN performance than 

the positive mode under the same conditions for all parameters. The best parameters for both 

samples and polarities are summarized in Table S4.

In a previous study, the MNs generated by GNPS were also applied to optimize MS2 

mapping results, among which they only optimized the absolute threshold, and exclusion 

after n scans 6. This research was performed with an Agilent mass spectrometer while 

our experiment was based on an Thermo QE instrument, which added reference values for 

parameter optimization for different mass spectrometer instruments. Their study showed 

similar trends of the impact from intensity threshold and exclusion after n scans but 
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larger influence to their MN performance were observed comparing to ours, which could 

because that we were able to obtain an order of magnitude higher number of nodes than 

their results. In addition, after data collection, they conducted a secondary optimization by 

adjusting parameters of GNPS and Agilent data analysis software, which will be the focus 

of our follow-up studies. Another study focused on the parameter optimization, including 

MS1 resolution, MS2 resolution, data points per peak, for large protein 24. Different from 

our study, this research was based on Q-TOFS and Orbitrap instruments and used DIA 

sampling methods. Eventually, the authors found that MS1 resolution had little impact on 

DIA segments, and showed a trend of first rising and then falling, which are also different 

with our pattern of continuous reduction.

The impact of data acquisition parameters on the MN results

In order to visualize the influence of different parameter settings on the MNs generated in 

this study, the largest cluster in each MN was shown as examples in Figure 3 and Figure 

S3, for the liquid BRB extract and powder BRB extract, respectively. The color bars at 

the bottom of these figures were used to represent the intensities of nodes. Here, we found 

that in resolution, intensity threshold, and exclusion time groups, there was an interesting 

correlation between the peak intensity of MN nodes and the optimization results of radar 

maps: the parameters that perform well in the radar maps usually have deeper colors over 

many MN nodes, which represent higher intensities, in the overall cluster. But for the NCE, 

the correlation did not hold. We hypothesized that since the MN was produced by the 

combination of results under all parameters, intensity and radar map optimization results 

were expected to be consistent for compounds that were detectable in all selected parameter 

settings. Because the purpose of radar map was to screen out better quality MS2 spectra, 

and higher quality spectra usually had higher intensity. However, for compounds that were 

not found in all parameter settings, especially the unique compounds that were only detected 

under specific parameters, radar maps could only reflect the quantity of MS2 diagrams, but 

not their unique identities. Therefore, in Figure 4 and S4, the origins of reported MN nodes 

in these clusters (generally containing ~ 100 nodes) were shown in different colors. For 

example, in the first resolution column of Figure 4, compounds labeled black were detected 

at all four resolutions, while dark blue, red, yellow and green represented unique features 

detected at each tested value. Both liquid sample and powder sample in both polarities show 

very different origin distribution in NCE compared with other 3 parameters. For other 3 

parameters, the three tested exclusion time for powder BRB extract in positive mode (Figure 

S4D) had as much as 94.4% in common nodes; and the three tested intensity thresholds 

for powder BRB extract in negative mode (Figure S4G) had the least common nodes (4%). 

The clusters in NCE group shown little common nodes (0~5%) but a lot of unique nodes 

(Figure 4B, 4F, S4B, S4F). In order to extrapolate our conclusions to the entire MN, all 

the nodes sources were counted in Figure 5 and Figure S5. Similar to the figures above, 

the color of the bar chart also represented the origin of nodes. Overall, resolution, intensity 

threshold, exclusion time had consistent trend of all feature numbers with total nodes in 

radar plots, that is, feature numbers decreased with the resolution or intensity threshold 

settings increased but increased with the exclusion time settings increased (Figure 5A, 5C, 

5D, 5E, 5G, 5H, Figure S5A, S5C, S5D, S5E, S5G, S5H). Exclusion time had most common 

features (Figure 5D, 5H, Figure S5D, S5H), which changed from 61.6% (with exclusion 
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time at 60 s for liquid BRB extract in positive mode) to 78.9% (with exclusion time at 

10 s for liquid BRB extract in negative mode), and least unique features, which changed 

from 2.1% (with exclusion time at 30 s for liquid BRB extract in negative mode) to 7.1% 

(with exclusion time at 60 s for powder BRB extract in negative mode). Although resolution 

and intensity threshold did not have as many common features as exclusion time did, their 

common features were significantly larger than that of NCE (Figure 5B, 5F, Figure S5B, 

S5F). Nodes under the NCE parameter showed a very high degree of uniqueness, with NCE 

of 10 producing the largest number of unique compounds, accounting for about 80% of all 

the detected compounds with this setting. This finding, which was universal in both samples 

and both polarities, indicated that even the radar map showed very similar optimization 

results, different NCE values can generate totally different nodes for MN construction. 

The MS2 results are pretty sensitive to NCE, but this may not be reflected by radar maps 

using MN indicators. Therefore, direct MNs inspections will help to overcome the bias of 

radar map evaluations when we need to focus not only on the number of MS2, but also on 

the composition of those numbers, especially for those parameters shown fewer changed 

indicators while comparing different settings.

The identification result comparison of liquid and powder BRB extracts under both 
polarities

Even though MS2 DDA can usually detect thousands of features / nodes in MNs, in 

untargeted metabolomics, the ones that get most attention are still those can be annotated. 

In GNPS, the MN is derived from the annotated compounds. In our study, the number of 

these annotated features were organized and compared in Figure S6. There was a total of 

865 features identified. Overall, larger number of features were uniquely detected in positive 

mode than those in negative mode, in which the largest set of unique features (n=256) were 

detected in liquid sample under positive mode. Much larger number of overlap compounds 

in the same polarities (positive: n=78, negative: n=41) than that in the same sample (liquid: 

n=1, powder: n=3) were annotated, suggesting that the influence on the annotations from 

detection polarities were much larger than the two sample types we analyzed in this 

study. It is well known that BRB extracts are rich in polyphenols. According to previous 

literature of various berries studies25, BRB Anthocyanin-Enriched Extracts ranges from 

90 to 100 mg of gallic acid equivalents/g, which is much higher than the other kinds of 

berries, including blackberry, blueberry, cranberry, red raspberry, and strawberry. Therefore, 

polyphenol related features were picked from all identified features and organized in Table 

1. Overall, 88 polyphenols and derivatives were detected. The table showed similar pattern 

as that of all features: more features in positive mode and more overlaps between the same 

polarities. Kaempferol and its derivatives were abundant and detected in both samples and 

polarities, while quercetin and its derivatives were more sensitive to polarity and most of 

them were detected in negative mode. There were less polyphenols difference by sample 

types, which is what we expected. A previous study detected polyphenols types and level 

in BRB wine produce via alcoholic fermentation. Seventeen poly phenols, 10 of which 

were also detected in our study, were found in the wine 26. Some polyphenols, such as 

anthocyanins and tannins in BRB, are susceptible to degradation during food processing 27, 

which could explain the differences we observed between liquid and powder BRB extracts 

in our study. In chokeberries juice, small amounts of anthocyanins were present in large part 
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in polymeric forms after 6-month storage at 25 °C 28. But another study showed that total 

anthocyanins from berries can be well retained during long-term storage at −20 °C 29. This 

contradictory information suggested that additional studies, such as our current study, are 

necessary to explore the polyphenol differences in BRB samples under different processing 

methods and storage conditions.

The MN comparison of liquid and powder BRB extracts under optimal parameters

After the optimal parameters of the two BRB extracts under both polarities were obtained 

from the radar maps, the raw data obtained using the optimal parameters in Table S4 

were selected to generate the optimal MNs. Figure 6 showed the MNs formed by the best 

parameters of liquid and powder BRB extracts under positive mode analysis. The red dots 

indicated that these compounds detected from liquid BRB extract, the blue dots indicated 

that these compounds detected from powder BRB extract, and dots with mixed colors 

suggested these compounds can be detected from both type of samples, with the ratio of 

red to blue represented the intensity ratio of the compound under the optimal parameters. 

The optimal parameters of the two products are not identical, and the MNs generated 

under the optimal parameters were also quite different. More self-loop nodes came from 

liquid BRB, while nodes from powder tends to cluster into networks, which highlighted 

the possible influences of food processing steps to phytochemicals within these dietary 

supplements. In addition, many of the compounds in the figure were derived entirely from 

one sample, indicating that a good proportion of compounds in different BRB extracts 

vary under different processing conditions. Two representative polyphenols in positive mode 

and another two polyphenols in negative mode were recognized and highlighted/labeled in 

Figure 6. All of them can only be detected from BRB powder. In positive mode, kaempferol 

3-glucuronide and cyanidin 3-galactoside were in the largest cluster, while kaempferol-3­

glucoside-6-p-coumaroyl and quercetin-3-o-deoxyhexoside were self-loop in negative mode, 

which implicated that many polyphenol derivatives may be contained and connected with 

each other in BRB powder extract in positive mode. It is acknowledged that even for the 

selected samples, our specific type of instrument and the selected testing conditions reported 

in this study, we can be confident that this set of parameters was optimized, it is important to 

note that our optimal parameters here have limited applicability for other types of samples, 

instruments, or parameters. However, by showing different optimal parameters for liquid and 

powder RBR extracts, we demonstrated that our optimization process is capable of selecting 

a relatively good experimental parameter set, and that our optimization process is necessary 

to obtain higher quality MS2 spectra.

Conclusion

In this study, we demonstrated that parameter optimization for DDA in untargeted 

metabolomics analysis is necessary to obtain MS2 spectra of higher quality and quantity, 

which are essential for building large scale MNs for better compound annotation. GNPS 

platform provides a new and effective way for the identification of unknown compounds, 

and in this study, we aim to identify and optimize a set of experimental/data analysis 

parameters and their corresponding performance indicators of molecular network based on 

GNPS, which were able to also provide a quantitative basis for the determination of the 
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quantity and quality of MS2 spectrum. In turn, sufficient and higher quality MS2 spectrum 

is a prerequisite for further improving the capability of GNPS platform identification. 

Therefore, the optimization of experimental parameters is essential in the identification of 

unknown metabolites based on GNPS platform. Among 4 parameters tested in this study, 

resolution and intensity threshold were optimized for enhanced MS2 signal intensity, while 

the optimization of NCE could increase the spectra diversity and enable the annotations 

of many unique compounds based on their fragmentation patterns. Resolution, NCE and 

intensity threshold have greater influences on MS2 spectra quality, while exclusion time 

have less influence. By optimizing the parameters of the two types of BRB extracts 

separately, we noted that the parameter optimization can be sample type-specific and 

MS polarity dependent. In summary, we believe our study provided a Thermo QE mass 

spectrometer-based workflow for improving the integration of MS2 spectra quality and 

MN construction for better small molecule detection and annotation, and also provided 

references for optimizing parameters in similar analytical conditions. Moving forward, as 

we acknowledge that this study only had a small coverage of sample types and several 

major MS parameters optimized, we plan to continue this line of work to other natural 

products and small molecule analysis with extended optimizations of other MS parameter as 

well as post-data collection analysis to fill more gaps of knowledge in the complicated and 

challenging field of untargeted metabolomics analysis.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The workflow of our molecular networking-assisted metabolomics study. 1. BRB liquid and 

powder samples were prepared. 2. Resolution, NCE, intensity threshold and exclusion time 

were divided into gradients and cross-combined for LC-MS detection. 3. Detected data were 

used to build molecular network. 4. Indicators for molecular network were summarized to 

assess the performance of different parameter settings.
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Figure 2. 
Average statistical values for molecular network with liquid BRB extract raw data generated 

under different resolution, NCE, intensity threshold, and exclusion time. The radar plot 

matrix is divided into two rows and four columns, and the intersection point of each row 

and column is the radar plot of a certain parameter under the certain experimental condition. 

The radar plot has eight indicators in eight directions, and the line segments connect the 

eight values to form an octagon. TN: total nodes; IN: identified nodes; NN: nodes in 

network; SN: self-loop nodes; P/E: pairs/edges; CS: cosine scores; NW: networks; CC: 

cluster coefficients. Colors represent the different gradients of the parameters.
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Figure 3. 
The intensity of the largest cluster in each MN under different parameter settings using 

liquid BRB extract. Colors represent the signal intensity of the node. The darker the color, 

the stronger the signal intensity. The color distribution in these clusters represents the 

relationship between signal intensity of nodes and parameter changes.
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Figure 4. 
The node origins of the largest cluster of each MN under different parameter settings using 

liquid BRB extract. Colors represent the source of nodes.

Xu et al. Page 17

Mol Omics. Author manuscript; available in PMC 2022 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
The node origins distribution of each MN under different parameter settings using liquid 

BRB extract. Colors represent the source of nodes.
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Figure 6. 
The overview molecular network under optimized detection condition for the comparison 

of liquid and powder BRB extract samples. Colors represent the source of nodes. 

Size represents the identification level in GNPS. Bold black circles highlight identified 

polyphenol derivatives with their annotation aside.
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