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Abstract

We present a methodology for defining and optimizing a general force field for classical molecular 

simulations, and we describe its use to derive the Open Force Field 1.0.0 small molecule 

force field, code-named Parsley. Rather than traditional atom-typing, our approach builds on the 

SMIRKS-native Open Force Field (SMIRNOFF) parameter assignment formalism, which handles 

increases in the diversity and specificity of the force field definition without needlessly increasing 

the complexity of the specification. Parameters are optimized with the ForceBalance tool, based 

on reference quantum chemical data that include torsion potential energy profiles, optimized 

gas-phase structures, and vibrational frequencies. These quantum reference data are computed and 
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are maintained with QCArchive, an open-source and freely available distributed computing and 

database software ecosystem. In this initial application of the method, we present essentially a 

full optimization of all valence parameters and report tests of the resulting force field against 

compounds and data types outside the training set. These tests show improvements in optimized 

geometries and conformational energetics and demonstrate that Parsley’s accuracy for liquid 

properties is similar to that of other general force fields, as is accuracy on binding free energies. 

We find that this initial Parsley force field affords accuracy similar to that of other general force 

fields when used to calculate relative binding free energies spanning 199 protein-ligand systems. 

Additionally, the resulting infrastructure allows us to rapidly optimize an entire new force field 

with minimal human intervention.

Graphical Abstract

1 Introduction

Molecular mechanics (MM) force fields are empirical models of molecular potential energy 

surfaces, which yield the potential energy and atomic forces as a function of the atomic 

positions. Force fields are a crucial component of molecular simulations in many domains of 

chemistry and biophysics. In particular, force fields are used in simulations of biomolecular 

systems that may include biopolymers, aqueous solvent, and small molecules such as 

metabolites and therapeutics. They are also fundamental to technologies used in computer

aided drug design, such as molecular docking1–7 and simulation-based calculations of 

protein-ligand binding free energies.8–15

Decades of work have led to relatively refined force fields for proteins made up of the 

20 common amino acids.16–24 However, it is more difficult to develop a high quality 

general force field, i.e., one that applies to the wide range of small, organic molecules 

of interest in biology and drug discovery, due to the high diversity of the chemical 

space that must be considered. For example, the nearly 100 million compounds in the 

PubChem database25 embody many different combinations of varied functional groups and 

heterocycles. Moreover, some of the most important applications of force fields involve 

the simulation of as-yet undiscovered compounds, such as those under investigation for 

small molecule drug development, which may lie in new regions of chemical space. 
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Small molecule force fields in wide use today include the general AMBER force field 

(GAFF),26 the CHARMM general force field (CGenFF),27 and the optimized potentials for 

liquid simulations force field (OPLS).28 These important tools have undergone continuous 

development, and current generations are applicable to a wide range of small molecules. 

Nonetheless, calculations of hydration free energies, partition coefficients, and other 

properties show that there is room for improvement in current general force fields.29–32 

In addition, weaknesses in the small molecule component of the potential function likely 

account for some of the errors in calculations of noncovalent binding free energies relevant 

in host-guest chemistry33 and drug design.34

Improvements in force fields may come from the use of more and/or better reference data 

to optimize force field parameters, changes in the chemical typing rules used to assign 

parameters to atoms, and/or changes in the functional form of the force field. Exploring 

such improvements has traditionally involved considerable human input, and limitations 

in available computer power have made it difficult or impossible to carry out systematic 

explorations and optimizations. This has led to uncertainties in how exactly to go about 

attaining greater accuracy. For example, until it is clear how much accuracy can be achieved 

with a given functional form, it is impossible to ascertain whether or in what cases more 

accuracy is achieved by adding more detail and hence greater computational cost, e.g., by 

accounting explicitly for electronic polarizability. In addition, it is often unclear how the 

specific types and parameters of a given force field were arrived at, and this condition 

poses obstacles to reproducing and building on prior work. There is thus a need not 

only for improved force fields, but also for an infrastructure that will enable systematic 

exploration, optimization, and evaluation of new simulation force fields. Today, advances 

in software technology and increasing compute power make it possible to move toward the 

systematization and automation of force field generation.

The present study describes a significant step in this direction, the optimization of a small 

molecule force field using an automated and reproducible procedure, with all software, 

data, and workflows made freely available to the maximum extent possible. The result, 

OpenFF 1.0.0, code-named Parsley, is the first optimized force field using the SMIRNOFF 

format, with direct chemical perception.35 To create Parsley, we started with an initial 

force field called SMIRNOFF99Frosst consisting of direct chemical perception typing 

rules and parameters adopted from the Parm@Frosst force field.36 We then optimized 

nearly all 500 of the valence parameters to improve agreement with quantum chemical 

optimized geometries, energetics, and vibrational frequencies, while largely retaining the 

Lennard-Jones and electrostatic parameters of SMIRNOFF99Frosst. In keeping with the 

Open Force Field Initiative’s core philosophy, the Parsley force field and the software tools 

and data sets used to develop it are released under permissive open source licenses.

We also report here on the initial benchmarking of Parsley to show its improved accuracy 

relative to its predecessor for a wide variety of properties, especially energetics and 

geometries relative to gas phase quantum chemical calculations. The quantum chemical 

benchmarks, which cover more than 2,000 molecules and probe the quality of optimized 

geometries and relative conformer energies, show substantially better performance relative 

to SMIRNOFF99Frosst. For the condensed-phase properties, which span density, dielectric 
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constant, heat of vaporization, excess molar volume, and enthalpy of mixing, no dramatic 

performance differences relative to SMIRNOFF99Frosst were noted in this release, and the 

overall accuracy is similar to that of GAFF; this was expected as nonbonded parameter 

optimization was not included as part of this work. In addition, as a reality check for 

the critical application area of computer-aided drug design, we report Parsley’s favorable 

performance in benchmark protein-ligand binding free energy calculations covering 199 

protein-ligand pairs, along with comparative results for other small molecule force fields. 

Importantly, the infrastructure described here establishes a foundation for going far beyond 

Parsley, through the ongoing creation of a series of continually improving, open, small 

molecule force fields. The process reported here in the OpenFF 1.0.0 release continues in 

subsequent releases (OpenFF 1.1, 1.2 and 1.3)37–41 which will be described in follow-up 

work.

2 Methods

The infrastructure used to generate Parsley takes an initial force field as its starting point 

and optimizes it against reference training data to create an optimized force field, which 

in turn is benchmarked against test-set data prior to release (Figure 1). The software part 

of this infrastructure comprises a toolkit that assigns force field parameters to molecules 

of interest (openff toolkit); a component that computes a set of target properties for a 

set of input molecules (openff evaluator); and the ForceBalance code, which uses the 

openff evaluator to optimize force field parameters against the selected reference data. 

In general, the reference dataset can include both quantum chemical and experimental 

data. The Parsley force field was generated by refitting the parameters in the valence 

terms of the initial SMIRNOFF99Frosst35 force field against an extensive new set of high

level quantum mechanical data, which include energies, gas-phase geometries, and other 

properties. Note that the starting parameters in SMIRNOFF99Frosst in turn originated from 

two parent force fields, AMBER parm9942 and Merck’s parm@Frosst,36 which had been 

parameterized to reproduce gas phase geometries and energetics computed at lower levels 

of QM than that used here, for selected molecules. Here, Section 2.1 details the force field 

parameters that were optimized, the QM dataset used to drive the optimization, and the 

application of ForceBalance43 to carry out the optimization from the SMIRNOFF99Frosst35 

starting point. Section 2.2 then describes how the resulting Parsley force field was tested 

against benchmark data outside the training sets, comprising gas phase properties from 

QM calculations, measured liquid-state properties, and measured protein-ligand binding free 

energies.

2.1 Training the Parsley force field

2.1.1 Parameters that were refit—There are 500 valence parameters in 

SMIRNOFF99Frosst, and we aimed to optimize as many of these as possible. The quantum 

chemical data sets that we constructed 2.1.2 were successful at covering 481 of these 

parameters. The remaining 19 (Supporting Table S1), which were not modified due to the 

absence of training data (both in eMolecules, which we drew our coverage set from, and 

in our other available training data), either describe chemistries that are exceedingly rare in 
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drug-like compounds or were superseded by other higher-priority parameters that matched 

the same chemical patterns.

All 481 parameters were fitted simultaneously against all QM data (Section 2.1.2). Each 

parameter definition is uniquely identified by an interaction type (e.g. bond stretch) and a 

SMIRKS pattern (e.g. [#6×4:1]-[#6×4:2]), and can contain one or more physical values (e.g. 

the bond length and the force constant). The full list of parameter definitions, which can be 

viewed in the published force field XML file, openff-1.0.0.offxml,44 may be summarized as 

follows:

• Harmonic bond stretch: 86 equilibrium bond lengths and force constants.

• Harmonic angle bend: 35 equilibrium angles and 39 force constants. These two 

numbers differ because four angles are linear and were kept linear during fitting.

• Proper torsions: Each of the 154 torsion types is associated with an N-term 

Fourier series of potential energy contributions, where N ≤ 6, and each term, i, 
is of the form Ei = ki cos (iϕ + δi). We optimized all of the amplitudes that were 

defined in SMIRNOFF99Frosst, comprising 154, 62, 26, 5, 4 and 3 values of k1, 

k2, k3, k4, k5, and k6 respectively, for a total of 254 parameters. Parameters t156, 

t157, t158 represent torsion angles containing a linear angle, and their values of 

k1 were kept at 0.0 during fitting. The phase parameters, δi and the selection of 

Fourier terms used for each torsion were not optimized in this release.

• Improper torsions: The four improper terms were kept unmodified, to avoid 

overfitting.

2.1.2 Compound sets used in training—Two sets of small organic molecules were 

used to generate the quantum chemical datasets used in fitting. The first, termed the Roche 

Set, contains 468 fragment-sized molecules, most containing one to three rotatable bonds, 

that were provided by Roche as a collection of important and/or interesting chemistries. 

This data set was prepared using the MOE software.45 Representative compounds from 

this set are illustrated in Figure 2, and the full set can be found in Supporting Information 

section 1.1.2. The second, termed the Coverage Set, contains 80 molecules selected from 

eMolecules46 using a greedy algorithm aimed at providing parameter coverage for the 

maximum number of parameters using the minimum number of molecules. Figure 3 

illustrates representative compounds, and a full list of SMILES can be found in Supporting 

Information section 1.1.2.

Initial automated selection of the Coverage Set is described in a subdirectory of the 

openforcefields GitHub repository, and details of the additional molecules added manually 

to cover remaining gaps can be found in Supporting Information section 1.1.2.

2.1.3 Selection of quantum chemistry methodology—Quantum chemical 

calculations (geometry optimizations and torsion scans) were performed on a distributed 

set of high-performance computing clusters using the MolSSI QCFractal47 distributed 

quantum chemistry engine, with results deposited in the public MolSSI QCArchive Server 

(MQCAS)48,49 to allow open public access to all data. We used a single level of theory for 
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all QM calculations, B3LYP-D3(BJ) / DZVP.50–53 This choice was based on two benchmark 

studies of conformational energies54,55 and our own initial studies that aimed to balance 

accuracy against computational cost. The molecules in both of these studies included amino 

acids, small to medium-sized peptides, and macrocycles. Geometries were optimized at the 

MP2/ccpVTZ level, and reference energies were computed using explicitly correlated focal 

point analysis methods considered to be equivalent to complete basis CCSD(T) in accuracy. 

Both studies found that B3LYP-D3(BJ) reproduces the reference energies with root-mean

squared errors (RMSEs) of < 1 kcal/mol when very large basis sets (e.g.def2-QZVP56) are 

used; the empirical D3 dispersion term played a major role, as the errors were typically 2–4x 

larger without it.

Notably, Řezáč et al. 201854 reported that the double-zeta quality DZVP basis set50 gave 

nearly the same RMSE as def2-QZVP, which we were able to reproduce in our own tests. 

When similar-sized and better-known basis sets such as 6-31G* and def2-SV(P) were used, 

the RMSEs increased significantly but there were only minor differences in computational 

cost. Our results are largely consistent with Řezáč et al. 201854 even though we did not use 

the custom empirical dispersion parameters they derived for the DZVP-DFT basis set. A 

scatter plot of RMSE vs. calculation time for a representative molecule, labeled as FGG114 

in Řezáč et al. 2018.,54 is shown in Figure 4; the results confirm that the DZVP-DFT basis 

set gives the best compromise between accuracy and computational cost.

Although we believe our choice of QM method is appropriate for gas-phase conformational 

energies for the neutral compounds comprising our training set here, we did not conduct 

benchmark studies on optimized geometries and vibrational frequencies which were also 

part of our parameterization dataset. We did not include charged molecules in the current 

training or test sets, because our use of QM gas-phase calculations as training data does 

not account for any differences in properties between gas phase and in aqueous solvent, 

which would be more pronounced in charged species. Therefore, the accuracy of this force 

field for charged species is presently unknown. This issue has been addressed in recent 

work on protein force fields in which the QM training data and MM calculations are both 

carried out in the presence of implicit solvent models,57 which may also be applicable 

to small molecule force fields. More comprehensive benchmarks are planned to inform 

future force field generations. However, the present level of theory is superior to the HF/

6-31G* approach used in parameterizing the parm99/parm@Frosst force fields from which 

SMIRNOFF99Frosst descended, and thus should afford greater accuracy.

2.1.4 Generation of quantum chemical data for compound datasets—Prior to 

running quantum chemical calculations, the input molecules were subjected to protonation 

state and conformer expansion, using the Fragmenter software package.58 After the 

expansion, each protonation state was identified as a new molecule, so the number of 

distinct molecules increased; and each molecule could have one or more conformers. Each 

conformer provided one optimized geometry used in fitting. Three classes of gas phase 

quantum chemical data were generated for both the Roche and Coverage compound sets: 

optimized geometries, vibrational frequencies, and torsional energy profiles. The methods 

used are detailed below. The results of all quantum chemical calculations are stored as 

DataSet objects on the MQCAS48 and are freely available to the public. Examples of 
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working with several MQCAS datasets can be found in Supporting Information section 

1.1.3.

Optimized geometries: We used the MolSSI QCArchive Server (MQCAS) to store and 

distribute geometry optimizations with the geomeTRIC optimization driver59 and the Psi4 

quantum chemistry package60,61 as backends. Optimized QM geometries were downloaded 

from the MQCAS, then filtered to remove cases where the bonding pattern changed on 

optimization, as well as issues which pose other problems for the openforcefield toolkit 

v0.4.1,62 e.g. undefined stereochemistry, missing torsion terms, or inability to assign AM1

BCC charges. Details can be found in Supporting Information section 1.1.3.

The objective function that measures deviations of MM from QM geometries is designed 

in the following way: MM geometry optimizations are first locally minimized starting from 

QM optimized structures, then MM and QM Cartesian coordinates are converted to lists 

of bond lengths, bond angles, and both proper and improper torsion angles. The difference 

between QM and MM optimized internal coordinates for a single molecule contributes to the 

objective function as:

Loptgeo(θ) = ∑
i ∈ ICs

xiMM(θ) − xi
QM

di

2
(1)

where θ stands for the force field parameters used in the MM calculation, di refers to scaling 

factors of 0.05 Å, 8 degrees and 20 degrees for bond lengths, bond angles, and improper 

torsion angles, respectively. Proper torsion angles were not considered here, but instead are 

fitted based on comprehensive torsional energy profiles, as detailed below.

Vibrational frequencies: For each optimized geometry in the Roche and Coverage 

molecule sets, Hessian calculations were both executed and stored in the MQCAS. From the 

calculations that were completed, the Hessians for the lowest-energy conformation of each 

compound / protonation state were kept. After screening the dataset for topology changes 

and other errors, normal mode analysis was performed to obtain harmonic vibrational 

frequencies and Cartesian displacements for the internal degrees of freedom. Details can be 

found in Supporting Information section 1.1.3.

The corresponding force field Hessians were computed by locally minimizing the QM 

geometries with the force field, followed by evaluating forces with numerical displacements 

(0.001 Å). Normal mode analysis was carried out and the QM and FF frequencies were 

sorted from lowest to highest to yield the sorted sequences νQM,i and νFF,i, respectively. The 

objective function contribution for each set of normal modes was computed as the sum of 

squared differences of corresponding frequencies, scaled by a factor of dvib = 200cm−1, as:

Lvib(θ) = ∑
i

vQM, i − vFF , i
dvib

2
(2)
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Because the objective function sorts the QM and MM vibrational frequencies in simple 

ascending order, it does not account for possible differences between the QM and FF 

normal modes; i.e., the eigenvectors. This approach was taken primarily for computational 

efficiency, but it carries the risk of creating mismatches between the MM and QM 

vibrational modes. To test for this possibility, we also carried out single-point comparisons 

of vibrational frequencies where the MM frequencies and normal modes are permuted 

to maximize overlap with the QM normal modes. The permutation was carried out by 

computing the mass-weighted overlap matrix between each pair of QM and MM normal 

modes followed by solving the linear sum assignment problem. The objective function was 

then computed using the resulting matched pairs of QM and MM frequencies.

2.1.5 Torsional potentials—Quantum mechanical energy profiles were generated for 

dihedral angles in the Roche and Coverage sets. All calculations were carried out on 

the MQCAS, which employs the TorsionDrive software to compute each torsion energy 

profile using a wavefront propagation procedure,63 described briefly here. Multiple initial 

geometries were generated for each molecule via fragmenter and provided as input at 

the start of the procedure. Each input structure was energy-minimized with the selected 

torsion angle constrained to values on a 15° resolution grid, with QCArchive managing 

parallel job execution, and individual constrained optimizations handled by geomeTRIC/

Psi4 as described above. At the conclusion of the constrained minimizations, the lowest

energy structure at each grid point was used to initiate new constrained minimizations at 

neighboring grid points. This cycle was repeated until the grid was fully populated with 

constrained minimization results and no new lowest-energy structures were found. In order 

to avoid pathologies such as bond-breaking that may occur when driving torsions into 

sterically hindered or high-energy regions, an upper energy limit was applied such that 

no constrained minimizations were started from structures with energies greater than 0.05 

Hartrees (31.3 kcal/mol) above the minimum.

The set of lowest-energy constrained minimized structures for each grid point was 

downloaded from the MQCAS and checked for bonding topology changes; calculations 

that contained such changes were discarded. In addition, any scans that included a frame 

with an internal hydrogen bond were discarded to avoid having strong intramolecular 

nonbonded interactions in the gas-phase QM energy, as they would lower the accuracy 

of the fitted parameters for condensed phase simulations. Our work also suggests that 

including conformations with intramolecular hydrogen bonds can adversely affect torsion 

fitting by conflating the effects of strong internal electrostatic interactions (which might not 

be well described by point charge electrostatics, especially without simultaneous refitting) 

into fitted torsions. In future work, hydrogen-bonded dimers may be included along 

with intramolecularly hydrogen bonded conformers in order to assure a suitable balance, 

which implies a need to include fitting the nonbonded and valence parameters together.64 

Hydrogen bonds were detected using the Baker Hubbard method (Angle(D-H..A) > 120 

degrees and Dist(H..A) < 2.5 Å), as implemented in the MDTraj package.65 Details can be 

found in Supporting Information section 1.1.3.

For compounds in the Roche Set, torsional scans were generated for the 819 dihedral angles 

matching all of the following conditions:

Qiu et al. Page 8

J Chem Theory Comput. Author manuscript; available in PMC 2022 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. the center bond is not part of a ring;

2. there is at least one heavy side group on both sides of the bond;

3. neither of the two angles involved is close to linear (≥ 165°).

Among all torsions sharing the same center bond, the one with the largest side groups, 

by number of atoms, was picked. For the compounds in the Coverage Set, we used the 

SMIRNOFF force field to label the torsions in each molecule and selected the first five 

dihedral angles that match each torsion term for scanning. (Note, however, that the force 

field term t155b was added after this dataset was created, so no torsion was selected for that 

term.)

The objective function contribution was computed as a weighted sum of squared differences 

between QM and MM energies. During the fitting process, each structure along the QM 

torsional profile was partially relaxed using the empirical force field being optimized. These 

MM optimizations were started from the QM constrained optimized structure, the four 

atoms defining the torsion were fixed at the QM coordinates, and all other atoms were 

held near the QM coordinates by applying harmonic energy restraints with force constant 

1 kcal/mol/A2. These added harmonic restraints avoid the possibility of large structural 

changes of the MM structures away from the QM structures, which could make the torsional 

profile differences less meaningful. The restraint term is applied only in the MM energy 

minimization, and the MM energy at the energy-minimized geometry without the restraint 

term is used in subsequent steps. The QM and MM energies being compared were calculated 

as:

EQM xi = EQM′ xi − EQM′ x0
EMM xi; θ = EMM′ OptMM xi; θ − EMM′ OptMM x0; θ (3)

where the primes indicate absolute energies, subscripts indicate grid point indices, x0 is the 

lowest energy energy-minimized structure, θ represents the MM force field parameters, and 

OptMM(x; θ) denotes the MM constrained optimization procedure described above. The 

objective function is then calculated as:

L(θ) = 1
dE2

∑i ∈ N(gridpoints)w EQM xi EQM xi − EMM xi; θ 2

∑i ∈ N(gridpoints)w EQM xi
(4)

where dE = 1.0 kcal mol−1 is a scaling factor. The weights are calculated by a formula that 

uses two cutoffs, where the weight is constant until the first cutoff (1.0 kcal/mol) then starts 

to decrease, followed by a hard second cutoff at 5.0 kcal/mol above which the weights are 

zero.

w(E) =

1 E < 1.0kcal/mol

1 + (E − 1)2 − 1
2 1.0 ≤ E < 5.0kcal/mol

0 E ≥ 5.0kcal/mol

(5)
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Our decisions regarding the fitting of torsion energy profiles warrant some discussion and 

comparison to published studies. Previously published force fields have either employed 

QM torsion scans similar to this work,66 or used custom MM simulations to generate input 

conformations for QM calculations.67 During the development of a nucleic acid force field, 

QM and MM minimizations were carried out prior to comparing energies in a similar 

procedure to this work.68 The weighting scheme we used is comparable with a previous 

study69 that employed a Boltzmann distribution with T = 2000 K (kBT ≈ 4.0 kcal/mol) to 

assign weights in fitting torsion energy profiles.

The variety of torsion fitting procedures used in prior studies shows that a standard 

procedure for carrying out this step is currently lacking. This is in part because each 

approach involves making a different set of compromises when fitting the approximate 

potential, and it is challenging to assess the impact of an approach on the accuracy 

of simulated properties. This and other challenges motivates the creation of automated 

benchmarking tools that are the subject of current research but beyond the scope of this 

paper.

2.1.6 Optimization algorithm and convergence criteria—The parameter 

optimization was carried out with ForceBalance,43 a Python toolkit to optimize force 

fields in a systematic, reproducible, scalable and flexible manner.43,70 We employed a 

development version of ForceBalance based on v1.6.071) to minimize the objective function. 

Support of the OpenFF force field was enabled by an interface with the OpenFF Toolkit 

v0.4.1.62 The commercial OpenEye toolkit version 2019.4.2 was used to generate .mol2 

files, which are needed by ForceBalance to set up OpenFF simulations using the toolkit.

Numerical derivatives of the objective function with respect to parameters were computed 

with dimensionless displacements of 0.01 for improved numerical stability, relative to the 

ForceBalance default of 0.001. Fitting was terminated once two convergence criteria were 

met:

1. The dimensionless parameter step size fell below 0.01;

2. The objective function (Section 2.1.7) decreased by less than 0.1 during the step.

To efficiently optimize the parameters in as few iterations as possible, ForceBalance uses a 

quasi-Newton iteration to take near-optimal steps in parameter space:

θ(n + 1) = θ(n) + [H(θ) + λI]−1

To approximate the Hessian H(θ), ForceBalance computes an approximation to the matrix 

of second derivatives of each least-squares component in a manner that neglects parameter 

couplings:

Hi, pq(θ) = ∂2

∂θp∂θq
Li(θ) = ∑

j ∈ data

∂Aj
∂θp

∂Aj
∂θq

+ ∂2Aj
∂θp∂θq

≈ ∑
j ∈ data

∂Aj
∂θp

∂Aj
∂θq

(6)
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The λ parameter is used to set the optimization step size, and was determined by line-search 

minimization for a given parametric gradient and Hessian. This strategy was employed 

because the line search over λ only requires repeated evaluation the objective function itself, 

and not the parametric gradient which is relatively expensive.

2.1.7 Objective function with regularization—ForceBalance was used to minimize 

an objective, or loss function, L(θ), with respect to force field parameters θ. The objective 

function quantifies deviation of quantities derived with the force field from the reference 

quantum chemical data while adding a regularization penalty to minimize the deviation from 

a reference set of parameters, following the standard approach for ForceBalance:43

Ltot(θ) = ∑
i ∈ targets 

wiLi(θ) + wreg ∑
p ∈ parameters 

Δθp
2

σp2

Here, wi is the weight of each class of optimization data targets with corresponding loss 

functions Li(θ), which are often least-squares penalized loss:

Li(θ) = ∑
j ∈ data 

Ajobs  − Ajcalc (θ) 2

where Aj
obs  is an observed quantum chemical or physical property target to fit, and 

Aj
calc (θ) is the calculated value. wi of each target type was chosen to prevent the optimizer 

prioritizing one target type over other types. Carefully selected weights enabled the objective 

function contributions of different target types to have the same order of magnitude at the 

start of parameter optimization. Wreg is the regularization penalty weight, and Δθ quantifies 

the deviation from a reference set of parameters – here, the initial SMIRNOFF99Frosst 

v 1.1.0 parameter set.35 Regularization ensures that parameter adjustments are made 

conservatively to avoid introducing large problematic parameter changes that may only 

provide marginal improvements in the optimization target, especially when smaller datasets 

are used in parameterization. We used the regularization scales, σp listed in Table 2, based 

on past observations of variations in these parameter types in previous studies.70

2.2 Testing the Parsley Force Field

Once the parameters had been trained as detailed in Section 2.1, we tested the resulting force 

field, Parsley-1.0.0, against optimized geometries outside the training set, and compared 

the results to those obtained with the initial force field, SMIRNOFF99Frosst-v1.1.0.35 We 

also tested Parsley against two data types outside the training set: energy differences among 

conformers of a given molecule, and physical properties of various organic liquids. Tests 

against vibrational spectra and torsional energy potentials are reserved for future studies. 

Benchmark comparisons of Parsley in the context of other general force fields are also 

available.72 We now describe how these tests were done.
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2.2.1 Quantum chemical test set generation—The QCArchive tool was used to 

generate and archive additional QM data, using the procedures detailed in Section 2.1, for 

compounds in three collections.

OpenFF Discrepancy Benchmark 1 This comprises 2,802 fragment-like molecules 

(19,712 conformers) selected from the eMolecules catalog46 because their energy

minimized geometries are substantially different in SMIRNOFF99Frosst 1.0.8 

relative to GAFF, GAFF2, MMFF94, and MMFF94s.73,74 We retained all protonation 

and tautomer states present in our initial dataset, but did not generate any additional 

ones. Further details can be found in Supporting Information section 1.2.1.

Pfizer Discrepancy Optimization Dataset 1 This comprises 100 fragment-like 

molecules for which Pfizer’s QM calculations of torsional profiles computed with 

HF/minix75 followed by B3LYP/6-31G*//B3LYP/6-31G** differed substantially 

from those generated with the OPLS3e force field. Pfizer code for relevant related 

work is public on GitHub.76 Enumeration of conformers, but not of protonation 

states, led to 352 conformers.

FDA Optimization Dataset 1 This is a subset of the list of FDA-approved drugs in 

the ZINC15 FDA dataset.77 Molecules were kept if they had 3–55 heavy atoms and 

consisted only of elements H, C, N, O, F, P, S, Cl, Br, I and B. We retained multiple 

protonation and tautomer states in the database, but did not generate any additional 

ones. Generation of up to 20 conformers per molecule led to 6,675 conformers for the 

1,038 structures.

Test results are presented for the merger of these three datasets, termed the Full 
Benchmark Set. This dataset can be retrieved from the MQCAS as OpenFF Full 

Optimization Benchmark 1, as documented elsewhere.78 This is an “optimization 

dataset” in the sense that it – and the results presented here for benchmarking on this 

set – are for performance on optimized geometries only.

Conformational energy differences were assessed as follows. Compound conformers were 

energy-minimized using QM. For a compound with at least three conformers, we identified 

the conformer imin with the lowest QM energy Eimin, QM and computed the energies of 

its other conformers relative to it: Ei, QM − Eimin, QM. We then computed the force field 

energies of the same conformers, Ei,FF , and, for each compound, computed the RMSE of 

Ei, FF − Eimin, FF  from the corresponding QM energies. Note that conformation imin is based 

on the QM energies and used again for the FF energies.

2.2.2 Testing against physical properties of organic liquids—We assessed the 

ability of molecular dynamics simulations using the newly fitted Parsley force field to 

replicate 221 experimental observables for organic liquids spanning 104 molecules. The 

observables used are densities, heats of vaporization, and static dielectric constants, of pure 

liquids, and excess molar volumes and heats of mixing of binary liquid mixtures. The 

experimental data were drawn from the NIST ThermoML Archive.79 For systems involving 

water, the TIP3P model80 was used. Automated scripts used to select the data can be found 

in Supporting Information section 1.2.2.
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We started with all available measurements of the properties listed above. When multiple 

values were available for a given quantity, only the ones with lowest reported uncertainties 

were retained. We furthermore excluded ionic liquids, compounds containing elements other 

than H, N, C, O, S, F, Cl, Br, and I, and data measured outside the temperature range 288–

318K and the pressure range 0.95–1.05 atm. Dielectric constants < 10 were also excluded, 

because a force field that does not explicitly include electronic polarizability is not expected 

to replicate lower dielectric constants well.81 Finally, a greedy search was performed on 

the remaining data to select a minimal subset of small molecules that exercised the largest 

number of nonbonded parameter types and for which the most measurements were available. 

Sample compounds from the resulting set are shown in Figure 6, and further information on 

the data set can be found in Supporting Information section1.2.2.

Values for all of these properties were computed with the OpenFF-Evaluator (formerly 

named the PropertyEstimator) 0.0.5 tool, using scripts which can be found in Supporting 

Information section1.2.2. Calculations were carried out with the new Parsley 1.0.0, and, for 

comparison, with its precursor, SMIRNOFF99frosst 1.1.0, as well as GAFF 1.81 and GAFF 

2.11.

2.2.3 Testing against protein-ligand binding free energies—We assessed the 

performance of the newly fitted Parsley forcefield in binding free energy calculations based 

on molecular dynamics simulations following suggested best practices for benchmarking 

binding affinities.82 The test set consisted of 8 protein targets with a total of 199 ligands 

(Supporting Information, Table 2), using a set commonly referred to as the “JACS dataset” 

from a prior study published in that journal and frequently used by the community.12 For 

a fair comparison to previously published results, the initial ligand and protein structures 

were obtained from prior benchmark work.83 These structures are available in the protein

ligand-benchmark repository.84 Relative binding free energies were calculated employing 

alchemical perturbations between pairs of ligands in water and the protein complex. These 

calculations employed a non-equilibrium workflow based on GROMACS and pmx.85,86 

For the ligand molecules, the Parsley force-field was used as parameters. The protein 

was parameterized with the AMBER ff99sb*ILDN force field87–89 and a TIP3P explicit 

water model was employed. We chose AMBER ff99sb*ILDN as the protein force field 

because we expect Parsley to have the best compatibility with the AMBER family of 

force fields, as its non-bonded parameters are ultimately taken from Parm@Frosst, an 

AMBER-compatible small molecule force field.36 The water model was chosen as TIP3P 

due to the widespread use of this water model with the AMBER family of protein force 

fields. To mimic physiological conditions, ions (150 mM NaCl) and additional counterions 

to neutralize the system were added to the dodecahedral simulation boxes.

The analysis workflow used for analyzing the calculations is available in 90. The statistics 

in this workflow were calculated using Arsenic,91 which is a package implementing best 

practices for consistently calculating statistics and reporting results from binding free energy 

calculations. The Parsley results were compared to previously published results using 

the GAFF2.1,26 CGenFF3.0.127 and OPLS3e34,66 force fields. The former GAFF2.1 and 

CGenFF results were calculated with the same pmx worklow, and the OPLS3e results were 

calculated with Schrödinger FEP+.83
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More detailed discussion of the workflow, the employed parameters and the analysis can 

be found in the Supporting Information. Full details of this study will be reported in a 

forthcoming publication, and a preliminary report can be found in 92.

3 Results and Discussion

This section first describes the consequences of parameter optimization for accuracy over the 

training set, and then benchmarks Parsley on the separate test set compounds and properties. 

The test set results should be indicative of Parsley’s accuracy in new applications.

3.1 Improvements in accuracy over training set data

3.1.1 Optimization of the objective function—The parameter fitting process 

dramatically increased the accuracy of the force field for the training data. Although 

this was anticipated, it is important to confirm, because it verifies the effectiveness of 

the optimization procedures and provides a scale for the degree of improvement. The 

dimensionless objective (or loss) function—the weighted sum of squared differences 

between QM and MM values—decreased dramatically in the fitting, from 25,708 to 4,522 

(Figure 7). As described in Section 2.1, the objective function is a sum of contributions 

which report the accuracy of optimized geometries, vibrational spectra, and torsional energy 

profiles. The effect of training on these components is summarized in Table 3 (Training Set 

data) and Figure 8, and the following subsections provide further details of these results. Full 

fitting details, as well as inputs and outputs, can be found in the release package.93

3.1.2 Optimized geometries—The geometric component of the objective function 

is computed from the deviations of bond-lengths, bond-angles and improper torsions, in 

structures optimized with the force field, from their values in corresponding structures 

optimized with QM (Section 2.1.4). As shown in Figure 8a, the fitting process led to 

improved overall agreement between force field and QM geometries; compare the initial 

(red) and final (green) histograms. The portion of the blue histogram on the negative / 

positive x-axis shows the percentage of targets where accuracy is improved / degraded, 

respectively. The accuracy was somewhat reduced for a small minority of conformers, 

as evident from the histogram of differences (blue), but this is as expected, because 

compromises have to be made for some molecules in order to improve the accuracy for 

others that use the same parameters. Table 3 provides a physically interpretable perspective 

of these results, showing that the RMS errors of bond-lengths, bond-angles, and improper 

torsions, in the optimized geometries, decreased by 14–49% with training.

It can also be useful to assess the fitting of individual parameters. To do this for a given 

bond-stretch parameter, for example, we collected all test cases that included the parameter 

of interest and made a scatter plot of the length of the bond in the QM geometries vs the 

length in the MM geometries. Such plots were generated for each bond-length, bond-angle, 

and improper dihedral, in the training set, and all are available in the release package.93 

When considering this term by term analysis, it should be kept in mind that the length 

of a bond or the value of an angle in an optimized geometry is determined not just by 

the parameters of the corresponding force field term, but also by the rest of the structure. 

For example, a bond length may be shifted by ring strain. However, when these values 
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consistently differ between QM and MM geometries, this can be an indicator that the 

specific force field parameter requires further attention.

The fitting process moved most bond lengths and angles closer to the diagonals of these 

scatter plots, implying better agreement between MM and QM, as expected based on Figure 

7. For a clear example, see Figure 9(left), where a change in the equilibrium bond length 

shifted the MM results to the diagonal and thus into better agreement with QM. However, 

a few of these scatter plots are more problematic. For example, Figure 9 (right), which 

examines a general N=N bond stretch, shows a small shift of the data points toward the 

diagonal, but does not correct the fact that this bond length falls in a narrow range across all 

the MM geometries but is varied in the QM geometries. In cases like this, greater accuracy 

might be achieved by creating two or more force field types for N=N bonds, rather than 

just one. Before taking such a step, though, one should consider whether the variations 

in the QM bond lengths trace to varied amounts of strain placed on the bond by other 

components of the structure. If so, then the accuracy of the N=N bond lengths should 

be improved by adjustment of other parameters that would correct the strain, rather than 

correcting parameters intrinsic to the bond itself.

Relationships among force field equilibrium bond lengths, chemical environment, and 

strain, may be further explored by examining the lengths of a given bond type across 

the geometrically optimized conformers of various compounds. Figure 10 illustrates this 

concept for a generic C-N single bond. The curves in the left panel show the energy

minimized central bond lengths in QM torsion profiles taken from the Roche dataset, 

including all cases where the central bond is matched by the SMIRKS pattern indicated. The 

rise and fall of an individual curve indicates a dependence of the central bond length on 

the torsion angle, and the vertical displacements of the various curves relative to each other 

indicate the torsion angle-independent differences of central bond lengths between different 

molecules, or different central bonds in the same molecule. When integrated over all torsion 

angles, the bond lengths across all instances of the central bond matched by this SMIRKS 

pattern has a bi- or tri-modal distribution (Figure 10 right panel). This result suggests that 

this generic bond type ought to be split into at least two or perhaps three more specific types 

determined by SMIRKS patterns matching more specific chemical environments.

3.1.3 Vibrational frequencies—Fitting against the training set led to substantial 

improvements in the accuracy of the vibrational frequencies in the training data, relative 

to the reference QM results, as evident from a dramatic fall in the vibrational components 

of the objective function. This is evident in Figure 8b, which shows decreases in error 

for the sum of squared vibrational frequency differences for individual molecules. Indeed, 

the improvement from initial results (red) to fitted results (green) appears even more 

marked than that of optimized geometries (Figure 8a). The distribution of improvements for 

individual conformations (blue) also shows strong improvement, with only a tiny minority 

of cases becoming less accurate with fitting. These results correspond to a 67% drop in the 

RMSE of individual MM vs QM frequencies; i.e., from 119 to 40 cm−1 (Table 3). When 

the MM vibrational frequencies are permuted to maximize overlap between MM and QM 

normal modes, the RMSE in the vibrational frequencies is found to decrease by 42% (156 to 

90 cm−1) with optimization.
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3.1.4 Torsional energy profiles—Fitting also led to improvements in the accuracy of 

the torsional energy profiles in the training set (Figure 8c), although the improvements (red 

to green) appear less dramatic than for the geometric and vibrational components discussed 

above. As for the other objective function components, the improvements observed for many 

torsions come at the expense of decreased accuracy for some others (blue). The RMSE of 

the MM torsional energy profiles relative to the QM ones in the training set fell from 2.96 to 

1.89 kcal/mol, a 36% drop (Table 3).

It is also of interest to compare the MM and QM potential energy profiles for individual 

torsion angles across the full training training set, and a full set of comparisons is available 

in the Supporting Information. Sample plots for a torsional profile that improves with fitting 

and another that gets worse are provided in Figure 11, left and right panels respectively. 

Interestingly, the parameter in the second plot occurs 231 times in the training set, so 

degraded performance is likely not due to lack of sufficient data, but instead to either 

changes in other portions of the force field, or improved performance on other molecules 

utilizing this same parameter at the expense of degraded performance for this particular 

target. Note that most torsional parameters appear in many molecules in the training set, so 

fitting can improve accuracy for most occurrences while degrading it for others.

The greater difficulty of fitting torsional profiles may result from the fact that these are 

particularly sensitive to nonlocal interactions within the molecules, such as longer-range 

sterics and electrostatics. Also, defining force field types for torsional terms is more complex 

than for most other terms in the force field, as multiple torsional terms contribute to the 

profile around a given bond, and torsional terms include step changes in periodicity. Note, 

too, that the present fitting process adjusted only amplitudes, and left periodicities and 

phases unchanged. Adjustment of these additional parameters will clearly be of interest in 

future rounds of force field development.

3.2 Test Set Results

Results for data outside the training set provide an indication of the transferability of the 

new parameters and hence of the accuracy that may be expected in actual use. Here, we 

examine the ability of the new parameters to replicate QM-optimized gas-phase geometries 

for molecules outside training set, energy differences between gas-phase conformers, 

physical properties of liquids, and relative protein-ligand binding free energies.

3.2.1 Quantum chemical data—The overall objective function for the test set is 

lower for Parsley (20,672) than for the initial force field (29,469). The distribution of 

improvements over the test-set compounds (Figure 8d) shows that the objective function 

improves for almost all compounds, given that the blue histogram of differences has 

few positive values. Accordingly, improvements of 6–35% are observed in the terms that 

contribute to the objective function (Table 3. It is worth noting that the test set exercises 

415 out of the 500 parameters. We also grouped the bond lengths, bond angles, and 

improper dihedrals across test set compound according to their FF types and examined 

the improvement in accuracy by type, as illustrated for the bond-lengths in Figure 12. The 

complete figures for bond lengths, bond angles and improper torsion angles can be found 
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in Supporting Information Figures 1–3. Clearly, optimization over the training set led to 

improved test-improvement for most parameters. Comparable plots for angles and torsions 

are available in the release package for this force field.94

We also tested the ability of the Parsley force field to replicate differences among 

conformations of gas-phase molecules in the test set. Note that this type of data is 

entirely absent from the training data. Nonetheless, the RMSE for these quantities fell 

by 12% on going from the initial force field to the new Parsley force field (Table 3). 

The improvements accuracy are distributed across many compounds, rather than being 

dominated by improvements for a few, as evident from the histograms in Figure 8e.

3.2.2 Physical properties of organic liquids—We tested Parsley’s ability to model 

condensed phase properties by using it to compute densities, enthalpies of vaporization, 

static dielectric constants, enthalpies of mixing, and excess molar volumes, of organic 

liquids and mixtures, and comparing with experimental data from NIST’s ThermoML. Note 

that no condensed phase data were used in the fitting process. As shown in Figures 13 and 

14, the new Parsley force field offers competitive performance for these data, with marginal, 

though not statistically significant (by comparison of the root-mean-square errors and their 

95% confidence intervals), improvement over the previous SMIRNOFF99frosst 1.1.0 release 

(Table 4). The overall accuracy also is similar to that of the established GAFF family of 

force fields. This pattern presumably reflects the fact that these physical properties are not 

sensitive to the valence parameters optimized here, and that condensed phase data were not 

used to guide the optimization.

3.2.3 Protein-ligand binding free energies—The Parsley force field provides 

competitive accuracy in relative binding free energy calculations for 199 ligands across 

eight different protein targets, as shown in Figure 15. Indeed, the differences in accuracy 

across the four force fields examined here are within 95% confidence intervals. It is also 

important to note that the accuracy of these calculations is strong affected by additional 

factors, including input structure preparation and sampling time. That said, in terms of mean 

unsigned error (MUE) of all relative free energy differences ΔΔG, Parsley (MUE = 1.02 

kcal mol−1) ranks third, after GAFFv2.1 (MUE = 0.92 kcal mol−1) and OPLS3e (MUE = 

0.93 kcal mol−1), and before CGenFF (MUE = 1.09 kcal mol−1). These results indicate that 

Parsley is a reasonable choice of force field for binding free energy calculations in drug 

discovery projects.

4 Using and Citing Parsley

The present Parsley force field, formally named openff-1.0.0, can be accessed from Python 

by installing the Open Force Field Toolkit with the command conda install -c omnia 

openforcefield openforcefields and then loading the force field as follows:

from openforcefield.typing.engines.smirnoff import ForceField

ff = ForceField (‘openff-1.0.0.offxml’)
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The default version of Parsley includes hydrogen bond length constraints, which allow use 

of the typical 2–4 fs timestep in molecular dynamics simulations. A second version without 

these constraints, which is suitable for geometry optimizations and single-point energy 

calculations, may be accessed as follows:

ff = ForceField (‘openff_unconstrained-1.0.0.offxml’

)

An example of the use of Parsley to run a molecular dynamics simulation can be found in 

Supporting Information section 3. Alternatively, the force field files themselves can be found 

under the openforcefields/offxml subdirectory of the openforcefields GitHub repository.95

The present Parsley version may be referred to as “Open Force Field (OpenFF) Parsley 

Force Field (v1.0.0)” on first reference, and “Parsley” thereafter. Newer Open Force Fields 

are in development, and updates in the OpenFF 1.x series will also be referred to as Parsley, 

while new major versions will receive updated codenames. To cite Parsley, please reference 

the latest version of this article and the DOI of the force field version you use. This 

information is available in the OpenForceField repository,95 and the present version may be 

cited as.44

To provide feedback on the performance of the OpenFF force fields, we highly recommend 

using the issue tracker at http://github.com/openforcefield/openforcefields. For toolkit 

feedback, use http://github.com/openforcefield/openforcefield. Alternatively, inquiries may 

be e-mailed to support@openforcefield.org, though responses to e-mails sent to this address 

may be delayed and GitHub issues receive higher priority. For information on getting started 

with OpenFF, please see the documentation linked at http://github.com/openforcefield/

openforcefield, and note the availability of several introductory examples.

5 Conclusions and Directions

We have described a methodology to derive new simulation force fields and an initial 

application of this infrastructure to create OpenFF 1.0.0 (codenamed Parsley), a SMIRNOFF 

force field with bonded terms optimized against a range of gas-phase QM reference data. 

For both training and test sets, Parsley provides more accurate molecular geometries and 

conformational energetics, while preserving accuracy for a range of condensed phase 

properties. Importantly, it also yields highly competitive accuracy in calculations of relative 

protein-ligand binding free energies. This work lays a foundation for efficient iterative force 

field improvement, which is already underway in subsequent releases (OpenFF 1.1, 1.2, 

1.2.1 and 1.3,37–41 to be described elsewhere). This work could also be naturally extended 

to automatically derive molecule-specific (i.e. “bespoke”) parameters96 and we are actively 

developing software tools for this application.

In the near term, we aim to extend the optimization to nonbonded interaction parameters and 

incorporate expanded training and testing data sets. Later, we plan to address issues related 

to the definitions of chemical types and elaboration of the functional form, such as by the 

addition of off-center partial charges and incorporation of an explicit treatment of electronic 
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polarizability. At the same time, we hope that the associated open release of our datasets 

and infrastructure will enable independent use of these data and tools to advance force field 

science.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Open Force Field infrastructure and data flows during force field development. The OpenFF 

toolkit (left) sets up an MM simulation system from a given force field definition and 

parameters, and the OpenMM simulation code (top) is called to evaluate target physical 

properties. ForceBalance (middle) iteratively optimizes the parameters by least-squares 

minimization of an objective function constructed from the differences between MM 

simulated properties and reference data. QCArchive (bottom) is a distributed computing 

environment and database for generation and storage of quantum chemistry reference data. 

See text for further details.
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Figure 2. 
An illustrative subset of small fragment-like molecules from the Roche Set.
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Figure 3. 
An illustrative subset of molecules from the Coverage Set.
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Figure 4. Tradeoff between speed and accuracy in selecting quantum chemical basis set.
Computational time (for single conformer) versus RMSE to benchmark-quality relative 

energies for 15 conformations of a representative molecule for several choices of basis 

set. The benchmark relative energies are MP2/CBS with a CCSD(T) correction and were 

obtained from Ref. 54.
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Figure 5. 
Example torsions selected for 1D torsion scans in the Roche TorsionDrive dataset. H, white; 

C, gray; N, blue; O, red; S, yellow; F, green (lower middle); Cl, green (lower left).
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Figure 6. 
Representative molecules in the condensed phase physical property benchmark set.
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Figure 7. 
Objective function, or loss function, plotted against the number of ForceBalance iterations.
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Figure 8. Improvement in components of the training set and test set objective functions with 
fitting.
Red histogram shows performance with our initial force field, green histogram shows 

performance with the optimized force field and blue histogram shows the distribution of 

changes in objective function contribution of each target (individual molecules/geometries 

contributing to the objective function) due to the parameter optimization. Left column 

(a–c) provides the training set results. Right column (d–e) provides test set results. The 

range of each plot encompasses ≥ 94.94 % of the population of initial objective function 

contributions and ≥ 99.2 % of the population of final objective function contributions.
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Figure 9. Comparison of QM and MM energy-minimized bond lengths for two parameters.
Left: divalent sulfur single-bonded to a divalent oxygen. Right: divalent bond between 

nitrogens. Vertical line indicates the value of the force field’s equilibrium bond length. 

Orange and blue indicate results for initial and optimized force field. Dashed: Line of 

identity.
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Figure 10. Dependence of bond lengths of a given force field type upon the chemical and 
conformational environment.
Left: Length of the central bond as a function of the torsion angle in the Roche dataset for 

central bonds matching the C-N bond type indicated. Each line corresponds to the length 

of the C-N bond matching the b7 parameter for constrained energy-minimized conformers 

over a range of torsion angles. Right: Histogram of the observed bond lengths after summing 

over the torsion angles. Solid line in both panels indicates the force field’s equilibrium bond 

length for type b7, and dashed lines indicate the lengths for which the bond energy equals 

1.2 kcal/mol. The lines labeled in red are b7 in the initial force field, and lines labeled in 

green are b7 after force field optimization. Example molecules and their given b7 bond(s) 

are highlighted on the far right, which correspond to typical environments where the bond 

length is 1.44 Å (orange), 1.46 Å (green), or 1.52 Å (violet).
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Figure 11. Examples of torsional profiles that were improved (left) or degraded (right) by fitting.
Data are for a specific torsion angle in a specific molecule, as detailed below the plot. 

Blue: QM energy. Orange: force field energy before training. Green: force field energy after 

training (Parsley). The metadata at the bottom explains which dataset this data is drawn 

from, and which specific molecule this torsion occurs in, as well as the SMIRKS pattern for 

the particular torsion being fitted here. The total count of this SMIRKS pattern across the 

dataset (5) is also shown at the bottom, as well as the parameter ID and the atom indices in 

the molecule. The full set of plots are available in the release package.93
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Figure 12. Bond length RMSE comparison for initial and optimized force fields for the Full Set.
For each bond type (b1, b2…), a gray circle indicates the RMSE of bonds of this type for 

the initial force field and arrows show the drops (green) or increases (red) in error on going 

to the new force field. (SMIRKS patterns for these parameter IDs can be retrieved from the 

force field XML file, openff-1.0.0.offxml.44
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Figure 13. Results of pure property benchmarks.
Liquid properties computed with various force fields, as labeled, are compared with 

experiment. Density: ρ; dielectric constant: ϵ; heat of vaporization: Hvap;
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Figure 14. Results of binary mixture property benchmarks.
Liquid properties computed with various force fields, as labeled, are compared with 

experiment. Enthalpy of mixing: Hmix; excess molar volume of mixing: Vexcess.
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Figure 15. Results of protein-ligand binding free energy benchmarks.
The predicted relative binding free energies ΔΔG versus the experimental results for 

330 alchemical perturbation calculations with four forcefields: Parsley-1.0.0, GAFFv2.1, 

CGenFFv3.0.1 and OPLS3e. The graphs for the latter three force fields use data reported in 

Ref. 83. The different colors denote the eight different protein targets.

Qiu et al. Page 40

J Chem Theory Comput. Author manuscript; available in PMC 2022 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Qiu et al. Page 41

Table 1.

Summary of quantum chemical calculations used to fit the force field valence parameters in this work. These 

publicly available datasets are stored on the MolSSI QCArchive Server (MQCAS)

Roche Set Coverage Set

Compounds 468 80

Cmpds × Prot. States 468 233

Opt. Geom.
Geometries 936 831

Dataset Name OpenFF Optimization Set 1 SMIRNOFF Coverage Set 1

Vib. Freq.
Frequency Sets 660 235

Dataset Name OpenFF Optimization Set 1 SMIRNOFF Coverage Set 1

Tors. Scans
Energy Profiles 669 417

Dataset Name OpenFF Group 1 Torsions SMIRNOFF Coverage Torsion Set 1
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Table 2.

Regularization scaling parameters used in ForceBalance optimization runs for each force field parameter type.

parameter regularization scale σp

bond force constant Kr 100 kcal/mol/A2

bond equilibrium length r0 0.1 Å

angle force constant Kθ 100 kcal mol−1 rad2

angle equilibrium angle θ0 20 degrees

proper torsion barrier height K 1 kcal/mol

vdW well depth ϵ 0.1 kcal/mol

vdW minimum rmin–half 1 Å
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Table 3.

Overall change in root-mean-squared error (RMSE) metrics vs. the quantum chemical result calculated for 

four types of properties, using the initial and optimized force field, and divided into training set and test set. 

The numbers in parentheses under vibrational spectra indicate RMSE in frequencies after permutation of MM 

normal modes to maximize overlap with QM normal modes. ND = No Data.

Training set Full test set

Data class Initial 
RMSE

Final 
RMSE

Change (%) Initial 
RMSE

Final 
RMSE

Change (%)

Geometry
optimization

Bond lengths
(Å)

0.045 0.023 −49% 0.023 0.017 −33%

Bond angles
(deg)

3.71 3.20 −14% 3.80 3.59 −5.5%

Improper
dihedrals

(deg)

4.15 2.87 −31% 4.31 2.82 −35%

Vibrational spectra 
(with mode 

reassignment)
Frequencies

(cm−1)

119.
(156.)

39.6
(90.)

−67%
(−42%)

ND ND ND

Torsion energy profiles
Energies

(kcal/mol)

2.96 1.89 −36% ND ND ND

Relative
energies

Energies
(kcal/mol)

ND ND ND 2.43 2.13 −12%
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Table 4.

Measures of accuracy of force fields for the physical property benchmarks. RMSE: root-mean-square error; 

R2: coefficient of determination; τ: Kendall’s tau ranking accuracy metric. Subscripts and superscripts indicate 

95% confidence intervals on these statistics.

Property Force Field RMSE R 2 τ

Vexcess (x) (cm3/mol) smirnoff99frosst 1.1.0 0.410.29
0.52 0.390.14

0.70 0.440.13
0.67

parsley 1.0.0 0.390.26
0.51 0.440.18

0.71 0.500.22
0.71

gaff 1.81 0.470.34
0.61 0.170.01

0.45 0.23−0.01
0.46

gaff 2.11 0.410.27
0.54 0.360.10

0.66 0.420.14
0.62

Hmix (x) (kJ/mol) smirnoff99frosst 1.1.0 0.640.50
0.76 0.500.25

0.67 0.490.28
0.66

parsley 1.0.0 0.580.46
0.69 0.590.34

0.74 0.540.32
0.70

gaff 1.81 0.690.52
0.87 0.450.25

0.62 0.440.22
0.63

gaff 2.11 0.600.45
0.73 0.580.35

0.74 0.580.40
0.72

Hvap(kJ/mol) smimoff99frosst 1.1.0 6.034.24
7.56 0.790.62

0.90 0.700.50
0.83

parsley 1.0.0 5.874.23
7.37 0.850.71

0.93 0.790.61
0.88

gaff 1.81 5.533.97
7.12 0.800.63

0.90 0.720.54
0.84

gaff 2.11 7.005.33
8.52 0.600.30

0.80 0.590.35
0.76

ρ (g/ml) smirnoff99frosst 1.1.0 0.100.06
0.14 0.960.94

0.98 0.900.85
0.92

parsley 1.0.0 0.100.05
0.15 0.960.94

0.98 0.900.85
0.92

gaff 1.81 0.050.03
0.07 0.980.95

1.00 0.910.87
0.94

gaff 2.11 0.050.03
0.07 0.990.97

1.00 0.920.87
0.94

ϵ smirnoff99frosst 1.1.0 14.7811.62
18.17 0.530.22

0.80 0.500.22
0.72

parsley 1.0.0 15.7212.54
19.19 0.530.22

0.79 0.490.20
0.69

gaff 1.81 13.2210.80
15.63 0.640.44

0.82 0.540.34
0.73

gaff 2.11 12.169.40
14.96 0.620.40

0.82 0.670.42
0.81
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