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Abstract

Urinary mutagenicity reflects systemic exposure to complex mixtures of genotoxic/carcinogenic 

agents and is linked to tumor development. Coal combustion emissions (CCE) and diesel engine 

exhaust (DEE) are associated with cancers of the lung and other sites, but their influence 

on urinary mutagenicity is unclear. We investigated associations between exposure to CCE or 

DEE and urinary mutagenicity. In two separate cross-sectional studies of non-smokers, organic 

extracts of urine were evaluated for mutagenicity levels using strain YG1041 in the Salmonella 
(Ames) mutagenicity assay. First, we compared levels among 10 female bituminous (smoky) 

coal users from Laibin, Xuanwei, China, and 10 female anthracite (smokeless) coal users. We 

estimated exposure-response relationships using indoor air concentrations of two carcinogens in 

CCE relevant to lung cancer, 5-methylchrysene (5MC) and benzo[a]pyrene (B[a]P). Second, we 

compared levels among 20 highly exposed male diesel factory workers and 15 unexposed male 

controls; we evaluated exposure-response relationships using elemental carbon (EC) as a DEE­

surrogate. Age-adjusted linear regression was used to estimate associations. Laibin smoky coal 

users had significantly higher average urinary mutagenicity levels compared to smokeless coal 

users (28.4±14.0 SD vs. 0.9±2.8 SD rev/ml-eq, p=2 x 10−5) and a significant exposure-response 

relationship with 5MC (p=7 x 10−4). DEE-exposed workers had significantly higher urinary 

mutagenicity levels compared to unexposed controls (13.0±10.1 SD vs. 5.6±4.4 SD rev/ml-eq, 

p=0.02) and a significant exposure-response relationship with EC (p-trend=2 x 10−3). Exposure to 

CCE and DEE is associated with urinary mutagenicity, suggesting systemic exposure to mutagens, 

potentially contributing to cancer risk and development at various sites.

Keywords

Complex mixtures; coal combustion; smoky coal; diesel exhaust; Salmonella mutagenicity; 
urinary genotoxicity biomarkers

INTRODUCTION

Indoor coal combustion emissions (CCE) and diesel engine exhaust (DEE) are known 

human carcinogens based largely on findings from epidemiologic and mechanistic studies 

of lung cancer (IARC 1989, 2012, 2014; Silverman 2018). These environmental exposures 

are among the most prominent non-smoking related risk factors for lung cancer (Samet et 

al., 2009; IARC 2014) and contribute to air pollution-associated lung carcinogenesis (IARC 

2016). Furthermore, there is evidence that exposure to CCE and DEE may be related to risk 

of tumor development at other sites besides the lung (Sharpe et al., 1989; Kim et al., 2016; 

Koutros et al., 2020; Sapkota et al., 2008).

With respect to indoor CCE, we have shown that female lifetime users of bituminous 

(smoky) coal had substantially elevated lung cancer mortality compared to anthracite 

(smokeless) coal users in a cohort study conducted in the Xuanwei region of China (Barone­

Adesi et al., 2012), which was further supported by evidence from parallel case-control 

studies (Lan et al., 2008; Kim et al., 2014; Seow et al., 2014; Vermeulen et al., 2019; 
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Wong et al., 2019). The smokeless coal users were largely from the southwestern region 

of Xuanwei near Reshui. Additionally, we found that exposure to a specific type of smoky 

coal sourced from geologic deposits near Laibin township of Xuanwei had a particularly 

strong relationship with lung cancer risk (Lan et al., 2008; Wong et al., 2019). Much of the 

evidence for the carcinogenicity of DEE was derived from the Diesel Exhaust in Miners 

Study and a study of trucking industry workers, which found significant increasing trends in 

lung cancer risk with increasing cumulative DEE exposure (Garshick et al., 2012; Silverman 

et al., 2012; Silverman 2017, 2018) and average intensity (Silverman et al., 2012; Silverman 

2017, 2018).

Polycyclic aromatic hydrocarbons (PAHs) and their methyl-derivatives play an important 

role in CCE-associated lung cancer (IARC 2012; Vermeulen et al., 2019). Nitroarenes 

(nitro-PAHs) and aromatic amines appear to contribute substantially to the carcinogenicity 

and mutagenicity of DEE (IARC 1989, 2014). Studies conducted in Xuanwei found 

that residents were highly exposed to PAHs at near occupational levels in their homes 

from domestic coal combustion (Mumford et al., 1995; Downward et al., 2014). In a 

subsequent epidemiologic study, we found strong associations between a cluster of 25 

PAHs and lung cancer risk in this region (Vermeulen et al., 2019). Among these PAHs, a 

particularly carcinogenic methyl-derivative, 5-methylchrysene (5MC) (Hecht et al., 1974), 

was associated with the highest risk (Vermeulen et al., 2019).

There is evidence supporting the role of PAHs in CCE-induced lung cancer. For example, we 

have found that this malignancy is linked to the nucleotide excision repair (NER) pathway 

(Shen et al., 2005), which repairs PAH-induced DNA damage; the aldo-keto reductase 

(AKR) pathway, which activates PAH dihydrodiols to form redox-active o-quinones (Lan 

et al., 2004); and the base-excision repair pathway, which plays a role in the generation or 

repair of oxidative damage (Lan et al., 2004). Additional supporting evidence comes from 

mutation spectra studies of lung tumors from women exposed to smoky coal emissions, 

notably from the patterns of TP53 mutations (DeMarini et al., 2001; Granville et al., 2003; 

Keohavong et al., 2005).

Urinary mutagenicity is an integrated, overall measure that reflects systemic exposure to 

complex mixtures of genotoxic/carcinogenic agents. Urinary mutagenicity has been linked 

to colorectal adenoma risk (Peters et al., 2003) and correlates with biomarkers among those 

exposed to a variety of pollutants, including cigarette smoke, benzidine dyes, heterocyclic 

amines, nitrotoluenes, and woodsmoke (Yamasaki and Ames 1977; De Meo et al., 1987; 

Clonfero et al., 1995; Cerná et al., 1997; DeMarini et al., 1997; Kato et al., 2004; Sabbioni et 

al., 2006; Shaughnessy et al., 2011; Long et al., 2014; Keir et al., 2017; Adetona et al., 2019; 

Wu et al., 2021).

The reported associations between exposure to coal products, DEE, and urinary 

mutagenicity have been inconsistent, which could be due to low exposure levels and/or 

limited exposure variation. Although Mielzynska and Snit (1992) found an association with 

coal, other studies did not (Moller and Dybing 1980; Recio et al., 1984). We have found 

high concentrations of the PAH metabolite 9-hydroxybenzo[a]pyrene, a known mutagen 

(Lubet et al., 1979), in urine samples collected from smoky coal-exposed subjects (Mumford 
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et al., 1995); however, these samples were not assessed for mutagenicity. Furthermore, 

although DEE is highly mutagenic (IARC 2014), two studies of individuals occupationally 

exposed to DEE did not detect relationships with urinary mutagenicity (Williems et al., 

1989; Schenker et al., 1992).

To explore further, we performed two separate air monitoring studies for relevant pollutants 

and determined urinary mutagenicity levels among non-smokers with high indoor exposure 

to either CCE or DEE. One study was conducted among women from the general population 

who domestically burned either smokeless coal or a particularly carcinogenic form of smoky 

coal sourced from geologic deposits near Laibin township of Xuanwei, China (Laibin smoky 

coal). We examined exposure-response relationships with two prominent carcinogenic PAH­

constituents of CCE, namely 5MC and benzo[a]pyrene (B[a]P). We measured 5MC because 

of a priori evidence for its association with lung cancer from our previous study conducted 

in Xuanwei (Vermeulen et al., 2019), and B[a]P was analyzed because it is a known human 

carcinogen that is used as a surrogate for other PAHs (IARC 2010a). The second study 

was among men who worked in a diesel truck engine-testing facility in China, where we 

examined an exposure-response relationship with elemental carbon (EC), a well-recognized 

surrogate for exposure to DEE (IARC 2014).

MATERIALS AND METHODS

Indoor coal burning study

We analyzed a subset of non-smoking women who domestically burned particularly 

carcinogenic Laibin smoky coal or smokeless coal from a community-based cross-sectional 

study conducted in Xuanwei, China, in August-September 1993. We investigated these 

women because we found that smoky coal sourced from geologic deposits near Laibin 

township were associated with a high risk of lung cancer, even greater than smoky coal from 

other regions of Xuanwei (Lan et al., 2008; Wong et al., 2019).

Briefly, the subjects of the parent community-based cross-sectional study were administered 

questionnaires and 120 participants aged 45-60 years were classified into four groups: (1) 

30 women from Chengguan or Laibin who burned smoky coal in their homes without 

chimneys, (2) 30 women from Chengguan or Laibin who burned smoky coal with chimneys, 

(3) 30 women from Reshui who burned smokeless coal without chimneys, and (4) 30 

women from Yilihe who used electricity. We excluded those with (a) unknown demographic, 

occupational, smoking, reproductive, and dietary information; (b) known occupational 

exposure to toxicants; (c) serious infectious diseases such as AIDS, hepatitis, or active 

tuberculosis; and (d) treatment with chemotherapy, radiation, or other medications that 

could affect PAH levels in blood or urine. In the current study, we analyzed 10 Laibin 

smoky coal users without chimneys who had the highest possible indoor air pollution 

exposure levels and 10 smokeless coal users, all of whom had urine samples with sufficient 

volume for the urinary mutagenicity assay. This study was conducted in accordance with the 

World Medical Association Declaration of Helsinki’s recommendations for human subject 

protection. The research protocol was approved by a United States Environmental Protection 

Agency Human Subjects Research Review Official.
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Detailed exposure assessments have been performed in previous studies of subjects exposed 

to indoor CCE (Mumford et al., 1993; Mumford et al., 1995; Downward et al., 2014; 

Hu et al., 2014; Wong et al., 2017). Here, we collected indoor area air samples from the 

participants’ homes for 3 days, 24 h/day, at a flow rate of 4 L/min. There were four indoor 

air samplers per study site and one for quality assurance. Air filter samples were collected 

and placed in desiccators for 24 h, weighed, and stored in polyethylene bags. PAHs (ng/m3) 

from air samples were identified using gas chromatograph connected to a mass spectrometer 

(GC/MS) as described by Wong et al. (2017). Urine samples (~75 ml) were collected twice 

a day (in the morning after the subject cooked breakfast and in the evening before dinner) 

from the participants on the same days as the air sampling and stored at below −10°C 

until processing. We pooled the repeated urine samples for each subject to obtain sufficient 

volume for the urinary mutagenicity assay.

Diesel biomarker study

We assessed the influence of DEE exposure among non-smoking participants sampled from 

a previously described occupational study (Lan et al., 2015). Briefly, we recruited 54 male 

workers highly exposed to DEE in a truck engine-testing facility in China. These workers 

spent most of their shift in direct proximity to the engines being tested. The exposure 

assessment survey was conducted from October 2012 to March 2013 and included all 

workers in the testing facility. Repeated full-shift personal air samples for EC exposure were 

collected using a cyclone attached to the lapel near the breathing zone, with an aerodynamic 

cut-off of 2.5 μm and a flow rate of 3.5 L/min using quartz filters. EC was measured on 

the quartz filters using NIOSH Method 5040 (Birch 2002). Additionally, 55 unexposed male 

workers, frequency-matched to the exposed workers by age ±5 years and smoking status 

(never, former, current) were recruited from control workplaces (brewery, water treatment 

plant, meat packing facility, and an administrative facility) in the same local region of China, 

with work processes that did not involve exposure to DEE, other types of particulates, or any 

known or suspected genotoxic, hematotoxic, or immunotoxic chemicals. Overnight urine 

samples (~450 ml) were collected from the subjects following their work shift. For the 

current study, we analyzed a study sample of 20 non-smoking diesel engine testing workers 

and 15 non-smoking unexposed controls who provided urine samples with sufficient volume 

to conduct the mutagenicity assay.

The study was approved by Institutional Review Boards at the U.S. National Cancer Institute 

and the National Institute of Occupational Health and Poison Control, China Center for 

Disease Control. Participation was voluntary and all subjects provided written informed 

consent.

Urinary mutagenicity assay

Deconjugated urine contains both un-conjugated and formerly conjugated mutagens, 

resulting in mutagenic potencies ~2- to 15-fold higher than those of urines not deconjugated 

(Shaughnessy et al. 2011), increasing the ability to detect urinary mutagenicity. Thus, we 

performed the urinary mutagenicity assay as described by Kato et al. (2004) using enzymatic 

deconjugation. Briefly, 50 ml of urine were thawed, filtered through 0.25-μm filters, and 

de-conjugated enzymatically in 0.2-M (10% v/v) sodium acetate buffer (pH 5.0) (Sigma, St. 
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Louis, MO) containing β-glucuronidase (6 U/ml urine; Cat. No. G-7017, Sigma, St. Louis, 

MO) and sulphatase (2 U/ml urine, Cat. No. S-9751, Sigma, St. Louis, MO) for 16 h at 

37°C. The urine was then poured through a C-18 silica-gel column (Waters Corp, Milford, 

MA), and the organics were eluted from the column with 10 ml of methanol, which was 

then solvent-exchanged into dimethyl sulfoxide (DMSO) to produce an organic concentrate 

at 150X; concentrates were stored at 4°C until used for bioassays. Methanol/C-18 blanks 

were also prepared and tested for mutagenicity.

We evaluated the extracts in the Salmonella (Ames) plate-incorporation mutagenicity assay 

(Maron and Ames 1983) with strain YG1041, which is a frameshift strain derived from 

strain TA98 that over-expresses both O-acetyltransferase and nitro-reductase, enhancing the 

detection of mutagenic aromatic amines, nitroarenes, and PAHs (Hagiwara et al., 1993), all 

of which are present in CCE and DEE. The extracts were tested at 0.3, 0.6, 1.2, 3, 6, and 

12 ml-equivalents (ml-eq) of urine per plate at one plate per dose. Duplicate experiments 

were performed for all 35 DEE samples, but for only 19 of the 20 CCE samples due to 

limited amounts of urine. All experiments were performed with metabolic activation (S9) 

mix made from Aroclor-induced, Sprague-Dawley rat-liver S9 (Moltox, Boone, NC). Plates 

were incubated at 37°C for 3 days, after which the colonies were counted on an automatic 

colony counter (ProtoCOL 3, Synbiosis, Frederick, MD). We used DMSO at 100 μl/plate as 

the negative control, along with 2-nitrofluorene in DMSO at 3 μg/plate in the absence of S9 

and 2-aminioanthracene in DMSO at 0.5 μg/plate in the presence of S9 as positive controls.

We used Prism (GraphPad, San Diego, CA) to construct mutagenicity dose-response curves 

using data from either single experiments or else replicate experiments. Linear regressions 

over the linear portion of the dose-response curves were used to determine the mutagenic 

potency, which was the slope of the curve expressed as rev/ml-eq. The linear portion of the 

curve was defined by the initial doses that gave the highest r2-value. A dose-related response 

of an experimental sample that approached or exceeded a 2-fold increase in rev/plate relative 

to the DMSO control and that had a p-value ≤ 0.05 based on a trend test (Prism, GraphPad, 

San Diego, CA) was considered a mutagenic response. Samples that did not achieve these 

requirements were assigned mutagenic potencies of zero. The archived urines from the CCE 

study were collected 27 years ago and were not assessed for creatinine concentrations. In 

the DEE study, urinary creatinine concentrations were only available for post-shift samples, 

but not the overnight samples used for the mutagenicity assay. As such, direct comparisons 

between the CCE and DEE studies could be made based only on rev/ml-eq.

To assess reproducibility between replicate experiments, intraclass correlations (ICC) were 

calculated separately for the CCE and DEE studies using linear mixed models with revertant 

counts as the dependent variable, replicate experiment (i.e., time 1 and 2) as the independent 

variable, along with random intercepts for study subject and dose (ml-eq/plate). The 

estimated ICC for the CCE and DEE studies were 84% and 92%, respectively.

Statistical analyses

In the CCE study, unadjusted and age-adjusted linear regression models were used to assess 

associations between type of coal used (Laibin Smoky vs. Smokeless) and continuous 

urinary mutagenicity levels. We considered education as a covariate; however, its inclusion 
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did not change the findings >10%, and a parsimonious model was chosen. Additionally, we 

considered exposure to secondhand smoke as a covariate, but it lacked statistical variation 

and was not included in the models. We also evaluated exposure-response relationships 

between 5MC and B[a]P from indoor area air samples and urinary mutagenicity using single 

pollutant models. Additional sensitivity analysis was conducted using a bi-pollutant model. 

Spearman correlations were estimated among the PAHs. B[a]P and 5MC were specified a 
priori for analysis based on previous findings (IARC 2010a; Vermeulen et al., 2019).

In the DEE study, unadjusted and age-adjusted linear regression models were used to assess 

associations between diesel exposure (DEE-exposed workers vs. unexposed controls) and 

continuous urinary mutagenicity levels (rev/ml-eq). We also analyzed exposure-response 

relationships using the unexposed controls and personal EC measurements from the 

DEE-exposed workers. EC was analyzed as: 1) geometric means (μg/m3) corrected for 

background levels among the unexposed measured during initial walkthrough surveys of 

control workplaces, 2) tertiles as specified previously (Lan et al., 2015): low (6.1–39.0 

μg/m3), medium (39.1–54.5 μg/m3), and high (54.6–107.7 μg/m3), and 3) categories based 

on the new European Union (EU) occupational exposure limit (OEL) of 50 μg/m3: (<25 

μg/m3), (25 - <50 μg/m3), and (≥50 μg/m3). We considered body mass index, work years, 

and packyears of past smoking as potential covariates; however, these factors were not 

associated with urine mutagenicity in our analyses and were not included in the final 

models. Additionally, we conducted sensitivity analyses restricted to subjects exposed to EC 

levels below the new OEL of 50 μg/m3 to determine if exposure-response trends could be 

detected among those with lower DEE exposure. All analyses were conducted using SAS 

v9.4, and a two-sided p < 0.05 was considered statistically significant.

RESULTS

Indoor coal combustion emissions

The demographic characteristics are shown in Table 1. Laibin smoky coal users were 

slightly more advanced in age (47.9±5.4 SD vs. 45.4±4.1 SD years) and had a higher 

proportion of illiteracy (80% vs. 50%) than smokeless coal users. However, there was no 

considerable difference in exposure to secondhand smoke.

Urinary mutagenicity levels by coal use, along with categories of 5MC and B[a]P, are shown 

in Table 2. We found that Laibin smoky coal users were exposed to high concentrations of 

B[a]P (Median (IQR)=134.3 (99.7-152.4) ng/m3) and 5MC (Median (IQR)=71.3 (54.8-96.3) 

ng/m3) in household air, whereas smokeless coal users had relatively lower exposure to 

B[a]P (Median (IQR)=37.0 (28.4-46.4) ng/m3) and 5MC (Median (IQR)=4.5 (3.2-6.2) SD 

ng/m3). Those who domestically burned carcinogenic Laibin smoky coal had strikingly 

higher urinary mutagenicity compared with smokeless coal users: 28.4±14.0 SD vs. 0.9±2.8 

SD rev/ml-eq; βunadjusted = 26.6 (95%CI: 18.1-37.0, p=9 x 10−6); βage-adjusted = 28.3 

(95%CI: 18.3-38.4, p=2 x 10−5) (Figure 1A).

There was a significant exposure-response relationship between 5MC and urinary 

mutagenicity in the single pollutant model: βage-adjusted = 0.2 (95%CI: 0.1-0.3, p=7 x 10−4), 

along with a suggestive association with B[a]P (Figure 1A and 1B). In the bi-pollutant 
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model with 5MC and B[a]P, the effect of 5MC remained significant: βage-adjusted = 0.2 

(95%CI: 0.1-0.3, p=5 x 10−3). Furthermore, 5MC and B[a]P concentrations were modestly 

correlated (Spearman rho=0.36).

Diesel engine exhaust

The demographic and anthropometric characteristics are shown in Table 3. DEE-exposed 

subjects were more advanced in age (43.2±6.5 SD vs. 39.4±8.8 SD years), worked more 

years (18.7±7.9 vs. 12.8±9.1 years), and had a higher proportion of never-smokers (45% vs. 

33%) than unexposed controls.

Urinary mutagenicity levels by categories of DEE are shown in Table 4. We found 

that DEE-exposed factory workers had significantly higher urinary mutagenicity levels 

compared to unexposed controls: 13.0±10.1 SD vs. 5.6±4.4 SD rev/ml-eq; βunadjusted 

= 7.4 (95%CI:1.7-13.1, p=0.01); βage-adjusted = 7.2 (95%CI:1.2-13.2, p=0.02) (Figure 

2A). Moreover, we found a significant DEE exposure-response relationship with urinary 

mutagenicity, which further supported the association: mean urinary mutagenicity levels 

for unexposed subjects were 5.6±4.4 SD, ECtertile-1=6.7±4.8 SD, ECtertile-2=15.5±9.4 SD, 

and ECtertile-3=19.6±12.9 SD rev/ml-eq (Figure 2B); p-trendage-adjusted=2 x 10−3 (Figure 

2C). Subjects who were exposed to 25 - <50 μg/m3 of EC, which was below the new 

EU OEL of 50 μg/m3, had significantly higher urinary mutagenicity compared to the 

unexposed (p=0.03, Figure 3A). Further, positive exposure-response trends between EC and 

urinary mutagenicity (pslope age-adjusted = 0.01) were detected among subjects exposed to EC 

concentrations below the new EU OEL (Figure 3B).

DISCUSSION

Urinary mutagenicity reflects systemic exposure to complex mixtures of genotoxic agents 

or probable carcinogens (DeMarini et al., 1997; Kato et al., 2004; Sabbioni et al., 2006; 

Wu et al., 2021; Peters et al., 2004). Further, urinary mutagenicity has been linked to 

tumor development (Peters et al., 2003) and urinary metabolites of carcinogenic PAHs were 

found to be associated with lung and gastric cancer risk (Yuan et al., 2014; Liao et al., 

2014) in epidemiologic studies. Our findings show, for the first time, strong evidence for 

systemic exposure to mutagens among people exposed to CCE or DEE, as well as significant 

associations between the levels of urinary mutagenicity and the concentrations of relevant 

marker pollutants in the air for CCE or DEE. Exposure to CCE and DEE has been found 

to be associated with lung cancer risk as well as development at malignancies of other sites 

(Kim et al., 2016; Koutros et al., 2020; IARC 2014; IARC 2010c). Indoor CCE has been 

associated with renal cell carcinoma (kidney cancer) (Sharpe et al., 1989) and esophageal 

cancer (Pan et al., 1999), and associated non-significantly with cervical (Wu et al., 2004) 

and salivary gland cancer (Zheng et al., 1996). DEE has been associated with cancers of the 

bladder (Koutros et al., 2020), colon/colorectum (Siemiatycki et al., 1988), prostate (Seidler 

et al., 1998), larynx (Elci et al., 2003), and non-Hodgkin lymphoma (Karunanyake et al., 

2008), and suggestively associated with kidney cancer (Peters et al., 2018) and leukemia 

(IARC 2014). Our findings provide further evidence that systemic exposure to mutagens 
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from CCE or DEE could be involved in the etiologic mechanisms of lung cancer as well as 

tumors at other sites.

Indoor coal combustion emissions

This is the first report showing that non-smoking women who domestically burned 

a particularly carcinogenic form of smoky coal sourced from geologic deposits near 

Laibin township of Xuanwei, China, had significantly elevated urinary mutagenicity levels 

compared to those who used less toxic smokeless coal. We found positive exposure-response 

relationships for the carcinogenic 5MC constituent of Laibin smoky coal. 5MC had higher 

and more consistent mutagenic potency than B[a]P in our analyses and has been found to 

be highly carcinogenic (IARC 2010a), even compared to other PAH species (Hecht et al., 

1974).

Several human studies have examined the relationship between coal products and urinary 

mutagenicity, most of which were conducted among coke oven workers. De Méo et al. 

(1987) found that among non-smokers, steel workers exposed to coke oven emissions had 

higher urinary mutagenicity compared to unexposed controls. This finding was further 

supported by another study of non-smokers (Simioli et al., 2004), along with a repeated­

measures study that found that highly exposed coke oven workers had higher overall urinary 

mutagenicity levels compared to those with lower exposure over the work week (Chao 

et al., 2008). Although Recio et al. (1984) found no clear evidence among non-smokers 

that urinary mutagenicity was higher among U.S. coal liquefaction pilot plant workers 

compared with controls, they did find differences by smoking status. Our investigation 

expands upon the findings from these occupational studies by examining subjects from a 

general population who had indoor air pollution exposure from domestic coal combustion at 

levels comparable to those of occupational studies.

Our findings of associations between urinary mutagenicity and the concentrations of 

carcinogenic PAHs in the air among CCE-exposed women are concordant with studies 

of other exposures in which a variety of genotoxicity biomarkers were associated with 

concentrations of PAHs in the air (DeMarini 2013). 5MC has been evaluated by IARC 

(2010a) as a Group 2B (possible) human carcinogen, and B[a]P is a well-studied Group 1 

(known) human carcinogen (IARC 2010a). Although some studies for urinary mutagenicity 

reported null or equivocal findings (Venier et al., 1985; Clonfero et al., 1995; Mielyńska 

et al., 1997), others found positive associations between urinary mutagenicity and PAH 

exposure, such as in bus drivers (Hansen et al., 2004), coke oven workers (Simioli et al., 

2004; Siwińska et al., 2004), rubber manufacturers (Peters et al., 2008), policeman (Ledda et 

al., 2018), and municipal firefighters (Keir et al., 2017).

Women in our study with CCE exposure had the highest increase in urinary mutagenicity 

relative to controls (31.5-fold) compared with subjects exposed to other types of agents 

(Table 5). Although their level of urinary mutagenicity was approximately an order-of­

magnitude lower than that of subjects exposed to benzidine, charcoal production emissions, 

or nitrotoluenes (Table 5), women using smoky coal in Xuanwei, China, have an extremely 

elevated risk for lung cancer due to the emissions from smoky coal (IARC 2010a). Because 

urinary mutagenicity has been linked to increased colorectal cancer risk (Peter et al., 2003), 
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the systemic exposure to mutagens, including mutagenic/carcinogenic PAHs, by women in 

this study suggests that exposure to CCE might pose risks for cancers to additional organs 

(Kim et al., 2016; IARC 2010c; Sharpe et al., 1989; Pan et al., 1999) along with the lung.

Diesel engine exhaust

Our results contribute evidence to an inconclusive body of literature on urinary mutagenicity 

from DEE-exposed subjects, showing that male DEE-exposed workers had significantly 

higher (3.5-fold) levels of urinary mutagenicity compared to unexposed controls (Table 5). 

Further, we observed a positive exposure-response relationship between EC and urinary 

mutagenicity. Previous human studies have shown that exposure to DEE or atmospheres 

containing DEE induces a range of genotoxicity biomarkers, including DNA adducts, DNA 

damage, HPRT mutations, and micronuclei (DeMarini 2013; IARC 2014). However, relative 

to controls, increased levels of urinary mutagenicity were not found in occupational studies 

of diesel-exposed car mechanics (Willems et al., 1989), railroad workers (Schenker et al., 

1992), or road tanker drivers (Nylander and Berg 1991). These null findings may have been 

due to limited sample size, low diesel exposure levels, and/or limited exposure variation. 

In contrast, our study of diesel engine testing workers was conducted in a high-exposure 

workplace, and the controls were from workplaces determined empirically to have negligible 

DEE exposure based on walkthrough surveys (Lan et al., 2015), which likely improved the 

likelihood of detecting effects. DEE levels in our study were considerably higher than those 

found in a study of U.S. trucking industry workers (Davis et al., 2006, 2007; Smith et al., 

2006; Garshick et al. 2008).

In addition to lung cancer, bladder cancer has also been positively associated with DEE 

exposure (IARC 2014; Koutros et al., 2020). The most plausible mechanism is that 

nitroarenes (nitro-PAHs), which account for much of the mutagenic activity of diesel 

exhaust (DeMarini et al., 2004), are metabolized to aromatic amines (IARC 2014), which 

are well-known bladder carcinogens (IARC 2010b). DEE induced a significant 3.5-fold 

increase in urinary mutagenicity relative to controls (Table 5), although the level (19.6 

rev/ml-eq) was more than an order-of-magnitude lower than that of subjects exposed 

to benzidine (496 rev/ml-eq), a known bladder carcinogen (IARC 2010b). However, we 

used Salmonella strain YG1041, which we have shown to be the most sensitive of 

all the Salmonella strains for detecting the mutagenicity of organic extracts of diesel 

exhaust particles (Mutlu et al., 2015a,b). This increased sensitivity is because YG1041 

over-expresses both nitroreductase, which metabolizes nitroarenes to aromatic amines, as 

well as O-acetyltransferase, which metabolizes activated aromatic amines (S9 was used 

in the mutagenicity assay) to acetylamines, which can bind covalently to DNA to form 

mutagenic DNA adducts (Hagiwara et al., 1993). Our finding of elevated levels of urinary 

mutagenicity among subjects exposed to DEE supports the association between exposure to 

DEE and bladder cancer (IARC 2014; Koutros et al., 2020).

The United States (US) has not set a permissible exposure limit for diesel exhaust 

for general industry; however, the US Mine Safety and Health Administration (MSHA) 

currently enforces diesel particulate matter standards at underground metal/nonmetal mines 

and at underground coal mines. In the US, a miner's personal exposure must not exceed 
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an 8-h time-weighted average of 160 μg/m3 of total carbon (TC; EC conversion factors 

range from 1.19-1.44 (MSHA 2001; Noll et al., 2015). The EU adopted an OEL of 50 

μg/m3 for EC in December 2018, which will take effect in 2026 for underground mines 

and tunnel construction and in 2023 for other industries (Directive 2019). There has been 

concern that this new EU OEL for EC leaves a high residual risk of DEE-related cancers. 

Even at EC concentrations below 50 μg/m3, we detected a marked biological effect on 

urinary mutagenicity in our study. As such, the need for lower OELs for EC may be 

justified to protect workers’ health. In 2001, the American Conference of Governmental 

Industrial Hygienists (ACGIH) proposed a recommended threshold limit value of 20 μg/m3 

of EC. Although ACGIH recommendations are not legal standards, a number of regulatory 

authorities consider these recommendations when drafting legislation. In July 2020, the 

Netherlands adopted an even lower OEL for EC of 10 μg/m3, which is the most stringent in 

Europe (Diesel Engine Exhaust 2019).

Strengths and limitations of studies

Our study had notable strengths. First, our study subjects were exposed to high levels of 

CCE or DEE, which increased the likelihood of detecting effects. Further, we were able 

to estimate a DEE exposure-response using EC measurements from personal air samples, 

which are correlated with diesel particulate matter (Noll et al., 2007). Second, the study 

subjects were current non-smokers, which reduced potential confounding by smoking. 

Current active smoking has been found to influence short-term urinary mutagenicity levels 

(Yamasaki and Ames 1977; Recio et al., 1984; De Meo et al., 1987; Kawano et al., 

1987; Clonfero et al., 1995). Third, we used a well-established method to detect urinary 

mutagenicity, which improved the comparability of our results to other similar studies.

Our study had some limitations. First, our sample size was small; however, the statistical 

power to detect effects was improved by analyzing subjects with very high versus low 

exposure levels. Second, we had limited information on potential confounders and did not 

have the sample size to accommodate more covariates. However, we assessed the influence 

of some potentially influential variables, e.g., body mass index, work years, and packyears 

of past smoking in the diesel study, and these factors had little effect on the findings. Third, 

our lack of creatinine measurements precluded the expression of urinary mutagenicity data 

in terms of rev/creatinine concentration, which prevented comparisons of our data to a wider 

literature. However, expression of urinary mutagenicity as rev/ml-eq is sufficient to conclude 

if subjects have mutagenic urine or not, which was the key issue addressed in our study.

Diesel exhaust and coal emissions are composed of both organic and inorganic compounds. 

Although inorganics such as inorganic carbon nanoparticles might contribute to the 

carcinogenicity of both diesel exhaust (IARC 1989, 2014) and coal emissions (IARC 2010C, 

2012), inorganic carbon would not have contributed to the urinary mutagenicity because we 

evaluated organic extracts of the urine, which did not contain inorganic carbon.

Conclusions

In summary, we found that exposure to indoor smoky coal combustion emissions or diesel 

engine exhaust can result in systemic exposure to mutagens. Further confirmation of these 
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results with larger sample sizes, measurement of additional exposure biomarkers, and 

comprehensive identification of chemical constituents of air samples would improve our 

understanding of the potential risk that these exposures present to organs other than the 

lung. The established carcinogenicity to the lung of coal combustion emissions (IARC 2012) 

and diesel engine exhaust (IARC 2014) may extend to other organs given the observed 

elevated urinary mutagenicity caused by these exposures. Indeed, coal combustion emissions 

and diesel engine exhaust have been linked to risk of cancer of several sites in addition to 

lung (Sharpe et al., 1989; Pan et al., 1999; Kim et al., 2016; Koutros et al., 2020; IARC 

2014; IARC 2010c), and our findings suggest that systemic exposure to mutagens could be 

potentially involved in carcinogenesis at these sites.
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Figure 1. 
(Panel A) Urinary mutagenicity levels among female non-smokers who used particularly 

carcinogenic Laibin smoky coal or smokeless coal in the 1993 community-based 

cross-sectional study in Xuanwei, China. Differences between exposure groups were 

tested with unadjusted and age-adjusted linear regression models. Exposure-response 

relationships between urinary mutagenicity and air 5-methylchrysene (5MC) (Panel B) 

and benzo[a]pyrene (B[a]P) (Panel C). Associations were tested with unadjusted and age­

adjusted linear regression models.
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Figure 2. 
(Panel A) Urinary mutagenicity levels among male engine testing factory workers exposed 

to diesel engine exhaust and unexposed controls. Differences between exposure groups 

were tested with unadjusted and age-adjusted linear regression models. (Panel B) DEE 

exposure was categorized as tertiles by EC concentrations: low (6.1–39.0 μg/m3), medium 

(39.1–54.5 μg/m3), and high (54.6–107.7 μg/m3). (Panel C) DEE exposure as reflected by 

EC concentrations was analyzed continuously as geometric mean (μg/m3) corrected for 

background levels among the controls.
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Figure 3. 
(Panel A) Associations between exposure to elemental carbon (EC) and urinary 

mutagenicity using EC categories defined by the new European Union occupational 

exposure limit of <50 μg/m3: unexposed controls (n = 15), <25 μg/m3 (n = 6), 25 - 

<50 μg/m3 (n = 6), and ≥50 μg/m3 (n = 8). (Panel B) Associations between exposure to 

elemental carbon (EC) and urinary mutagenicity among subjects below the new European 

Union occupational exposure limit of <50 μg/m3 of EC. EC concentrations were analyzed 

continuously as geometric mean (μg/m3) corrected for background levels among the 

controls.
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