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All organisms face resource limitations that will ultimately restrict population
growth, but the controlling mechanisms vary across ecosystems, taxa, and
reproductive strategies. Using four decades of data, we examine how
variation in the environment and population density affect reproductive out-
comes in a capital-breeding carnivore, the northern elephant seal (Mirounga
angustirostris). This species provides a unique opportunity to examine the
relative importance of resource acquisition and density-dependence on breed-
ing success. Capital breeders accrue resources over large temporal and spatial
scales for use during an abbreviated reproductive period. This strategy
may have evolved, in part, to confer resilience to short-term environmental
variability. We observed density-dependent effects on weaning mass, and
maternal age (experience) was more important than oceanographic con-
ditions or maternal mass in determining offspring weaning mass. Together
these findings show that the mechanisms controlling reproductive output
are conserved across terrestrial andmarine systems and vary with population
dynamics, an important consideration when assessing the effect of extrinsic
changes, such as climate change, on a population.

1. Introduction
Density-dependent feedback on population growth is one of the most critical
ecological controls on a species [1].While all organisms face some form of resource
limitation that ultimately restricts population growth, the controlling mechanisms
vary among ecosystems, taxa, and reproductive strategies [1–4]. Many non-threa-
tened mammalian populations exist at or near carrying capacity and are limited
through competition for food and habitat resources [2,5–7]. Population size,
resource availability, and maternal traits all affect reproductive success, but the
interaction between population density and environmental variability is understu-
died, particularly for wide-ranging species that separate food resources from their
reproductive sites [6,8–13]. Animals that forage over large temporal and spatial
scales aremore buffered against food limitation, but their synchronous, aggregated
breeding system creates other mechanisms bywhich density can act to limit repro-
duction [14,15]. Long-term datasets of expanding populations are critical to
examining density dependent feedback, howdensity interactswith environmental
variation, and mechanisms other than food competition that limit reproduction as
populations increase. This study disentangles the effects of environmental
variation and colony size on reproductive success in a large carnivore.
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Elephant seals (Mirounga sp.) are excellent systems for
investigating the dynamics of population growth, environ-
mental variation, and reproduction. They are colonial, highly
polygynous, sexually dimorphic, marine mammals that give
birth to and nurse a single pup each year while fasting on
land [16]. The northern species (Mirounga angustirostris) has
been recovering from near extinction since the early 1900s
[17]. The colonyat AñoNuevo State Park, CA, has been studied
continuously since its inception nearly 60 years ago, document-
ing the population as it grew rapidly, peaked, and plateaued
after 2002 [17]. Prior to parturition, female northern elephant
seals spend eight months foraging in the mesopelagic north-
east Pacific Ocean, accumulating body stores to sustain
gestation and lactation [18]. They produce high energy content
milk while fasting over a 27-day lactation period [19], allowing
their pup to rapidly put on mass until they are abruptly
weaned. Higher weaning mass increases a pup’s chance of sur-
vival, as they must rely on their body stores to sustain them for
weeks between weaning and departing the colony to attempt
foraging for themselves [20–24]. Colony density and maternal
age are both important factors in northern elephant seal repro-
ductive output: older females have greater success at weaning
pups than younger animals, and the difference between age
groups is exaggerated in high density breeding aggregations
[25]. Several pinniped species exhibit sexual dimorphism and
a polygamous reproductive strategy. Consequently, male
pups in those species often receive greatermaternal investment,
particularly when resources are abundant [26–30].

In addition to demographic data and weaning masses,
adult female body condition measurements have been col-
lected since the 1990s, adding information on female foraging
success and the effect of varying oceanographic conditions
[18,31,32]. This time series includes multiple El Niño Southern
Oscillation (ENSO) events and the marine heatwave of 2014–
2015. This marine heatwavewas characterized by anomalously
warm sea surface temperatures that developed in the northeast
Pacific Ocean in late 2013 and persisted through to 2015, caus-
ing ecosystem-level disturbances [33,34]. This dataset is
uniquely positioned to investigate the influences of environ-
mental variability and colony density on reproduction in a
rapidly growing population.

We use weaning mass data from 1984–2020 to explore the
effects of intrinsic (i.e. maternal traits and offspring traits) and
extrinsic (i.e. environmental variability and colony density) fac-
tors on reproductive success of females.We hypothesize that: (i)
offspring quality (e.g. weaning mass) will exhibit density
dependence: as the population of the reproductive colony
increases, quality will decrease; (ii) older females will cope
better with a high-density colony; (iii) sex allocation of
resourceswill bemale biased in yearswith lower colonydensity
and/or more abundant resources; and (iv) wean mass is
reduced duringElNiño events. Answers to these questions pro-
vide insight into the fundamental principles of population
dynamics that enhance our understanding of how species will
respond to changing conditions.
2. Methods
(a) Study site
We conducted this study at the mainland northern elephant seal
colony at Año Nuevo State Park, San Mateo County, California,
USA. The colony extends across two miles of beach but breeding
consistently takes place in concentrated areas where there is little
or no delineation between harems (electronic supplementary
material, S1 and S2). The population increased until 2002 [35]
then plateaued, despite continued growth at the species level
[17], suggesting that this colony has reached carrying capacity.

(b) Adult female mass and pup mass
Elephant seals come to shore for extended fasting periods during
both breeding (January–February) and moulting (April–June),
allowing us to access them for monitoring and sampling. Between
these haulout periods, the animals are at sea continuously for
approximately three months (post-breeding) and approximately
eight months (post-moult). Adult female mass gain during the
gestational (post-moult) foraging trip was measured in approxi-
mately 20 individuals per year from 2004 to 2019. Females were
sedated a few days before departure at the end of the moulting
fast and again upon return to shore during the breeding season,
following standard protocols [18]. These individuals were
equippedwith time-depth recorders (TDRs) and satellite transmit-
ters (Wildlife Computers, Redmond, WA, USA or Sea Mammal
Research Unit, St Andrews, UK) that provided location infor-
mation through the Argos network. At each handling, the
animal was weighed in a canvas sling suspended from a hanging
scalewith a precision of ±1 kg. During the breeding season, instru-
ments were recovered four to seven days following birth. During
these procedures, the female’s pup was also weighed and flipper
tagged. Additionally, adult females were sedated for physiological
studies in 1991, 1992, 1995–1997, 2001–2006 and 2009. These pro-
cedures provided additional data on female arrival mass, pup
birth mass, and pup weaning mass.

Measured masses are not always taken at the same time in the
animal’s life cycle. Consequently, all measured masses were
corrected to the same life stage, accounting for variation in time
spent fasting and nursing (see the electronic supplementary
material, S4 for correction equations). The measured mass of the
pup was corrected to birth mass based on an average mass gain
of 2.2 kg d−1 during the first few days of lactation [36]. In adult
females, days spent fasting without lactating (prior to parturition)
(df ) were assumed to cost 3.0 kg d−1 [37], while lactation days (dl)
were assumed to cost the female 7.5 kg d−1 [38]. Departure from
and arrival at the colony was determined from either TDR or sat-
ellite records. Animals were resighted daily after arrival to assess
whether they had given birth.

(c) Weanling mass and sex ratio
A sample of weanling pups at Año Nuevo mainland has been
weighed every year from 1978 to 2020 (except 1979, 1981 and
1983) following the methods outlined in Le Boeuf & Crocker
[31]. Briefly, pups were marked with a unique identifier using
hair bleach prior to weaning. They were designated as pups
(with adult females) or weanlings (independent) during sub-
sequent daily resight efforts. Weaned pups quickly move away
from harems, making it possible to distinguish weanlings
easily. Once weaned, animals were captured in a nylon restraint
bag, flipper tagged, and weighed from a hanging scale with a
precision of ±1 kg. As with pup and adult masses, weaning
mass was corrected for days spent fasting between weaning
and weighing (determined from the resight effort described
above) using the equation shown in table 1 from Le Boeuf &
Crocker [31] (see also the electronic supplementary material, S4).

Sex ratios were calculated using all flipper tagged young of
the year that were born to flipper tagged females. This subset
of individuals was selected to mitigate known sampling biases
during weighing and tagging efforts owing to differing study
objectives between years and differences in behaviour between
male and female pups. Values for each year were tested against
unity using a two-tailed binomial test.



Table 1. Results of generalized additive mixed effect models (GAMMs) explaining variation in weaning mass as of function of intrinsic and extrinsic factors.
(Models 1.a-1.h are the entire dataset and included MomID as a random effect. Models 2.a-2.d are the subset which included birth mass and maternal arrival
mass. Models in bold were the best fit for each set.)

weanmass ∼ log-likelihood AICc R2 adj. n

intrinsic

1.a. sex + s(MomAge) −6220.798 12 453.7 0.656 1504

1.b. s(MomAge) −6229.672 12 469.4 0.650 1504

2.a. PupBirthMass + Momage −351.740 712.0 0.402 89

2.b. PupBirthMass + MomMass −364.370 737.2 0.205 89

extrinsic

1.c. s(population) + s(ENSO3) + s(NOI) −5944.286 13 036.4 0.382 1504

1.d. s(population) −5940.837 13 063.7 0.380 1504

1.e. s(population) + PDO −5947.168 13 067.6 0.380 1504

2.c. population + ENSO3 −600.106 1206.4 0.024 89

intrinsic + extrinsic

1.f. sex + s(MomAge) + s(population) + ENSO3 + s(NOI) −6188.196 12 400.6 0.668 1504

1.g. sex + s(MomAge) + s(population) + PDO −6191.448 12 403.0 0.665 1504

1.h. sex + s(MomAge) + s(population) −6194.996 12 406.1 0.664 1504

2.e. PupBirthMass + MomAge + ENSO3 −346.927 711.7 0.457 89

2.d. PupBirthMass + MomAge + population + ENSO3 −345.173 713.2 0.471 89
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(d) Colony density
We used the annual number of pup births as a proxy for colony
density during the breeding season. Values prior to 2011 are from
Le Boeuf et al. [35], and subsequent data were collected using the
same methods. The total number of adult females was estimated
using the count of adult females at peak breeding plus the count
of adult females 32 or 33 days prior to and following that date
[39]. Based on previous studies, the number of births is assumed
to be 97.5% of the total number of adult females present during
the breeding season [39]. Females that skip breeding generally
return to the colony before or after the breeding season [40],
and therefore are not included in these counts. Pups were first
observed on the island in 1961, and on the mainland in 1975
[35]. Most of the weanling and adult female data collected
were from the mainland portion of the colony, therefore we
excluded island data from these analyses. The time period
included in this study was characterized by a rapid increase in
the mainland population up through to 2002, after which the
population levelled off or declined [35]. The number of females
on the colony was assumed to reflect density because the area
occupied by pupping females has changed relatively little since
1980, while the number of pupping females has increased 10-
fold (see the electronic supplementary material, S1-S3).
(e) Quantitative analysis
Statistical analyses were completed in R v. 3.6.1 [41]. Differences
between years and between groups were tested using ANOVA
with a Tukey’s post hoc test or using student’s t-tests, as appropri-
ate. We only included years with a sample size greater than 50 for
this analysis, which excluded 1978, 1980, 1982 and 1986. Total
weaning mass sample size was n = 4691 distributed among 36
years. In addition to comparisons across years, we directly com-
pare high-density and low-density reproductive characteristics
by selecting years of comparatively low density (pup births less
than 1200) with years of high density (pup births greater than
1900). Values reported are mean ± s.d. unless otherwise indicated.
Generalized additivemixed effectmodels (GAMMs)were used
to assess the effects of various environmental and biological covari-
ates onweaningmass using the Rpackagemgcv [42]. The covariates
included both intrinsic (i.e. maternal and pup traits) and extrinsic
(i.e. onshore and offshore environment) factors (see the electronic
supplementary material, S5 for complete list of covariates tested).
Maternal age was included as a metric of maternal traits, with a
fixed variance structure to account for heteroscedasticity. Some
females had multiple pups represented in the dataset, so MomID
was included as a random effect to control for repeat sampling.
The number of pup births per year was used as a proxy for colony
density. Three different indices of ocean conditions were evaluated,
the Multivariate ENSO Index (Wolter 1993), the Pacific Decadal
Oscillation (PDO) index [43], and the Northern Oscillation Index
(NOI) [44]. These indices are based on surface ocean conditions
that can significantly influence primary productivity, but the tem-
poral sensitivity of the mesopelagic food web to surface
conditions is not well understood [45], therefore we tested average
annual ENSO and NOI values from one, two, and three years
prior to each breeding. As the PDO is a longer timescale phenom-
enon, we used the average value for three years prior to the
breeding season. For all models, Pearson’s correlation coefficients
were calculated for covariates to ensure that correlated covariates
(absolute correlation value greater than 0.3) were not included
together. PDO was highly correlated with the other indices tested,
sowasmodelled separately from ENSO andNOI. To avoid overfit-
ting, all models were restricted to five knots and model fit was
assessed using restricted maximum-likelihood estimation.

Any data that violated the assumption that a single mother
nursed a single pup throughout the average lactation period were
removed from modelling analyses. This included weanlings above
170 kg of mass (super-weaners’, nursed from multiple females) and
below 80 kg (pups abandoned/separated from mother). These
values represent themean ± 2 standarddeviations. Ifmultipleweanl-
ings were assigned to a single female in one year, they were all
removed from the modelling dataset. Lastly, weanlings for whom
maternal age was unknown were not included. The resulting subset
of data spanned all years of the study except 2000 with n = 1504.
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Figure 1. Annual mean weaning mass (a) and number of pup births (b) at the mainland portion of the Año Nuevo colony with Loess regression smoothers and
shaded confidence intervals. Panels (c) and (d ) show PDO and ENSO values across the sampling period. (Online version in colour.)
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For a few individuals (n = 89) between 1991 and 2019, we
measured mass at birth and maternal mass at birth, and these
additional covariates were included in separate models for that
subset of animals. Maternal age and arrival mass were highly
correlated and were not included in models together but were
tested independently. We did not have repeat sampling of
mothers, so maternal identity was not included here. Addition-
ally, we used this subset of data to quantify the relationships
between maternal age, maternal size, pup birth mass, and pup
weaning mass using linear models.
3. Results
Mean weaning mass of northern elephant seals decreased at
high colony density (figure 1), and the difference was statisti-
cally significant (131.5 ± 25.4 when pup births was less than
1200; 125.6 ± 22.4 when pup births was greater than 1900; p =
1.967 × 10−7; see the electronic supplementary material, S6
and S12). GAMMs showed that both intrinsic and extrinsic fac-
tors contributed to the observed variation in weaning mass
(model results in table 1).Maternal agewas themost important
intrinsic factor and population size was the most important
extrinsic driver of variation in weaning mass. At high density,
weaning mass was significantly lower across all maternal
ages. Still, weaning mass increased with maternal age at both
high and low density (figure 2). Ocean indices explained
some of the variation in weaning mass, although they had lim-
ited explanatory power relative to other factors. Weaningmass
decreased linearly with both PDO and ENSO3, while it varied
nonlinearlywithNOI,withweaningmasses increasing forNOI
values above or below −1 (see the electronic supplementary
material, S17-S18). The best fitting models for all weanlings
with known maternal age (n = 1504) and for weanlings with
maternal mass and birth mass (n = 89) combined extrinsic and
intrinsic factors (adj. R2 = 0.668 and 0.457, respectively).

Weaning mass increased with both birth mass (electronic
supplementary material, S7; F1,143= 40.0, p = 3.1 × 10−9,
R2 = 0.213) and maternal arrival mass (electronic supplemen-
tary material, S8; F1,272= 42.33, p = 3.7 × 10−10, R2 = 0.132).
However, older females produced heavier pups than younger
females of the same mass (figure 3). While we found that
larger females gave birth to larger pups (electronic supplemen-
tary material, S9; F1,253 = 33.73, p = 1.9 × 10−8, R2 = 0.114) and
weaned larger pups (electronic supplementary material, S8;
also as in [32,36]), our models indicate that maternal age was
a better predictor of pupmass at weaning than either maternal
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mass or pup birth mass (electronic supplementary material, S6
and S19).

Male weanlings were, on average, heavier than female
weanlings by 4.2 kg ( p = 1.6 × 10−10). However, the magnitude
of difference varied highly between years. In most years, there
was no significant difference between the sexes (figure 4; elec-
tronic supplementary material, figures S6 and S12). The mass
of male and female weanlings declined significantly from
low to high density conditions (−6.5 kg p = 5.582 × 10−5 and
−5.3 kg p = 8.292 × 10−4, respectively). The difference in mass
between the sexes was lower at high density.
4. Discussion
We found that weaning mass declined with increasing breed-
ing colony density. Oceanographic conditions contributed
only minorly to the variation in weaning mass, compared to
other factors (e.g. model 1.f. versus 1.h. in table 1). Maternal
age was the strongest predictor of weaning mass, and the
relationship betweenweaningmass andmaternal age changed
between high and low density (figure 2). Therewas amale bias
in maternal resource allocation, which also declined as colony
density increased.

Life-history theory suggests that offspring condition in
large-bodied animals may be most affected by population
density when carrying capacity is reached [2,11]. The colony at
Año Nuevo transitioned from a low density, high growth rate
population to a high-density population with no growth and
shows clear density-dependence in offspring quality (figure 1).
Weaning masses were significantly lower at high density, and
the difference between the sexes decreased (electronic sup-
plementary material, S6; figure 4). These findings are
supported by a similar study conducted on southern elephant
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seals (Mirounga leonina) onMarion Island,which also found that
maternal age and population size were important drivers of
weaning mass. [46] Elephant seal weaning mass integrates
intrinsic factors, including maternal effects (energy stores avail-
able, milk quality, age, behaviour) and pup characteristics
(behaviour, individual metabolic rate, sex), as well as extrinsic
factors, such as onshore conditions (colony density, alpha male
quality, beach quality, tides and storms) and at-sea foraging con-
ditions [38,47,48]. An essential resource for reproductive success
in elephant seals is the female’s location on the beach. A high-
quality location is above high tide and swell conditions and pro-
vides enough space for females to minimize disturbance and
energy expenditure owing to interactions with conspecifics. As
the colony population increases, so does overall density on the
beach (see the electronic supplementary material, S2 and S3),
leaving females with less space to safely nurse their pups. Pre-
vious work showed that young females have a greater
reduction in reproductive output in a high-density harem
compared to either more experienced individuals in the same
harem or young females in a low-density harem [25].

While age and size covary in this species, size is often
assumed to be the variable of importwhen it comes tomaternal
reproductive success [32]. Our findings demonstrate that age is
themore important factor and should not simply be considered
a proxy for size. Maternal mass captures the energetic com-
ponent of reproduction, with larger females delivering more
milk energy over lactation [38]. However, this effect decreases
with female age, as females grow more rapidly in their early
reproductive years (electronic supplementary material, S10).
Maternal age represents an integration of both body condition
and experience; older females have both physiological and
behavioural advantages in rearing their pups [38,48,49]. Pre-
vious work shows that maternal age is 2.5 times more
important to offspring growth efficiency than the energy deliv-
ered [48]. Experienced females are better at modifying pup
behaviour to minimize the energy wasted through activity
[48]. They are more likely to secure optimum positions
within harems, reducing their energy expenditure on activities
other than lactation and increasing their overall efficiency
[25,38]. Furthermore, the fat content of milk produced at the
start of lactation is significantly lower in young females than
that provided by prime-age females [49]. While females
increase the quality of their offspring with age, some individ-
uals may be consistently better at weaning pups throughout
their lifetime [32,46,50]. We did not disentangle these effects
here, as the majority of our dataset was from singly sampled
adult females, but individual heterogeneity is an important
question for future study.

Elephant seal weaning mass varied as a function of ocean
condition indices, but maternal age and population size were
more robust explanatory variables (electronic supplementary
material, S6). Weaning mass in some years following unusual
ocean events was statistically lower than normal (e.g. 1999
and 2015, following the 1998 El Niño and 2014 marine heat-
wave; table 1), while other years it was not (e.g. 1984, 2016
and 2017 following the 2015 marine heatwave and 1983 and
2016 El Niño). Previous studies reported that weaning mass
declined during the warm, sardine-dominated phase of the
PDO [31]. During the 1998 El Niño the rate of mass gain was
lower and foraging trips were longer in adult female elephant
seals during their pre-gestation foraging trip [51]. While suc-
cessful reproduction is fundamentally linked to successful
foraging, weaning mass is not as direct a reflection of foraging
success or ocean conditions as previously thought [31,32],
which is consistent with capital breeding species having
reduced sensitivity to environmental disturbance compared
to income breeders [14,52,53]. Capital-breeding species accrue
and store resources to support reproduction over large tem-
poral and spatial scales, whereas income breeders depend on
consistent, local food resources to fuel lactation [14,15,52,54,55].

Southern elephant seals exhibit a stronger relationship
between reproductive investment and ocean conditions
[24,26,56–58], although maternal traits and colony conditions
still show similar relationships to weaning mass as were
found here [26,46]. Further comparisons between the species
and between colonies within each species would provide
insight into the interaction between population dynamics
and the environment. Population-level indicators of poor
foraging conditions may be found in other metrics, including
adult female survival and frequency of skipping breeding
(electronic supplementary material, S11 and results). For
long-lived species, sacrificing one reproductive opportunity
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to ensure future reproduction may be a greater fitness strat-
egy than attempting to reproduce at marginal body
condition, which may compromise their ability to survive,
risking future reproduction [8,59–61].

Resource allocation choices can also be driven by offspring
sex [7–9,62–64]. Under the model by Trivers & Willard [64],
females should invest more heavily in sons than in daughters
when food resources are abundant, as successfulmale northern
elephant seals have much higher reproductive potential (up to
121 pups [65]) than the most successful female (16 pups [32]).
In several ungulate species, sex bias was predicted by a combi-
nation of population density, maternal age and reproductive
history, and environmental conditions, with older females
exhibiting greater control over resource allocation to minimize
the cost of reproduction [8,9,62]. Studies in southern elephant
seals [26,66] and Antarctic fur seals (Arctocephalus gazella)
[28,29] found similar patterns in sex-biased allocation.
Although work at another northern elephant seal colony
found that variation in pup sex ratio fits the Resource Compe-
tition model for sex-biased resource allocation, favouring sons
in poor years [67,68], our study found that sex differences in
weaningmass decreased as overall offspring quality decreased
(figure 4), with no meaningful variation in offspring sex ratio
(see the electronic supplementary material).
5. Conclusion
Our results have important implications for understanding
the mechanisms controlling reproduction in capital-breeding
mammals. Understanding the varying life-history patterns
observed in nature and their underlying mechanisms requires
long-term studies of populations, making hypothesis testing
challenging, especially in large-bodied animals with slow
reproductive rates and long lifespans. Time series data that
have recorded changes in reproductive output as a popu-
lation rapidly grows after extirpation are rare, particularly
for carnivores or in marine systems (but see [69–71]). Our
findings regarding density dependence and resource allo-
cation support previous work in the field [6,8,9,11–13,63]
and show that these mechanisms are conserved across terres-
trial and marine mammal systems. These results reveal points
of contradiction with previous studies on elephant seals (e.g.
offspring sex ratio and sex bias in northern elephant seals
[68,72]; the importance of ocean conditions on weaning
mass in northern and southern elephant seals [26,31,57]),
which illustrates the complexity of these questions and invites
further investigation. The mechanisms controlling reproduc-
tive output may vary with population density, as seen here,
which is an important consideration in analyses striving to
assess the effect of extrinsic changes on a population. Criti-
cally, the density-dependent feedback we observed here
occurs on the reproductive colony and is independent of
population density on the foraging ground.

Understanding population dynamics depends on a know-
ledge of vital rates and how those rates may change under
varying environmental conditions. Capital breeding strategies
may have evolved, in part, to confer resilience to short-term
environmental variability. As a result, some species (e.g. many
phocid seals) appear to avoid years of population-wide repro-
ductive failure resulting from environmental variability seen
in income breeding species within the same environment (e.g.
otariids, sea birds). Individuals that attempt to breed are gener-
ally successful, even in years with poor foraging conditions.
Individuals with compromised states may skip breeding and
restore body condition for subsequent breeding attempts. In
northern elephant seals, these traits contributed to rapid popu-
lation recovery from near extinction and dramatic changes in
colony density over a short period. Our findings show den-
sity-dependent changes in the mechanisms controlling
reproductive success and that maternal experience and behav-
iour during breeding, not just body condition, is a critical
determinant of effective parental investment in capital breeders.
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