
royalsocietypublishing.org/journal/rsos
Research
Cite this article: Ali F, Das S, Hossain TJ,
Chowdhury SI, Zedny SA, Das T, Ahmed

Chowdhury MN, Uddin MS. 2021 Production

optimization, stability and oil emulsifying

potential of biosurfactants from selected bacteria

isolated from oil-contaminated sites. R. Soc. Open

Sci. 8: 211003.
https://doi.org/10.1098/rsos.211003
Received: 7 June 2021

Accepted: 20 September 2021
Subject Category:
Organismal and evolutionary biology

Subject Areas:
biochemistry/biotechnology/microbiology

Keywords:
microbial surfactants, biosurfactant-producing

bacteria, petroleum hydrocarbon bioremediation,

crude oil biodegradation, emulsification index,

production optimization
© 2021 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Authors for correspondence:
Ferdausi Ali

e-mail: seema@cu.ac.bd

Tanim Jabid Hossain

e-mail: tanim.bmb@gmail.com

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.c.

5646635.
Production optimization,
stability and oil emulsifying
potential of biosurfactants
from selected bacteria
isolated from oil-
contaminated sites
Ferdausi Ali1, Sharup Das1, Tanim Jabid Hossain2,

Sumaiya Islam Chowdhury2, Subrina Akter Zedny1,2,

Tuhin Das1, Mohammad Nazmul Ahmed Chowdhury2

and Mohammad Seraj Uddin1

1Department of Microbiology, and 2Department of Biochemistry and Molecular Biology,
University of Chittagong, Chattogram 4331, Bangladesh

SD, 0000-0002-3151-0885; TJH, 0000-0002-0978-2657;
SIC, 0000-0003-1011-4995; SAZ, 0000-0002-6835-4353;
TD, 0000-0003-4360-5619; MNAC, 0000-0001-7355-7924;
MSU, 0000-0003-0244-5698

Oil pollution is of increasing concern for environmental safety and
the use of microbial surfactants in oil remediation has become
inevitable for their efficacy and ecofriendly nature. In this work,
biosurfactants of bacteria isolated from oil-contaminated soil
have been characterized. Four potent biosurfactant-producing
strains (SD4, SD11, SD12 and SD13) were selected from 27
isolates based on drop collapse assay and emulsification index,
and identified as species belonging to Bacillus, Burkholderia,
Providencia and Klebsiella, revealed from their 16S rRNA gene-
based analysis. Detailed morphological and biochemical
characteristics of each selected isolate were determined. Their
growth conditions for maximum biosurfactant production were
optimized and found quite similar among the four isolates with
a pH of 3.0 and temperature 37°C after 6 or 7 days of growth on
kerosene. The biosurfactants of SD4, SD11 and SD12 appeared
to be glycolipids and that of SD13 a lipopeptide. Emulsification
activity of most of the biosurfactants was stable at low and high
temperatures (4–100°C), a wide range of pH (2–10) and salt
concentrations (2–7% NaCl). Each biosurfactant showed
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antimicrobial activity against two or more pathogenic bacteria. The biosurfactants were well-capable

of emulsifying kerosene, diesel and soya bean, and could efficiently degrade diesel.
lsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:211003
1. Introduction
Petroleum-based fuels have been a major concern for life and environment especially in industrialized
and developing countries [1]. Over the years, numerous natural and anthropogenic incidents have led
to an enormous release of petroleum oil into nature thus posing a serious threat to the quality and
sustainability of ecosystems [2,3]. Petroleum oil contains many aromatic toxic compounds such as
benzene, ethylbenzene, toluene, xylene, etc. that are harmful for most life forms [4–7]. In addition to
causing physical damage to habitats, the toxic ingredients of petroleum make mutagenic and
carcinogenic changes to people [8]. Exposure to benzene and benzopyrene, for example, was found
associated with an increased risk of leukaemia and lung cancer, respectively [9,10]. However,
microbial populations particularly some bacteria and fungi manage to thrive on these rather harmful
aromatic pollutants [11]. Regardless of the pollutants’ high toxicity and hydrophobicity, bacterial
species including those of the genera Pseudomonas, Bacillus, Streptomyces, Stenotrophomonas, etc. have
been found inhabiting such petroleum-rich niches [12,13]. One of the key properties that allow these
microbes to endure polluted environments is their ability to uptake petroleum hydrocarbons and
facilitate their degradation by the production of a group of surface-active agents known as
biosurfactants [14]. The biosurfactants are excreted from microbial cells or produced at the cell surface
and include a broad range of chemical structures with diverse surface properties. They can be low
molecular weight biomolecules that are generally glycolipids such as trehalose lipids, sophorolipids
and rhamnolipids or lipopeptides such as surfactin, gramicidin S and polymyxin, or high molecular
weight compounds such as polysaccharides, proteins, lipopolysaccharides, lipoproteins or complex
mixtures of these biopolymers [15]. Biochemically, the microbial surfactants consist of both
hydrophilic and hydrophobic moieties [16]. This amphipathic nature allows biosurfactants to partition
at the interface between aqueous and hydrophobic phases, e.g. oil and water, or oil and rock
interfaces, thus reducing the surface and interfacial tensions [17]. The biosurfactants, therefore, appear
very effective in mobilization, increase of bioavailability and degradation of residual oil at a
contaminated area [18]. Other important functions of biosurfactants include antimicrobial and
antiviral activities, immunomodulation, enzyme inhibition, regulation of cell surface properties
facilitating attachment to or detachment from surfaces, etc. [19,20].

A variety of synthetic or chemical surfactants are also available and used for the environmental
bioremediation of petroleum hydrocarbons [18]. But microbial surfactants are of particular importance
in this regard since they offer several advantages over their synthetic counterparts. For example,
biosurfactants show better foaming capacity, selectivity and specific activity as compared to the
synthetic surfactants [21]. Moreover, biosurfactants, due to their higher biodegradability, are less toxic
than the chemical surfactants [22]. In addition, microbial surfactants are more stable and efficient
over a wide range of environmental conditions, e.g. temperatures, pH and salinity [23]. Hence,
biosurfactants are considered better candidates for environmental oil recovery processes and supposed
to replace the synthetic surfactants.

Due to the importance of microbial surfactants, the present study has been carried out to isolate
efficient biosurfactant-producing bacteria and characterize their secreted surfactants for potential
application in hydrocarbon bioremediation. Hence, bacterial species isolated from oil-contaminated
sites were screened for biosurfactant production and selected isolates were examined for optimum
yields at various culture conditions. Morphological, biochemical and taxonomic characteristics of the
isolates and preliminary characteristics of their surfactants have also been studied. Additionally, the
degradation of diesel oil by the biosurfactants under laboratory conditions was evaluated.
2. Material and methods
2.1. Soil samples
The soil was collected from three different locations of Chittagong (see electronic supplementary material,
figure S1) in April 2018. The top layer (0–15 cm) of the surface soil was collected using sterile spatula into



Table 1. Location and physico-chemical properties of the samples.

location GPS coordinates soil temperature soil pH strains isolated

Shoraipara fuel station,

Pahartali

22.35586828 N,

91.78846921 E

30°C 8 SD1, SD2, SD3,

SD4

engine filling station,

Chittagong Railway Academy

22.32053532 N,

91.78405199 E

31°C 8.5 SD5, SD6, SD7

engine washing station,

Chittagong Railway Academy

22.32338341 N,

91.78185608 E

29°C 9 SD8, SD9, SD10

main station, Chittagong

Railway Academy

22.32121629 N,

91.78552304 E

32°C 8 SD11, SD12,

SD13
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sterile zip-locked bags and kept in an icebox during transportation to the laboratory. The physico-chemical
properties of the soil, e.g. pH and the temperature, were measured at the collection sites (table 1).

2.2. Enrichment and isolation
One gram of each soil sample was dissolved in 99 ml of Mckeen medium containing 25 g glucose, 2.5 g
monosodium glutamate, 3.0 g yeast extract, 1.0 g MgSO4·7H2O, 1.0 g K2HPO4, 0.5 g KCl and 1.0 ml trace
element solution (0.64 g MnSO4 · 7H2O, 0.16 g CuSO4·5H2O and 0.015 g FeSO4·7H2O in 100 ml of distilled
water) per 1 l distilled water [24]. After incubation at 37°C for 3 days at 150 r.p.m., 100 µl of the suspension
was spread over Mckeen agar plates and incubated at 37°C. Single colonies from the plate were picked and
repeatedly streaked on fresh plates until pure cultures appeared that were preserved as slant cultures.

2.3. Hydrocarbon overlay assay
Initial screening of the isolates for biosurfactant production was performed by hydrocarbon overlay assay
as described by Hanano et al. [25]. One microliter of culture was spread over a McKeen agar plate coated
with 100 µl of kerosene and incubated at 37°C for 7 days. Colony surrounded by an emulsified halo was
considered positive for biosurfactant production.

2.4. Drop collapse assay
Drop collapse assay was carried out according to the description of [26] using cell-free supernatant
prepared from the centrifugation of a 48 h culture at 5000 r.p.m. for 20 min at 4°C. A single drop
of diesel oil was placed on a glass slide upon which one drop of the supernatant was dropped. After
1–2 min, the flattening property was recorded. If the drop collapsed the result was scored as positive
while if it remained beaded the result was considered negative.

2.5. Blood agar assay
To perform blood agar assay, fresh cultures were streaked on blood agar plates (Himedia, India)
containing 5–7% sheep blood. After incubation at 37°C for 48–72 h, the formation of a clear halo
surrounding the colonies was scored as a positive result [27].

2.6. Determination of emulsification index
The emulsification index (E24) was determined as previously reported [28]. Three microlitres of kerosene
was added to the same amount of cell-free supernatant and vortexed for 2 min. After 24 h, the height of
the stable emulsion layer was measured. Water was used as negative control. E24 was defined as the
percentage of the height of the emulsified layer divided by the total height of the liquid column:

E24 ¼ height of the emulsion layer
total height

� 100%:
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2.7. PCR and sequencing of 16S rRNA gene

To amplify 16S rRNA gene sequences, cells from the stock culture were inoculated in nutrient broth
containing 5.0 g peptone, 3.0 g yeast extract, 5.0 g NaCl in 1 l distilled water and incubated overnight
at 37°C. The activated cultures were further grown in nutrient broth at 37°C overnight and their
genomic DNA was extracted using a Maxwell 16 Blood DNA Purification Kit (Promega, Madison, WI,
USA) according to the manufacturer’s instructions. PCR was carried out with the genomic DNA using
the primers 27F (50-AGAGTTTGATCNTGGCTCAG-30) and 1492R (50-GCTTACCTTGTTACGACTT-30).
Sequencing of the purified PCR products was performed as previously described [29]. The sequences
were submitted to GenBank under the accession nos. MZ254917–MZ254920.
urnal/rsos
R.Soc.O
2.8. Sequence analysis
Taxonomic affiliation of the isolates was determined based on the identity of their 16S rRNA gene
sequences with those in the GenBank database and with the nearest type strains in EZBioCloud
database as described in [29].
 pen

Sci.8:211003
2.9. Phylogenetic tree construction
To construct a phylogenetic tree, sequences were aligned using ClustalW algorithms in the Geneious
application (Geneious Prime 2021.1; https://www.geneious.com) [30]. Sequences of the type strains
(T) were obtained from EZBioCloud with the accession numbers AE016877 (Bacillus cereus ATCC
14579), LASD01000006 (Burkholderia contaminans LMG 23361), CP022823 (Klebsiella quasivariicola
KPN1705) and HQ888847 (Providencia thailandensis C1112). Phylogenetic tree of the aligned sequences
was constructed using the maximum-likelihood method with Tamura–Nei distance algorithm in
molecular evolutionary genetics analysis (MEGA) application according to a previous report [31].
2.10. Morphological and biochemical characterization
Characterization of the selected isolates by determination of colony morphology, biochemical and
growth characteristics and fermentation of various carbohydrates were carried out as described
previously [32,33].
2.11. Optimization of culture conditions
To determine optimum culture condition and hydrocarbon for biosurfactant production, the strains
were grown for different incubation times (3–11 days), temperatures (25–50°C), pH (3–9) and
hydrocarbon sources (kerosene, diesel, octane and soya bean) in Mckeen medium and the E24 value at
each was determined.
2.12. Extraction of biosurfactant
Extraction of biosurfactant was carried out as previously described [34]. Briefly, activated cultures were
incubated at 37°C for 7 days at 150 r.p.m. Culture supernatant was collected by centrifugation at 5000
r.p.m. for 20 min at 4°C and pH was adjusted to 2 with 1 M H2SO4. Equal volume of chloroform–
methanol mixture (2 : 1) was then added and shaken vigorously for 5 min and allowed to stand until
phase separation. The bottom solvent phase was then removed by a separating funnel and the upper
aqueous phase was collected. The partially purified biosurfactant was concentrated by evaporation
and preserved at −20°C until analysed.

2.13. Characterization of biosurfactants
The chemical nature of the partially purified biosurfactants was determined by various biochemical
examinations. Ninhydrin test was performed as reported by Feignier et al. [35], biuret test was
performed according to Patowary et al. [36], Molisch’s test was performed according to the method of
Vanavil et al. [37] and thin layer chromatography according to Lamilla et al. [38].

https://www.geneious.com
https://www.geneious.com
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2.14. Determination of antimicrobial activity

Antimicrobial activity of selected isolates was determined using partially purified biosurfactant against
clinical and environmental bacteria of both Gram-positive and Gram-negative strains including Bacillus
cereus (ATCC 14574), Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 9027), Salmonella
typhi (ATCC 14028), Vibrio cholera (ATCC 14035) and Escherichia coli (ATCC 25922) by disc diffusion
method as described previously [39].

2.15. Determination of stability
The stability of biosurfactant was assessed from the determination of E24 under various conditions such
as temperature, pH and salinity. Thermal stability was estimated by placing at 4–121°C for 30 min
followed by cooling to room temperature. pH stability was evaluated in the range of pH 1–10
adjusted with 1 N HCl or 1 N NaOH. Salinity was assessed using NaCl of 2–7% w/v.

2.16. Degradation of diesel oil by the selected strains
Degradation of diesel oil by the selected strains was measured by the gravimetric method described
by Ganesh & Lin [40] in 100 ml minimal salt medium (MSM) containing 1.8 g K2HPO4, 4.0 g
NH4Cl, 0.2 g MgSO4 . 7H2O, 0.1 g NaCl, 0.01 g FeSO4. 7H2O per litre enriched with 2% (v/v) filter-
sterilized crude oil as the carbon source cultured at 37°C for 7 days at 150 r.p.m. The residual oil
was recovered using the solvent extraction method by adding dichloromethane to the media. The media/
solvent mixture was decanted into a separating funnel, shaken well and the organic phase was
drained into a previously weighed beaker. After evaporation of dichloromethane, the beaker was again
weighed until a consistent weight was obtained. The difference between the two weights provided the
weight of the residual oil. The same procedure was used for oil extraction from the negative control
media maintained under the same conditions without any inoculation. Degradation of oil was calculated
by the following formula:

Oil degradation (%) ¼
ðweight of oil recovered from uninoculated media �

weight of oil recovered from culture mediaÞ
weight of oil introduced

8>><
>>:

9>>=
>>;

� 100:
3. Results
3.1. Selection and characterization of biosurfactant producing bacteria
Following enrichment in Mckeen media supplemented with 0.1% kerosene, 13 colonies that produced
emulsified halos on hydrocarbon overlay agar were initially selected (table 2). Further screening based
on the drop collapse assay and emulsification index (E24; table 2) sorted out four isolates as efficient
producers of biosurfactants (SD4, SD11, SD12, SD13). Although the hemolytic test, a method
traditionally used in the screening, was performed, the technique has been reported not very reliable
to detect biosurfactant production [41]. The selection criteria, therefore, relied principally upon the
results of the drop collapse method and E24. All the four selected isolates showed a vigorous collapse
in the drop collapse test and an E24 > 50%. The four isolates were taxonomically identified from their
16S rRNA gene-based analysis (figure 1a), and morphological and biochemical characteristics (table 3).
The 16S rRNA gene sequence of the four strains showed maximum similarity to species of Bacillus,
Burkholderia, Providencia and Klebsiella, respectively. This taxonomic affiliation was further supported
by the phylogenetic relationship of the isolates with their closest type strains (figure 1b).
Morphological and biochemical analysis (table 3) suggested that the isolates were non-motile, indole-
negative and catalase-positive strains and, except the Bacillus strain (SD4), all were Gram-negative. All
the four isolates could ferment glucose, fructose and sucrose. While the Burkholderia (SD11) and
Klebsiella (SD13) strains also fermented raffinose, rhamnose, mannitol and lactose, Bacillus (SD4) and
Providencia (SD12) isolates did not. Other biochemical properties such as cellular arrangement; citrate,
nitrate, urease, methyl red, Voges–Proskauer, starch hydrolysis, deep glucose agar tests; and oxygen
relationship were also determined (table 3) and found consistent with the taxonomic annotation
according to Bergey’s manual [42].



isolates
(accession no.)

BLAST result
(top hit sp.)

percent
identity

SD4 (MZ254917)

SD11 (MZ254918)

SD12 (MZ254919)

SD13 (MZ254920)

Bacillus cereus

Burkholderia contaminans

Providencia stuartii

Klebsiella variicola

100

100

99.58

99.58

(a)

(b)
Bacillus cereus ATCC 14579 (T)

SD4
Burkholderia contaminans LMG 23361 (T)
SD11

Klebsiella quasivariicola KPN1705 (T)
SD13

SD12
Providencia thailandensis C1112 (T)

0.050

Figure 1. Phylotypes of the selected isolates. (a) Taxonomic affiliations of the four isolates based on sequence identity of their 16S
rRNA genes. Accession numbers of the strains are provided in parentheses. (b) Phylogenetic tree of the isolates and their closest type
strains (T).

Table 2. Screening of the isolates for biosurfactant production.

isolates hydrocarbon overlay agara drop collapseb blood hemolysisa emulsification index (E24) (%)

SD1 + − − 0

SD2 + − − 0

SD3 + − − 5

SD4 + +++ + 62.5

SD5 + − − 6

SD6 + ++ − 50

SD7 + − − 50

SD8 + ++ + 47.8

SD9 + − − 25

SD10 + − − 0

SD11 + +++ − 55

SD12 + +++ + 70

SD13 + +++ + 74
a+ = positive result; − = negative result.
b+++ = vigorous collapse; ++ = moderate collapse; + = scanty collapse.
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3.2. Optimum growth conditions for biosurfactant production
The influence of various culture conditions on the production of biosurfactants was analysed and
presented as a function of the emulsification index (E24, %) (figure 2). While the production continued
as long as day 11, the highest E24 was obtained on day 5 in the Bacillus (SD4) and Klebsiella (SD13)
strains, and on day 7 in Burkholderia (SD11) and Providencia (SD12) strains (figure 2a). For all isolates,
the optimum production temperature was found at 37°C (figure 2b). Although considerable
biosurfactant production was also observed below this temperature, the production sharply dropped
at 45°C in all isolates. Acidic conditions, on the other hand, appeared to favour biosurfactant
production in the isolates with the highest yield taking place at pH 3 (figure 2c). In fact, the E24 was
considerably high in most of the acidic range from pH 3 to 6 and decreased below or above this range



Table 3. Morphological, cultural and biochemical characteristics of the selected strains. + = positive result; – = negative result.

features Bacillus SD4 Burkholderia SD11 Providencia SD12 Klebsiella SD13

colony morphology circular, raised,

entire, smooth,

off-white colour

circular, raised,

entire, smooth,

off-white colour

circular, raised,

entire, smooth,

off-white colour

circular, raised,

entire, smooth,

off-white colour

slant characteristics effuse filiform arborescent arborescent

Gram staining + − − −
motility test − − − −
cell arrangement single single single single

indole test − − − −
catalase test + + + +

citrate test + + − −
nitrate test + + − −
urease test − − − +

methyl red test + − − +

Voges–Proskauer

test

+ − − +

deep glucose agar

test

grow on the surface

of medium

grow on the surface

of medium

grow throughout

medium

grow throughout

medium

oxygen relationship strictly aerobic strictly aerobic facultative anaerobic facultative anaerobic

starch hydrolysis + − + −
fermentation of carbohydrates

glucose + + + +

fructose + + + +

dextrose + + + +

sucrose + + + +

maltose + + − +

raffinose − + − +

rhamnose − + − +

mannitol − + − +

lactose − + − +

starch + − + +

royalsocietypublishing.org/journal/rsos
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although small emulsification was still observed at pH 2 and 9. With regards to the use of hydrocarbons
in the media, kerosene was generally found most suitable for biosurfactant production followed by diesel
and soya bean (figure 2d ). By contrast, when octane was used as the carbon source, the emulsification
capacity was very poor except for SD11 which showed a relatively better emulsification with octane.
It appears that SD11 was the only isolate that could use all the hydrocarbon sources equally well for
emulsification.
3.3. Chemical nature of the biosurfactants
The preliminary chemical structure of the biosurfactants was assessed from a series of biochemical
reactions (table 4). Biosurfactants of Bacillus (SD4), Burkholderia (SD11) and Providencia (SD12) strains
were found negative in the ninhydrin and biuret tests and in TLC sprayed with ninhydrin suggesting
the absence of amino acids, but positive in Molisch test and TLC exposed to iodine vapour indicating
the presence of carbohydrates and lipids. Taken together, biosurfactants of the three isolates seem
glycolipid in nature. The Klebsiella (SD13) biosurfactant, however, showed quite a contrasting result in
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Figure 2. Effect of growth conditions on emulsification activity of culture filtrates. The isolates were grown at different sets of
culture conditions such as incubation period (a), temperature (b), pH (c) and carbon source (d ), and the emulsification index of
culture supernatant was recorded. Error bars represent one standard deviation of the mean of three experiments.

Table 4. Results of biochemical tests for chemical characterization of the biosurfactants. + = positive result; − = negative result.

isolates

protein detection
carbohydrate
detection lipid detection

interpretationninhydrin biuret TLC (ninhydrin) Molisch
TLC (iodine
vapour)

SD4 − − − + + glycolipid

SD11 − − − + + glycolipid

SD12 − − − + + glycolipid

SD13 + + + – + lipopeptide

royalsocietypublishing.org/journal/rsos
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the biochemical tests with negative reaction in the Molisch test and positive reactions in both protein and
lipid detection tests suggesting it to be a lipopeptide.
3.4. Stability of the biosurfactants
The biosurfactant of each isolate was found to display a stable emulsification activity over a wide range of
abiotic conditions (figure 3). Temperature sensitivity was assessed in a limit of 4–121°C. The Klebsiella
(SD13) biosurfactant appeared most thermostable with relatively high emulsifying activity all along
this temperature range (figure 3a). Biosurfactants of Bacillus (SD4) and Burkholderia (SD11) strains also
showed similar stability with a slim decline over a temperature of 100°C. The Providencia (SD12)
biosurfactant was, however, relatively less stable at temperatures below 25°C and above 70°C. High
pH did not have much effect on the emulsifying capacity as the biosurfactants remained stable in
both highly acidic and highly alkaline conditions (figure 3b). The biosurfactants of all four isolates
maintained nearly constant values of E24 over pH 2–9. The tolerance of the biosurfactants to ionic
stress was also examined at 2–10% NaCl (figure 3c). The biosurfactants of Burkholderia, Providencia and
Klebsiella strains showed similar emulsification activity forming stable emulsions at all these saline
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deviation of the mean, n = 3.
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concentrations, whereas that of the Bacillus strain greatly diminished below 3% NaCl and gradually
increased at higher ionic strengths.
3.5. Antimicrobial activity
The biosurfactantswere tested as antimicrobial agents against six pathogenic or indicator organisms including
B. cereus, P. aeruginosa, S. aureus, S. typhi, V. cholera and E. coli (table 5). The biosurfactant obtained from the
Bacillus (SD4) strain was found most effective among the four isolates showing activity against a maximum
of five test organisms having no effects against only B. cereus. Bacillus cereuswas, in fact, the most unaffected
organisms of the six test strains resisting biosurfactants of most isolates. Only the Burkholderia (SD11) strain
exhibited antagonistic activity against it. Vibrio cholera, in contrast, was inhibited by biosurfactants of all four
isolates. Biosurfactant from the Providencia (SD12) strain appeared the least effective with only two of the six
test strains, V. cholera and E. coli, being inhibited. In general, the biosurfactants were more effective against
the Gram-negative strains (69%) in comparison to the Gram-positive bacteria (38%).
3.6. Oil emulsification potential
The emulsifying capacity of the biosurfactants was measured using four different oil hydrocarbons, i.e.
kerosene, diesel, octane and soya bean (figure 4a). Kerosene was found the most suitable substrate for
emulsification followed by diesel and soya bean. Biosurfactants from all four isolates, especially Klebsiella
(E24 = 75%), demonstrated better emulsification with kerosene as compared to the other hydrocarbons.
Considerable emulsion (approx. 50%) was also formed with diesel and soya bean. With octane, however,
the emulsification activity was generally very poor with the exception of the Burkholderia (SD11)
biosurfactant which showed relatively higher emulsification with octane. Although E24 with octane was



Table 5. Antimicrobial activity of the biosurfactants against pathogenic or indicator bacterial strains. + = presence of activity;
– = no activity.
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biosurfactant from

SD4 SD11 SD12 SD13

Gram-positive strains

Bacillus cereus − + − −
Staphylococcus aureus + − − +

Gram-negative strains

Pseudomonas aeruginosa + − − +

Salmonella typhi + + − −
Vibrio cholera + + + +

Escherichia coli + − + +
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Figure 4. Emulsification activity of the biosurfactants on different types of oil (a), and degradation of diesel by the isolates (b). The
error bars represent one standard deviation of the mean, n = 3.
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found to be 48.5% for the biosurfactant from Burkholderia, it was less than 20% for biosurfactants obtained
from the other three isolates. Hence, the Burkholderia biosurfactant appears to have comparably broader
substrate specificity. The ability of the isolates to degrade diesel oil was also studied by the determination
of the amount of diesel oil left in the culture media after 7 days of growth (figure 4b); 40–52% degradation
of diesel was achieved by the isolates which indicate their potential application in oil bioremediation.
4. Discussion
Bacterial surfactants play a major role in the emulsification of petroleum hydrocarbons; hence they are
regarded as alternatives to chemical surfactants for superior properties like biodegradability, less
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toxicity, eco-friendliness and high specificity [43]. The biosurfactant-producing bacteria are found in

diverse environments but mostly isolated from places rich in organic hydrophobic contaminants [44].
In the present work, therefore, biosurfactant producers were searched in oil-contaminated sites. The
isolates were examined by various screening methods including hydrocarbon overlay assay, blood
agar assay, drop collapse method and emulsification indices since previous reports have
recommended use of multiple techniques to screen for efficient biosurfactant-producing strains [44,45].
The initial screening was based on the hydrocarbon overlay assay sorting out 13 isolates for further
selection. Blood agar assay, although widely used for screening of biosurfactant production [41],
has been reported to give false positive and negative results [41]. Hence, the emulsification activity
which is regarded to be a very reliable and accurate method to screen for biosurfactant production
[43], together with the drop collapse assay, was basically considered [41] in this study in the final
selection of four potent strains from the 13 isolates (46.15%). The four isolates were identified based
on their 16S rRNA gene sequences. About 500 bp of the approximately 1500 bp sequence that has
been found to be of high quality was used for the taxonomic identification. Limitations of
identification by relatively short sequences were, however, described [46]. A nearly full-length
sequence is said to be helpful for making a confident species or strain level identification [47],
although several reports argued that a shorter sequence such as approximately 500 bp can also
provide necessary divergence for the purpose [48,49]. In fact, both 500 and 1500 bp are common
lengths to be sequenced and compared for phylotype determinations, and sequences of various
lengths are found in databases and the literature [49–57]. Nevertheless, analysis of a nearly full-length
sequence of the 16S rRNA gene is usually recommended, especially when reporting a new species or
when it is necessary to differentiate between specific strains in a genus. Indeed, full-length sequences
are supposed to provide relatively better resolution than short reads particularly for strains having
high sequence similarity since it is indeterminate which segment of the 16S rRNA gene would
provide the differentiation. On the other hand, for clinical isolates, the initial 500 bp has been reported
sufficient for taxonomic differentiation [49]. Recently, Farrance and Hong examined 208 diverse
bacterial sequences of 131 randomly selected genera by both the initial 500 bp and the 1500 bp
sequences [48]. They found that 93.7% of the samples did not show any difference in the species level
identification between the two approaches, whereas in only 5.3% of the samples the full-length
sequences showed better resolution. Bacterial identification in the MicroSeq system is also based on
500 bp sequences, and identification using sequences shorter than 500 bp has been reported as well
[58–62]. In the present study, analysis of the approximately 500 bp sequence of the four isolates
exhibited greater than 99% identity to the closest GenBank sequences. Each was found to be affiliated
with a different genus: Bacillus, Burkholderia, Providencia and Klebsiella. Bacterial strains from these four
genera are well known as being capable of producing biosurfactants and degradation of petroleum
hydrocarbons [43,44,63–65]. Most particularly, the members of the genus Bacillus have been very
frequently isolated from the soil of oil-polluted sites and reported as an effective bioresource for
biosurfactants [44,66]. The isolates, except the Bacillus strain, were Gram-negative. The dominance of
Gram-negative species seems common in soil with a history of contamination by oil or its byproducts,
a characteristic that has been suggested to contribute in the survival of these populations in such
harsh environments [67].

In any strain, however, culture conditions play a major role in the growth of the strain itself and also
in its production of a particular metabolite. It is, therefore, important to find out the optimum culture
condition and suitable hydrocarbon source to achieve the maximum yield [68]. In the present work,
the highest production of biosurfactant was found at day 5 or day 7 depending on the strain.
A similar incubation time of maximum production was also reported in several other analyses
[69–71]. Among the other factors, a temperature of 37°C and pH in the range of 3–6 appeared to be
most suitable for the selected isolates to produce biosurfactants. The optimal temperature was close to
the soil temperature (approx. 30°C) during isolation which indicates a direct correlation of
biosurfactant production to the growth of the microbes under suitable temperature, i.e. higher
production as the cell density increases. The optimal pH, in contrast, was found lower than that of the
soil (approx. 8) from which the bacteria were obtained. While similar growth conditions were
observed in several other bacteria, many species also showed optimum yield for different
temperatures and pH, either higher or lower [45,68].

Preliminary characterization of the chemical nature of the partially purified biosurfactants indicated
that the biosurfactants had glycolipid structures with the exception of the Klebsiella biosurfactant that was
a lipopeptide. The glycolipid biosurfactants have recently gained special attention for their ecofriendly
nature, high efficiency in biodegradation as well as other special activities such as pesticidal,
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antifungal and antibacterial activities [72,73]. Accordingly, the glycolipid biosurfactants obtained in this

work also showed antagonistic activity against several of the Gram-positive and Gram-negative bacteria.
The most potent of these biosurfactants was that produced by the Bacillus strain (SD4) which
demonstrated inhibitory effects against five of the six test organisms. Although previous research has
shown that glycolipid biosurfactants such as mannosylerythritol have significant antimicrobial activity
against Gram-positive bacteria [73], those extracted in the present study, in contrast, were usually
more effective against the Gram-negative strains.

Another important feature of the glycolipid biosurfactants is their stability over an extreme range of
pH, salinity and temperature [73] which is in line with the findings of the present research. Both
glycolipid and lipopeptide biosurfactants of the present work exhibited good stability in maintaining
emulsification at a wide range of pH, temperatures and salt concentrations thus indicating their
suitability for application in extreme environmental or industrial conditions. The synthetic surfactants,
on the other hand, are highly susceptible to such conditions. For example, salt concentrations over 2%
NaCl were reported enough to inactivate a synthetic surfactant [74], whereas the emulsifying activity
of the biosurfactants of this study remained unchanged from 2% to as high as 7% of NaCl.

To summarize, four bacterial strains and their secreted surfactants were characterized in this work. The
partially purified biosurfactants had relatively high activity, formed stable emulsions with different
hydrocarbons and showed good antimicrobial activity. Moreover, the biosurfactants also exhibited high
levels of pH, salinity and thermal stability, and potential to degrade diesel oil, all which indicate their
prospects for application in bioremediation and oil recovery processes under harsh conditions.
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