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SUMMARY

Cancers are routinely classified into subtypes according to various features, including histopathological
characteristics and molecular markers. Previous genome-wide association studies have reported hetero-
geneous associations between loci and cancer subtypes. However, it is not evident what is the optimal
modeling strategy for handling correlated tumor features, missing data, and increased degrees-of-freedom
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in the underlying tests of associations. We propose to test for genetic associations using a mixed-effect
two-stage polytomous model score test (MTOP). In the first stage, a standard polytomous model is used
to specify all possible subtypes defined by the cross-classification of the tumor characteristics. In the
second stage, the subtype-specific case–control odds ratios are specified using a more parsimonious
model based on the case–control odds ratio for a baseline subtype, and the case–case parameters asso-
ciated with tumor markers. Further, to reduce the degrees-of-freedom, we specify case–case parameters
for additional exploratory markers using a random-effect model. We use the Expectation–Maximization
algorithm to account for missing data on tumor markers. Through simulations across a range of realistic
scenarios and data from the Polish Breast Cancer Study (PBCS), we show MTOP outperforms alter-
native methods for identifying heterogeneous associations between risk loci and tumor subtypes. The
proposed methods have been implemented in a user-friendly and high-speed R statistical package called
TOP (https://github.com/andrewhaoyu/TOP).

Keywords: Cancer subtypes; EM algorithm; Etiologic heterogeneity; Susceptibility variants; Score tests; Two-stage
polytomous model.

1. INTRODUCTION

Genome-wide association studies (GWAS) have identified hundreds of single nucleotide polymorphisms
(SNPs) associated with various cancers (MacArthur and others, 2016). However, many cancer GWAS
have often defined cancer endpoints according to specific anatomic sites, and not according to subtypes of
the disease. Many cancers consist of etiologically and clinically heterogeneous subtypes that are defined by
multiple correlated tumor characteristics. For instance, breast cancer is routinely classified into subtypes
defined by tumor expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal
growth factor receptor 2 (HER2) (Perou and others, 2000; Prat and others, 2015).

Increasing numbers of epidemiologic studies with tumor specimens are allowing the characterization
of cancers at the histological and molecular levels (Cancer Genome Atlas Network, 2012; Cancer Genome
Atlas Research Network, 2014), providing tremendous opportunities to investigate for potential distinct
etiological pathways between cancer subtypes. For example, a breast cancer ER-negative specific GWAS
reported 20 SNPs that were more strongly associated with the risk of developing ER-negative than ER-
positive disease (Milne and others, 2017). Previous studies also suggested traditional breast cancer risk
factors, such as age, obesity, and hormone therapy use, were heterogeneously associated with the risk of
breast cancer subtypes (Barnard and others, 2015).

The most common procedure for testing for associations between risk factors and cancer subtypes
is by fitting a standard logistic regression for each subtype versus a control group, then accounting for
multiple testing. However, this procedure has several limitations. First, its common for cancer cases to
have missing tumor marker data, leading to many cancer cases with no subtype definition, and often these
cases are dropped from the model. Second, the tumor markers that defined the subtypes are commonly
highly correlated with each other. Testing each subtype separately without modeling the correlation limits
the power of the model. Finally, as the number of tumor markers increases, the number of cancer subtypes
dramatically increases, thus the increased degrees of freedom penalizes the power of the model.

A two-stage polytomous logistic regression was previously proposed to characterize subtype hetero-
geneity of a disease according to the underlying disease characteristics (Chatterjee, 2004). The first stage of
this method uses a polytomous logistic regression (Dubin and Pasternack, 1986) to model subtype-specific
case–control odds ratios. In the second stage, the subtype-specific case–control odds ratios are decomposed
into a case–control odds ratio for a reference subtype, a case–case odds ratio for each tumor character-
istic, and higher-order interactions between the tumor characteristics. The two-stage model can reduce
the degrees of freedom by constraining some or all of the higher-order interactions to be 0. Moreover,

https://github.com/andrewhaoyu/TOP
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the second stage case–case odds ratios can be interpreted as the measures of etiological heterogeneity for
tumor characteristics.

Although the two-stage model can improve the power compared to fitting standard logistic regressions
for each subtype (Chatterjee, 2004; Zabor and Begg, 2017), the two-stage model does have notable
limitations and has not been widely applied to analyze data on multiple tumor characteristics. First,
similar to standard logistic regression, the two-stage model cannot handle missing tumor characteristics,
which is common in epidemiologic studies. Second, the two-stage model estimation algorithm places high
demands on computing power and is therefore not readily applicable to large datasets. Finally, although the
two-stage model can reduce the multiple testing burdens compared to traditional methods, as the number
of tumor characteristics increases, the two-stage model can still have substantial power loss due to the
degrees of freedom penalty.

In this article, we propose a series of computational and statistical innovations to perform compu-
tationally scalable and statistically efficient association tests in large cancer GWASs that incorporate
tumor characteristic data. Within this two-stage modeling framework, we propose three alternative types
of hypotheses for testing genetic associations in the presence of tumor heterogeneity. As the degrees of
freedom for the tests can be large in the presence of many tumor characteristics, we propose modeling
parameters associated with exploratory tumor characteristics using a random-effect model. We then derive
the score tests under the resulting mixed-effect model while taking into account missing data on tumor
characteristics using an efficient EM algorithm (Dempster and others, 1977). All combined, our work
represents a conceptually distinct and practically important extension of earlier methods based on mixed-
/fixed-effect models (Lin, 1997; Zhang and Lin, 2003; Wu and others, 2011; Sun and others, 2013) to the
novel setting of modeling genetic associations with multiple tumor characteristics.

The article is organized as follows. In Section 2, we describe the proposed three different hypothesis
tests, the missing data algorithm, and the score tests. In Section 3, we present the simulation results for type
I error, power, and computation time. In Section 4, the proposed methods are illustrated with applications
using data from the Polish Breast Cancer Study (PBCS). In Section 5, we discuss the strengths and
limitations of the methods and future research directions.

2. METHOD

2.1. Two-stage polytomous logistic model

The details of the two-stage polytomous logistic model have been described earlier (Chatterjee, 2004).
We briefly summarize them for completeness. Suppose a disease can be classified using K disease charac-
teristics, and each characteristic k can be classified into Mk categories; thus, the disease can be classified
into M ≡ M1 ×M2 · · ·×MK subtypes. For example, breast cancer can be classified into eight subtypes by
three tumor characteristics (ER, PR, and HER2), each of which is defined as either positive or negative.

Let Di denote the disease status of subject i in the study such that Di ∈ {0, 1, 2, . . . , M } and i ∈
{1, . . . , N }. Di = 0 represents a control, and Di = m represents a case with disease subtype m. Let Gi be
the genotype for subject i, and Xi be a P×1 vector of other covariates, where P is the total number of other
covariates. In the first stage model, a “saturated” polytomous logistic regression model is constructed as
follows:

Pr(Di = m|Gi, Xi) = exp(βmGi + XT
i ηm)

1 + ∑M
m=1 exp(βmGi + XT

i ηm)
, m ∈ {1, 2, . . . , M }, (2.1)

where βm and ηm are the regression coefficients for the SNP and other covariates with the mth subtype,
respectively.
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Because each cancer subtype is defined through a unique combination of the K tumor characteristics,
we can always alternatively index the parameters βm as {βs1s2···sK }, where sk ∈ {0, 1} for binary tumor
characteristics, and sk ∈ {t1 ≤ t2 ≤ · · · ≤ tMk } for ordinal tumor characteristics with t1, . . . , tMk as a set
of ordinal scores for Mk different levels. With this new index, the log odds ratios in the first stage can be
represented as follows:

βs1s2...sK = θ(0) +
K∑

k1=1

θ
(1)

k1
sk1 +

K∑
k1=1

K∑
k2>k1

θ
(2)

k1k2
(sk1sk2) + · · · + θ

(K)

12...K(s1s2 . . . sK), (2.2)

where θ(0) represents the case–control log odds ratio for a reference disease subtype, θ
(1)

k1
represents the

main effect of k1th tumor characteristic, θ
(2)

k1k2
represents the second order interaction between k1th and

k2th tumor characteristics , and so on. A reference level can be defined for each tumor characteristic, and
the reference disease subtype is jointly defined by the combination of the K tumor characteristics.

The reparameterization in (2.2) provides a way to decompose the first stage parameters to a lower
dimension. We can constrain different main effects or interaction effects to be 0 to specify different
second stage models. The first stage and second stage parameters can be linked with a matrix form,

β = ZGθ = ZG

[
θ(0) θT

H

]T
, where β = (β1, β2, . . . , βM )T is a vector of first stage case–control log odds

ratios for all the M subtypes, θ(0) is the case–control log odds ratio for a reference subtype, and θH is
a vector containing the main effects and interactions effects in the second stage. We will refer to θH as
case–case parameters, and θ = (θ (0), θT

H)T as the vector of second stage parameters. ZG is the second stage
design matrix connecting the first stage and second stage parameters. By constraining different second
stage main effects or interaction effects to be 0, we can construct different ZG to build different two-stage
models.

Up to now, we have only described second stage decomposition for the regression coefficients of G.
The second stage decomposition can also be applied to the other covariates, the details of which are in
Section 1 of the Supplementary material available at Biostatistics online. We suggest not to perform second
stage decomposition on the intercepts parameters of the first stage polytomous model, i.e., the coefficients
of intercepts are saturated, because decomposing the intercepts equates to making assumptions on the
prevalence of different cancer subtypes, which can potentially lead to bias. Moving forward, we use ZX to
denote the second stage design matrix for the other covariates X, λ to denote the second stage parameters
for X, and Z to denote the second stage design matrix for all the covariates.

2.2. Hypothesis test under two-stage model

The first stage case–control log odds ratios of subtypes can be decomposed into the second stage case–
control log odds ratio of the reference subtype, main effects and interaction effects of tumor characteristics.
This decomposition presents multiple options for comprehensively testing for the association between a
SNP and cancer subtypes. The first hypothesis test is the global association test, HA

0 : θ = [θ(0) θT
H]T =

[0 0T ]T versus HA
1 : θ �= 0, which tests for an overall association between the SNP and the disease.

Because θ = 0 implies β = 0, rejecting this null hypothesis means the SNP is associated with at least one
of the subtypes. The null hypothesis can be rejected if the SNP is significantly associated with a similar
effect size across all subtypes (i.e., θ (0) �= 0, θH = 0), or if the SNP has heterogeneous effects on different
subtypes (θH �= 0).

The second hypothesis test is the global heterogeneity test, HEH
0 : θH = 0 versus HEH

1 : θH �= 0.
This test simultaneously evaluates the etiologic heterogeneity with respect to a SNP and all the tumor
characteristics. Rejecting this null hypothesis indicates that the first stage case–control log odds ratios are
significantly different between at least two different subtypes.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
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Notably, the global heterogeneity test does not identify which tumor characteristic(s) is/are driving the
heterogeneity. To identify the tumor characteristic(s) responsible for observed heterogeneity, we propose
the individual tumor marker heterogeneity test, HIH

0 : θH(k) = 0 versus HIH
1 : θH(k) �= 0, where θH(k) is one

of the case–case parameters of θH. The case–case parameter (θH(k)) provides a measurement of etiological
heterogeneity according to a specific tumor characteristic (Begg and Zhang, 1994). In the breast cancer
example, we can directly test HIH

0 : θ
(1)

ER = 0 versus HIH
1 : θ

(1)

ER �= 0. Rejecting the null hypothesis provides
evidence that the case–control log odds ratios of ER+ and ER− subtypes are significantly different.

2.3. EM algorithm accounting for cases with incomplete tumor characteristics

In the previous sections, all the tumor characteristics were assumed to have no missing data. However,
in epidemiological research, it is very common to have missing tumor characteristics. This problem
becomes exacerbated as the number of tumor characteristics grows. Restricting to cases with complete
tumor characteristics can reduce statistical power and potentially introduce selection bias. To solve this
problem, we propose to use the EM algorithm (Dempster and others, 1977) to find the maximum likelihood
estimate (MLE) of the two-stage model, while incorporating all available information from the study. Let
Tio be the observed tumor characteristics of subject i, and Yim = I (Di = m) denote whether the ith
subject is disease subtype m. Given Tio, the possible subtypes for subject i, denoted as {Yio = {Yim :
Yim that is consistent with Tio}, are within a limited subset of all possible tumor subtypes. We assume
that (Yi1, Yi2, . . . , YiM , Gi, Xi) are independently and identically distributed (i.i.d.), and that the tumor
characteristics are missing at random (MAR). Let δ = (θT , λT )T represent the second stage parameters of
both G and X. Given the notation, the E step of them EM algorithm at the vth iteration is

Y E
im = E(Yim|Gi, Xi, Tio; δ(v)) = Pr(Yim = 1|Gi, Xi; δ

(v))I (Yim ∈ Yio)∑
Yim∈Yio

Pr(Yim = 1|Gi, Xi; δ
(v))

, (2.3)

where Y E
im is the probability of the ith person to be the mth subtype given his observed tumor characteristics

(Tio), genotype (Gi), and other covariates (Xi). I (Yim ∈ Yio) denotes whether the mth subtype for the ith
subject belong to the subsets of possible subtypes given the observed tumor characteristics. The M step
at the vth iteration is

δ(v+1) = arg max
δ

N∑
i=1

[
(1 −

M∑
m=1

Y E
im) log Pr(Di = 0|Gi, Xi) +

M∑
m=1

Y E
im log

{
Pr(Di = m|Gi, Xi)

}]
. (2.4)

The M step can be solved through a weighted least square iteration. Let Ym = (Y1m, . . . , YNm)T , and Y =
(YT

1 , . . . , YT
M )T . Let C = (G, X), and CM = IM ⊗ C. Let W = D − AAT , D = diag(P), P = E(Y|C; δ),

and A = D(1M ⊗ IN ). During the tth iteration of the weighted least square, Y∗(t) = W(t)(YE − P(t)) +
CM Zδ(t), where P(t) and W(t) are respectively defined as P and W evaluated at the δ(t). The weighted
least square update is δ(t+1) = (ZT CT

M W(t)CM Z)−1ZT CT
M Y∗(t). As t → ∞, the weighted least square

interaction converges to δ̂
(v+1)

, which will be used in next iteration. The EM algorithm will converge
to the MLE of the second stage parameters (denoted as δ̂), and the observed information matrix I is
I = ZT CT

M (W − Wmis)CT
M Z, where Wmis = Dmis − AmisAT

mis, Dmis = diag(Pmis), Pmis = E(Y|C, To; δ),
and Amis = Dmis(1M ⊗ IN ) (Louis, 1982). More details of the EM algorithm are in Section 2 of the
Supplementary material at Biostatistics online.

With the MLE of the second stage parameters of G as θ̂ , we can construct the Wald statistics as

θ̂
∗T

�̂−1θ̂
∗ ∼ χ 2

l for the global association test, global etiological heterogeneity test, and individual tumor

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
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Table 1. Type I error estimates of MTOP, FTOP with 2.4 × 107 randomly simulated samples. Global
association test and global heterogeneity test were applied with FTOP and MTOP. Heterogeneity test for
a tumor marker was only applied with FTOP. All of the type error rates are divided by the α level. If
the value is 1, then the type I error is well controlled. If the value is less than 1, then the type I error is
conservative.

Interested tests Total sample size α = 1.0 × 10−4 α = 1.0 × 10−5 α = 1.0 × 10−6

MTOP
Global association test 5000 1.0 0.97 1.0

50 000 1.0 0.98 1.0
100 000 1.0 0.89 1.0

Global heterogeneity test 5000 1.0 0.98 1.0
50 000 0.97 0.94 0.93

100 000 0.98 0.89 0.93

FTOP
Global association test 5000 0.88 0.85 0.59

50 000 1.0 1.0 0.67
100 000 0.96 1.0 1.0

Global heterogeneity test 5000 0.88 0.74 0.37
50 000 1.0 0.98 0.93

100 000 1.0 0.99 0.84
Heterogeneity test for 5000 0.90 0.90 0.76
a tumor marker 50 000 0.98 0.89 0.84

100 000 1.0 0.95 1.0

characteristic heterogeneity test using the corresponding second stage parameters and covariance matrix,
where the degrees of freedom l equal the length of θ̂

∗
.

2.4. Fixed-effect two-stage polytomous model score test

Although the hypothesis tests can be implemented through the Wald test, estimating the model parameters
for all SNPs in the genome is time-consuming and computationally intensive. In this section, we develop
a score test for the global association test assuming the second stage parameters to be fixed. The score
test only needs to estimate the second stage parameters of X under the null hypothesis once, making it
much more computationally efficient than the Wald test. Moreover, the EM algorithm only needs to be
implemented once under the null hypothesis. Since we don’t perform any second stage decomposition
on the intercept parameters in the first stage polytomous model, the correlations between the tumor
characteristics are kept close to the empirical correlations for tumor markers. Most of the imputation power
is due to the high correlation between the tumor markers. In the breast cancer example, the correlation
between ER and PR is 0.63, between ER and HER2 is −0.16, and between PR and HER2 is −0.17 (Table 1
of the Supplementary material at Biostatistics online). Also, The association of X with the tumor markers
can improve the power of the EM algorithm. Since a single SNP G usually has a small effect, the fact
that the effect of individual G is not incorporated in the EM algorithm itself doesn’t result in much loss
of efficiency.

Let GM = IM ⊗G and XM = IM ⊗X. Under the null hypothesis, H0 : θ = 0, let λ̂ denote the MLE of λ

under the null hypothesis. The efficient score of θ is Uθ (λ̂) = ZT
GGT

M (Y − Pf), where Pf = Eθ=0(Y|X; λ̂).
Let Wf = Df − AfAT

f , with Pf = Eθ=0(Y|X, To; λ̂), Pf,mis = E(Y|X, To; λ̂), Df = diag(Pf − Pf,mis) and

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
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Af = Df(1M ⊗ IN ). The corresponding efficient information matrix of Uθ (λ̂) is

Ĩ = Iθθ − IθλI−1
λλ Iλθ , (2.5)

where Iθθ = ZT
GGT

M WfGM ZG, Iλλ = ZT
XXT

M WfXM ZX, and Iλθ = IT
θλ = ZT

XXT
M WfGM ZG.

The score test statistic Qθ for fixed-effect two-stage model is

Qθ = Uθ (λ̂)T Ĩ−1Uθ (λ̂) ∼ χ 2
l . (2.6)

Fixed-effect two-stage polytomous model score test (FTOP) has the same degrees of freedoms and similar
asymptotic power (Yi and Wang, 2011) as the Wald test. In GWAS which needs to perform millions of
tests, FTOP can be first used to scan the whole genome with global association test, and then select the
potential risk regions. In the selected risk regions, each SNP can be tested for global heterogeneity and
individual tumor characteristic heterogeneity using Wald test.

2.5. Mixed-effect two-stage polytomous model score test

The two-stage model decreases the degrees of freedom compared to the polytomous logistic regression.
However, the power gains in the two-stage model can be reduced as additional tumor characteristics are
added into the model. We further propose a mixed-effect two-stage model by modeling some of the second
stage case–case parameters as random effects. Let u = (u1, . . . , us)

T , where each uj follows an arbitrary
distribution F with mean zero and variance σ 2. The mixed-effect second stage model links the first and
second stage parameters as follows:

β = Zfθ f + Zru, (2.7)

where Zf is the second stage design matrix of fixed effect, Zr is the second stage design matrix of random
effect, and θ f are the fixed-effect second stage parameters. Let θ f = (θ (0), θT

fH)T , where θ(0) is the case–
control log odds ratio of the reference subtype, and θ fH are the fixed case–case parameters. The baseline
effect θ(0) is always kept fixed, since it captures the SNP’s overall effect on all the cancer subtypes.

The fixed-effect parameters θ fH can be used for tumor characters with prior information suggesting that
they are a source of heterogeneity, and the random-effect parameters u can model tumor characteristics
with little or no prior information. In the breast cancer example, the baseline parameter (θ(0)) and the main
effect of ER (θfH) can be modeled as fixed effects, since previous evidence indicates ER as a source of
breast cancer heterogeneity (García-Closas and others, 2013; Milne and others, 2017). The main effects of
PR and HER2 and other potential interactions effects can be modeled as random effects (u). In the mixed-
effect two-stage model, the global association test is HA

0 : θ f = 0, σ 2 = 0 versus HA
1 : θ f �= 0 or σ 2 �= 0,

and the global etiology heterogeneity test is HEH
0 : θ fH = 0, σ 2 = 0 versus HEH

1 : θ fH �= 0 or σ 2 �= 0.
To derive the score statistic for the global null HA

0 : θ f = 0, σ 2 = 0 , the common approach is to
take the partial derivatives of loglikelihood with respective to θ f and σ 2, respectively. However, under
the null hypothesis, the score for θ f follows a normal distribution, and for σ 2 follows a mixture of chi-
square distribution (Section 3 of the Supplementary material at Biostatistics online). With the correlation
between the two scores, getting the joint distribution between the two becomes very complicated. Inspired
by methods for the rare variants testing (Sun and others, 2013), we propose to modify the derivations of
score statistic so that two independent scores can be independent. First for θ f, the score test statistic Qθ f

is derived under the global null hypothesis HA
0 : θ f = 0, σ 2 = 0 as usual. But for σ 2, the score statistic

Qσ2 is derived under the null hypothesis H0 : σ 2 = 0 without constraining θ f. Through this procedure, the
two score test statistics (Qθ f and Qσ2 ) can be proved to be independent (Section 4 of the Supplementary
material at Biostatistics online), and the Fisher’s procedure (Koziol and Perlman, 1978) can be used to

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
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combine the P-value generated from the two independent tests. Similarly to FTOP, the EM algorithm
under the null hypothesis of mixed-effect two-stage polytomous model score test (MTOP) can efficiently
handle the missing tumor marker problems given the high correlations between the tumor characteristics.
However, since MTOP needs to estimate θ f under the null hypothesis H0 : σ 2 = 0 for every single SNP,
the computation speed for MTOP is slower than FTOP.

The score statistic of the fixed effect θ f under the global null HA
0 : θ f = 0, σ 2 = 0 is

Qθ f = (Y − Pf)
T GM ZfĨ

−1
f ZT

f GT
M (Y − Pf) ∼ χ 2

lf
, (2.8)

where Pf = Eθ f=0,σ2=0(Y|X; λ̂) . Here Ĩf has the same definition as (2.5), but substitute ZG with Zf. Under
the null hypothesis, Qθ f follows a χ 2 distribution with the degrees of freedom lf the same as the length
of θ f.

To explicitly express Qσ2 , let τ = (θT
f , λT )T be the second stage fixed effect, and Zτ is the corresponding

second stage design matrix. The variance component score statistic of σ 2 under the null hypothesis
H0 : σ 2 = 0 without constraining θ f is as follows:

Qσ2 = (Y − Pr)
T GM ZrZT

r GT
M (Y − Pr) ∼

s∑
i=1

ρiχ
2
i,1, (2.9)

where Pr = Eσ2=0(Y|G, X; τ̂ ) , and τ̂ is the MLE under the null hypothesis, H0 : σ 2 = 0. Under the null
hypothesis, Qσ2 follows a mixture of chi-square distribution (Section 3 of the Supplementary material at
Biostatistics online), where χ 2

i,1 i.i.d. follows χ 2
1 . (ρ1, . . . , ρs) are the eigenvalues of Ĩr = Iuu − IT

uτ I−1
ττ Iτu,

with Iuu = ZT
r GT

M WrGM Zr, Iττ = ZT
τ CT

M WrCM Zτ and Iτu = IT
uτ = ZT

τ CT
M WrGM Zr , where Wr =

Dr − ArAT
r , with Pr = Eσ2=0(Y|G, X, To; τ̂ ), Pr,mis = E(Y|G, X, To; τ̂ ), Dr = diag(Pr − Pr,mis) and

Ar = Dr(1M ⊗ IN ). The Davies exact method (Davies, 1980) is used here to calculate the P-value of the
mixture of chi-square distribution.

Let Pθ f = Pr(Qθ f ≥ χ 2
lf
) and Pσ2 = Pr(Qσ2 ≥ ∑s

i=1 ρiχ
2
i,1) be the P-values of the two independent

score statistics. Under the null hypothesis HA
0 : θ f = 0, σ 2 = 0, following the Fisher’s procedure,

−2 log(Pθ f) − 2 log(Pσ2) follows χ 2
4 ; thus, the P-value of mixed effect two-stage model under the null

hypothesis is

Pmix = Pr
{−2 log(Pθ f) − 2 log(Pσ2) ≥ χ 2

4

}
. (2.10)

The extension of the score statistics of the global etiology heterogeneity test, HEH
0 : θ fH = 0, σ 2 = 0, can

be computed following a similar procedure as the global association test.

3. SIMULATION EXPERIMENTS

Large scale simulations across a wide range of practical scenarios were conducted to evaluate the type I
error (Section 3.1), statistical power (Section 3.2), and computation time (Section 5 of the Supplementary
material at Biostatistics online) of the fixed-effect and mixed-effect two-stage models. Data were simulated
to mimic the PBCS. We simulated four tumor characteristics: ER (positive vs. negative), PR (positive vs.
negative), HER2 (positive vs. negative), and grade (ordinal 1, 2, 3), which collectively defined 23 ×3 = 24
breast cancer subtypes.

In each simulation, genotype data G was simulated under the Hardy–Weinberg equilibrium with minor
allele frequency (MAF) as 0.25. An additional covariate (X) was simulated following a standard normal
distribution independent of G. We simulated a multinomial outcome with 25 groups, one for the control

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
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group, and the other 24 for different cancer subtypes, using the polytomous logistic regression model as
follows:

Pr(Di = m|Xi) = exp(αm + βmGi + 0.05Xi)

1 + ∑M
m=1 exp(αm + βmGi + 0.05Xi)

. (3.1)

The effect of X was set as 0.05 for all subtypes. Using the frequency of the breast cancer subtypes from
Breast Cancer Association Consortium (Table S2 of the Supplementary material at Biostatistics online)
(Michailidou and others, 2017), we computed the corresponding polytomous logistic regression intercept
parameters αm. The case-control ratio was set around 1:1, and the proportions of ER+, PR+, and HER2+
were 0.81, 0.68, and 0.17, respectively. The proportions of grade 1, 2, and 3 were 0.20, 0.48, and 0.32.
The missing tumor markers were selected randomly with missing rates of 0.17, 0.25, 0.42, and 0.27 for
ER, PR, HER2, and grade, respectively. Under this simulation, approximately 70% cases had at least one
missing tumor characteristic.

3.1. Type I error

We evaluated the type I error of the global association test, global heterogeneity test, and individual tumor
marker heterogeneity test under the global null hypothesis. The data were generated by setting βm = 0
in (3.1), where none of the subtypes was associated with genotypes. The total sample size n was set
to be 5000, 50 000, and 100 000. We conducted 2.4 × 107 simulations to evaluate the type I error at
α = 1.0 × 10−4, 1.0 × ×10−5, and 1.0 × 10−6 level.

Both MTOP and FTOP were applied with an additive two-stage model by constraining all the interaction
terms as 0 in (2.2). The subtype-specific case–control log ORs were specified into the case–control log
OR of a baseline disease subtype (ER−, PR−, HER2−, grade 1) and the main effects associated with
the four tumor markers. Furthermore, the MTOP assumed the baseline and ER case–case parameter as
fixed effects and the other case–case parameters as random effects. The global association test and global
heterogeneity test were implemented using both MTOP and FTOP, but the individual tumor characteristic
heterogeneity test could only be implemented with FTOP. For MTOP and FTOP, we removed all the
subtypes with fewer than 10 cases to avoid potential nonconvergence of the model.

Table 1 presents the estimated type I errors under the global null hypothesis. Both MTOP and FTOP
correctly control the type I error, especially for the larger sample sizes. FTOP is conservative with 5000
subjects, especially for α = 1.0×10−6; however, the method is still valid. The well-controlled type I error
also shows that removing rare subtypes doesn’t bias the estimate, as further demonstrated by additional
simulations that are presented in Section 6 of the Supplementary material at Biostatistics online. In the
later sections, we generally used the additive second stage structure for both MTOP and FTOP unless
otherwise specified.

3.2. Statistical power

We assessed the statistical power of the proposed methods using various simulation settings with sample
sizes as 25 000, 50 000, and 100 000. For each setting, we performed 2 × 105 simulations to evaluate the
power at α = 5.0 × 10−8 level.

3.2.1. Global association test The data were simulated with three different scenarios: I. no heterogeneity
between tumor markers, II. heterogeneity according to one tumor marker, and III. heterogeneity according
to multiple tumor markers. The disease subtypes were generated through (3.1). Under scenario I, we set
βm as 0.08 for all the subtypes. For scenarios II and III, βm was simulated following the additive two-stage

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
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Fig. 1. Power comparison among MTOP, FTOP, standard logistic regression, two-stage model with only complete
data and polytomous model with 2 × 105 random samples. For the three figures in the first row, four tumor markers
were included in the analysis. Three binary tumor marker and one ordinal tumor marker defined 24 cancer subtypes.
Around 70% cases would be incomplete. For the three figures in the second row, two extra binary tumor markers were
included in the analysis. The six tumor markers defined 96 subtypes. Around 77% cases would be incomplete. The
power was estimated by controlling the type I error α < 5.0 × 10−8.

model. Under scenarios II, datasets were simulated with only ER heterogeneity by setting the case–case
parameter for ER as 0.08, and all the other as 0. For scenario III, we simulated a scenario with heterogeneity
according to all 4 tumor markers by setting the baseline effect to be 0, the ER case–case parameter to be 0.08,
and all the other case–case parameters following a normal distribution with mean 0 and variance 4.0×10−4.
Under this scenario, all tumor characteristics contributed to the subtype-specific heterogeneity. Moreover,
to evaluate different methods under a larger number of tumor characteristics, additional simulations were
conducted by adding two additional binary tumor characteristics to the previous four tumor characteristic
setting. This defined 25 ×3 = 96 cancer subtypes. The two additional tumor characteristics were randomly
selected to be missing with 5% missing rate. Under this setting, around 77% of the cases have at least
one tumor characteristic missing. We compared the statistical power to detect the overall association
using FTOP, MTOP, standard logistic regression, FTOP with only complete data, and polytomous logistic
regression. For MTOP, FTOP, and polytomous model, we removed all the subtypes with fewer than 10
cases to avoid potential nonconvergence of the model.

Overall, MTOP had robust power under all scenarios (Figure 1). Standard logistic regression had the
highest power when there was no subtype-specific heterogeneity (scenario I), but suffered from substantial
power loss when heterogeneity existed between subtypes. MTOP, followed by FTOP, consistently demon-
strated the highest power among the five methods when subtype-specific heterogeneity existed (scenarios
II and III). The power gain of MTOP over FTOP ranged from 2% to 49%. The power gain was small when
there were four tumor characteristics because the difference in the degrees of freedom between MTOP
and FTOP was small. However, with six tumor markers, the power gain of MTOP was more apparent
owing to the larger difference in the degrees of freedom between the models. FTOP was the least efficient
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Fig. 2. Power comparison of global association test with pairwise interactions. Four methods were evaluated, including
FTOP with additive structure, MTOP with additive structure (ER fixed), FTOP with pairwise interactions and MTOP
with pairwise interactions (ER fixed). For the three figures in the first row, four tumor markers were included in the
analysis. Three binary tumor marker and one ordinal tumor marker defined 24 cancer subtypes. Around 70% cases
were incomplete. For the three figures in the second row, two extra binary tumor markers were included in the analysis.
The six tumor markers defined 96 subtypes. Around 77% cases were incomplete. The total sample size was 25 000,
50 000, and 100 000. We generated 2 × 105 random replicates. The power was estimated by controlling the type I
error α < 5.0 × 10−8.

in scenarios with no or little heterogeneity, such as scenarios I and II, but with increasing heterogeneity,
such as scenario III, the power of MTOP and FTOP were more similar.

The simulation study also showed that the incorporation of cases with missing tumor characteristics
significantly increased the power of the methods (Figure 1). Under the four tumor markers setting with
around 70% incomplete cases, the power gain of FTOP incorporating the missing data algorithm was at
least 200% compared to FTOP with only complete data. As expected, under the six tumor markers setting,
which resulted in more missing tumor marker data, the power of FTOP with the missing data algorithm
was once again significantly higher than FTOP with only complete data. MTOP was the most powerful
method when heterogeneity across cancer subtypes was present. Additional power simulations with 5000
subjects are described in Section 7 of the Supplementary material at Biostatistics online.

The previous simulations mainly focused on the two-stage model with additive effects. Additional
simulations were also implemented with pairwise interactions in the model. We simulated data with βm

following a second stage model that included main effects and pairwise interactions as shown in (2.2) with
the case–case parameter for ER (θ

(1)

1 ) as 0.08, the pairwise interaction effect between ER and HER2 (θ
(2)

13 )

as 0.04, and all the other parameters as 0. Four methods were evaluated including FTOP with/without
pairwise interactions and MTOP with/without pairwise interactions (baseline and ER fixed). FTOP without
interaction terms still had high power (Figure 2). However, FTOP with pairwise interaction structure had
limited power because of the incorporation of the interaction terms as fixed effects. On the other hand,
MTOP with/without pairwise interactions maintained a high power even when there were underlying
interaction effects.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
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3.2.2. Global heterogeneity test Figure S3 of the Supplementary material at Biostatistics online shows
the simulation results for global heterogeneity tests under similar simulation settings as global association
tests. MTOP had the highest power when there were heterogeneous associations across the subtypes.

3.2.3. Individual tumor marker heterogeneity test We further evaluated the power of the individual tumor
marker heterogeneity test. The data were generated with four tumor characteristics with the ER case–case
parameter (θ(1)

1 ) as 0.08, and all other parameters as 0. ER was randomly selected to be missing with a rate
of 0.17, 0.30, and 0.50. We compared two different methods, FTOP with all four tumor characteristics and
the polytomous model. The polytomous model was set up to test each marker at a time. In the polytomous
model, we removed cases with missing data only on the relevant tumor marker to avoid penalizing the
power of the model by removing cases that were missing tumor marker data on the other tumor markers.
FTOP with all four tumor characteristics had smaller power compared to the polytomous model in testing
the effect of ER (Figure S4 of the Supplementary material at Biostatistics online). Since FTOP included
all four tumor characteristics, and the tumor markers were highly correlated, the variability of underlying
parameters was larger. However, the type I errors of the polytomous model in testing PR, HER2 and grade
were inflated under this case (Figure S5 of the Supplementary material at Biostatistics online). Under this
simulation, these three markers had no effect. On the other hand, FTOP controlled the type I error of all
the tests.

Overall, for the global test for association and the global test for heterogeneity, when there was no
heterogeneity, the standard logistic regression was the most powerful method. However, in the presence
of subtype heterogeneity, MTOP was the most powerful method, and MTOP had stable power even with
a large number of pairwise interactions terms included.

4. APPLICATION TO THE PBCS

We applied our proposed methods to the PBCS, a population-based breast cancer case-control study
conducted in Poland between 2000 and 2003 (García-Closas and others, 2006). The study consisted of 2078
cases of histologically or cytologically confirmed invasive breast cancer and 2219 women without a history
of breast cancer at enrollment. Information on ER, PR, and grade were available from pathology records
(García-Closas and others, 2006), and information on HER2 was available from immunohistochemical
staining of tissue microarray blocks (Yang and others, 2007). We used genome-wide genotyping data to
compare MTOP, FTOP, standard logistic regression, and polytomous logistic regression to detect SNPs
associated with breast cancer risk.

Table S4 of the Supplementary material at Biostatistics online presents the sample size of the tumor
characteristics. The four tumor characteristics defined 24 mutually exclusive breast cancer subtypes.
Subtypes with less than 10 cases were excluded, leaving 17 subtypes in the analysis. Both MTOP and FTOP
used the additive second stage design. Besides, we modeled the baseline and ER case–case parameters as
fixed effects in MTOP, and all other effects as random effects. We put ER as a fixed effect because of the
previously reported heterogeneity in genetic association by ER (García-Closas and others, 2013; Milne
and others, 2017). Genotype imputation was done using IMPUTE2 based on 1000 Genomes Project as
reference (Michailidou and others, 2017; Milne and others, 2017). In total, 7 017 694 common variants
on 22 autochromosomes with MAF ≥ 5% were included in the analysis. In all the models, we adjusted
for age and the first four genetic principal components to account for population stratification.

As Figure 3 shows, MTOP, FTOP, and standard logistic regression all identified a known susceptibility
variant in the FGFR2 locus on chromosome 10 (Michailidou and others, 2017), with the most significant
SNP being rs11200014 (P < 5.0 × 10−8). Further, both MTOP and FTOP identified a second known
susceptibility locus on chromosome 11 (CCND1) (Michailidou and others, 2017), with the most significant

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
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Fig. 3. Manhattan plot of genome-wide association analysis with PBCS using four different methods. PBCS have
2078 invasive breast cancer and 2219 controls. In total, 7 017 694 SNPs on 22 auto chromosomes with MAF more
than 5% were included in the analysis. ER, PR, HER2, and grade were used to define breast cancer subtypes.

SNP in both models being rs78540526 (P < 5.0 × 10−8). The individual heterogeneity test of this SNP
showed evidence for heterogeneity by ER (P = 0.011) and grade (P = 0.024). Notably, the CCND1
locus was not genome-wide significant in standard logistic regression or polytomous models. The type I
error of the four methods was well controlled (Figure S6 of the Supplementary material at Biostatistics
online).

Additional sensitivity analysis of MTOP was implemented by specifying baseline, ER and grade as
fixed effects, and PR and HER2 as random effects (Figure S7 of the Supplementary material at Biostatistics
online). The results for MTOP with grade as fixed versus random effect were similar. We also implemented
MTOP and FTOP incorporating pairwise interactions in the second stage model (Figures S8 and S9 of
the Supplementary material at Biostatistics online). With pairwise interactions, both MTOP and FTOP
detected FGFR2 and CCND1 with the genome-wide significant threshold. However, the P-value of FTOP
with pairwise interactions was less significant compared to FTOP without these interaction terms (for
rs11200014, P = 4.3 × 10−8 vs. P = 1.0 × 10−9 ; for rs78540526, P = 2.7 × 10−10 vs. P = 8.1 × 10−12).
The P-value of MTOP with pairwise interactions was also less significant compared to MTOP without
interaction terms (for rs11200014, P = 1.0 × 10−9 vs. P = 2.2 × 10−10; for rs78540526, P = 1.7 × 10−11

vs. P = 1.8×10−12). In both scenarios with pairwise interactions parameter included, however, the power
loss was smaller.

Next, we compared the ability of MTOP and standard logistic regressions to detect 178 previously
identified breast cancer susceptibility loci (Michailidou and others, 2017). For eight of the 178 loci, the
MTOP global association test P-value was more than 10-fold lower compared to the standard logistic
regression P-value (Table 2). In the MTOP model, these eight loci all had significant global heterogeneity
tests (P < 0.05). Confirming these results, in a previous analysis applying MTOP to 106 571 breast cancer
cases and 95 762 controls, these eight loci were reported to have significant global heterogeneity (Ahearn
and others, 2019).

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
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Table 2. Analysis results of previously identified susceptibility loci. For the listed eight loci, MTOP
global association test P-value was more than 10-fold lower compared to the standard logistic regression
P-value. All of the loci are significant in global heterogeneity test (P < 0.05).

SNP Chr. Position MAF G.A.P Standard analysis P G.H.P

rs4973768 3 27 416 013 0.47 3.1× 10−2 9.5 × 10−1 9.5 × 10−3

rs10816625 9 110 837 073 0.06 5.0 × 10−2 9.8 × 10−1 2.2 × 10−2

rs7904519 10 114 773 927 0.46 6.5 × 10−2 8.5 × 10−1 3.1 × 10−2

rs554219 11 69 331 642 0.13 7.3 × 10−11 1.4 × 10−7 5.1 × 10−6

rs11820646 11 129 461 171 0.40 1.5 × 10−2 8.6 × 10−1 4.5 × 10−3

rs2236007 14 37 132 769 0.21 2.1 × 10−3 1.9 × 10−1 3.5 × 10−3

rs1436904 18 24 570 667 0.40 7.2 × 10−4 6.6 × 10−2 9.7 × 10−4

rs1436904 22 29 121 087 0.01 9.8 × 10−3 1.6 × 10−1 2.3 × 10−2

Chr. = chromosome; MAF = minor allele frequency; G.A.P = global association test P-value from MTOP; G.H.P = global
heterogeneity test P-value from MTOP.

5. DISCUSSION

We present a series of novel methods for performing genetic association testing for cancer outcomes
accounting for potential heterogeneity across subtypes. These methods efficiently account for multiple
testing, correlations between markers, and missing tumor data. Under the model framework, we develop
two computationally efficient score tests, FTOP and MTOP, which model the underlying heterogeneity
parameters in terms of fixed effects or mixed effects, respectively. We demonstrate these methods have
greater statistical power in the presence of subtype heterogeneity than either standard or polytomous
logistic regression analysis.

Several methods have been proposed to study the etiological heterogeneity of cancer subtypes (Chatter-
jee, 2004; Rosner and others, 2013; Wang and others, 2015). A recent review showed the well-controlled
type I error and good statistical power of the two-stage model (Zabor and Begg, 2017). However, pre-
vious two-stage models haven’t accounted for missing tumor markers, which is a common problem in
epidemiological studies. We show that by incorporating the EM algorithm into the two-stage model we
can take advantage of all available information and substantially increase the statistical power (Figure 1).
Moreover, the newly proposed mixed effect model can mitigate the degrees of freedom penalty caused by
analyzing many tumor characteristics. In a recent large breast cancer GWAS analysis with 106 571 cases
and 95 762 controls, the newly developed methods MTOP and FTOP have identified 16 novel loci (Zhang
and others, 2019).

Incorporating missing tumor characteristics based on the proposed EM algorithm requires the assump-
tion of MAR, i.e., the mechanism of missing of the individual tumor characteristics can depend only on
other observed tumor characteristics and covariates, but not on the unobserved missing value themselves.
For the analysis of tumor heterogeneity, information on aggressive types of tumors may be systematically
missing. If the missing tumor characteristics are important determinants of aggressiveness, then the under-
lying assumption is violated. In general, dealing with non-ignorable missing data is a complex problem
and certain sensitivity analyses can be performed to explore the degree of bias (Little and Rubin, 2019).
In the context of genetic association testing, non-ignorable missingness can lead to inflated type I error
only if the missingness mechanism itself is related to the genetic variant. Further research is merited to
explore the complex effects of non-ignorable missingness in type I error and power of the proposed tests.

The computation time of MTOP is greater than FTOP (Section 5 of the Supplementary material at
Biostatistics online). To construct the score tests in FTOP, the coefficients of covariates need to be esti-
mated once under the null hypothesis, while in MTOP they need to be estimated for every SNP. The

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz065#supplementary-data
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computational complexity of FTOP is O(NM 2P2), with P as the number of other covariates X. For MTOP,
the computational complexity is O(NM 2P2lk), where l and k are respectively the numbers of iteration
required for weighted least square and EM algorithm to converge.

Currently, we only implement the linear kernel in MTOP, but other common kernels that capture the
similarity between tumor characteristics can be used in the future. If there is prior knowledge about
the overlapping genetic architecture across different tumor subtypes, this will help to choose the kernel
function, and improve the power of the methods.

The proposed methods have been implemented in a user-friendly and high-speed R statistical package
called TOP (https://github.com/andrewhaoyu/TOP), which includes all the core functions implemented in
C code.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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