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Abstract: In this investigation, biodegradable composites were fabricated with polycaprolactone
(PCL) matrix reinforced with pine cone powder (15%, 30%, and 45% by weight) and compatibi-
lized with graphite powder (0%, 5%, 10%, and 15% by weight) in polycaprolactone matrix by
compression molding technique. The samples were prepared as per ASTM standard and tested for
dimensional stability, biodegradability, and fracture energy with scanning electron micrographs.
Water-absorption and thickness-swelling were performed to examine the dimensional stability and
tests were performed at 23 ◦C and 50% humidity. Results revealed that the composites with 15 wt %
of pine cone powder (PCP) have shown higher dimensional stability as compared to other compos-
ites. Bio-composites containing 15–45 wt % of PCP with low graphite content have shown higher
disintegration rate than neat PCL. Fracture energy for crack initiation in bio-composites was in-
creased by 68% with 30% PCP. Scanning electron microscopy (SEM) of the composites have shown
evenly-distributed PCP particles throughout PCL-matrix at significantly high-degrees or quantities
of reinforcing.

Keywords: polycaprolactone; pine cone powder; graphite; dimensional stability; biodegradability;
fracture energy; SEM

1. Introduction

From the very beginning, fire outbreak and rate of spread of forest fire were dom-
inantly affected by the various forest waste and Pines roxburghii (pine cone) flower in
northern part of India is one of these main sources [1,2]. The devastating effect of forest
fires not only effects the vegetation but also devastates the entire ecosystem in that geo-
graphic region. The burgeoning awareness regarding forest fuel in spreading fire has lead
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to the development of numerous solutions [3]. One such kernels of an idea is to use dried
pine cones to develop composite materials for non-structural applications. These days,
forest waste is either parched, or even better high-end uses are found [4]. In past decade,
polymer composites with natural fibre have been characterized by many researchers to
investigate their potential use in structural and non-structural applications. Among various
natural fibres, pine cones’ contribution to forest fuel for spreading wild fires in northern
India has been reported in numerous studies [5–7]. Currently, the demand for biodegrad-
able composites is growing tremendously and they have found specific applications in
automobile and packaging industry [8,9]. Recently, polymer composite with natural fibre
has been characterized by many researchers to investigate their potential use in structural
and non-structural applications. Among various natural fibres, pine cones contribution to
forest fuel for spreading fire in northern India is reported in numerous literatures. Current
scenario demand of NFRP’s is growing tremendously and finds their specific applications
in automobile and packaging industry [10–13]. Materials for biodegradable matrices are
also an important aspect in selecting biodegradable composites. Polycaprolactone belongs
to the aliphatic polyester family and considered a competitive candidate among other
biodegradable polymers [14–18]. It has also been reported that, due to mechanical incom-
patibility between the two blended media, polycaprolactone tensile strength decreases
when blended with starch. In another study, PCL and calcium sulphate (CS) whisker
composites were fabricated with different whisker weight percentages and the authors re-
ported that lower weight fractions of reinforcement resulted throughout excellent massive
enhancement in (21%) flexibility and (22%) toughness, while the thermal characteristics
were unlikely to be affected by the existence of CS-whiskers. They also found numerous
applications as construction material [19,20]. In another study by Jha et al., they have
utilized the pine cone powder in biodegradable PCL matrix. They have found that pine
cone powder at higher loading showed poor performance due to poor interfacial bonding
resulted from agglomeration of the microparticles [21–23]. Samy Yousef et al., made an
attempt to analyse the mechanical and thermal properties of non-metallic components of
recycled woven fibreglass and epoxy resin from waste printed circuit boards. The unmod-
ified samples (without holes) had the most stress with 92 Mpa and strain more by 4.7%
and sample with hole had reduction of 41% and 1.55% in stress and strain respectively, in
thermal properties melting temperature was around 146–175 c for plane the temperature
was 165.12 c and crystalline degree decreased by 17%. Due to the presence of notches, the
strength of recovered fibreglass declined by 48% [24].

In the present research study, polycaprolactone (PCL) was utilized as a continuous
phase and pine cone particles (PCP) with 0–45% weight fraction and graphite powder
0–15% weight fraction were employed as the discontinuous phase. Extracted pine cone
was reinforced with PCL by altering weight-fraction and improved the biodegradation
characteristics. It was discovered that elongation and toughness characteristics were first
increased and then decreased on raising the pine cone weight fraction. The foremost
objectives of this investigation are to observe water absorptivity, biodegradability, and
fracture energy. Further mechanical properties were enhanced by modifying the continuous
phase through graphite addition.

2. Experimentation

Pine cones were collected from lower Himalayas of Northern India. The density of
extracted fibres was calculated by ASTM D792-91 and reported as 0.168 gm/cm3 [25]. The
extraction of pine cone fibre from collected pine flower was depicted in Figure 1. Extracted
pine fibres were first treated with an alkali solution to wash out the unwanted biological
extracts such as cellulose, hemi-cellulose, and lignin (Figure 2). Treated fibres (Figure 1c)
were then ground down to a 200-micron particle size before being incorporated in poly-
caprolactone, which was purchased from Sigma Aldrich Inc., Anekal Taluk, Bangalore,
India and specimens were fabricated with varying weight fractions of fibres and designa-
tions as illustrated in Table 1. Pine cones in their ground form were used as reinforcement.
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Required specimen sheets were prepared by compression molding (100 T) at 150 ◦C, and
the thickness was maintained at 3.2 ± 0.4 mm for characterization. Graphite was used as a
matrix modifier, which enhances the matrix and fibre interaction. Graphite powder was
procured from Loba Chemicals Pvt Ltd., Colaba, Mumbai, India with molecular weight
of 12.01 g/mol and density of 1.8 g/cm3. Graphite was added as a percentage of matrix
addition.
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Weak interfacial adhesion between pine cone and PCL was reported from previous
studies [7]. To compatiblize the present combination of fibre and resin, graphite powder
was used. Water absorption was performed with the specimens as per ASTM D570.

Following standards were used for calculations
Diffusion-coefficient:

D = π
(

m2l2/16W2
∞

)
(1)

Sorption-coefficient:
S = W∞/Wt (2)

Permeability-coefficient:
P = D × S (3)

where m is gradient of the linearity-portion of the sorption-curvature and l is the initial
thickness of the sample.

W∞ and Wt are molar-percentages of water-uptake at infinite-duration and at time t.
Water-absorption value was evaluated as per the formula:

Wt − W0

Wt
× 100% (4)

Thickness-swelling was determined as per the formula:

Tt − T0

Tt
× 100% (5)

where, T0 and Tt is the specimen thickness without absorption and at time t.
Disintegration tests of developed specimens were conducted in composting condi-

tion according to ISO 20200 standard-procedure, by using commercialized composting
(Figure 3) with sawdust, rabbit-food, starches, oils, and urea [26].
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Figure 3. Compost box as per standards.

Tested samples were cut as per the standard (15 × 15 × 0.2 mm3 Figure 4) and buried at
10 cm depth in perforated boxes and incubated at 25 ◦C, represented in Figure 5. Periodical
addition of water and proper proportion of compost guaranteed the aerobic conditions.
After disintegration experiments (0, 10, 20, 30, 40, 50, 60, 70, and 75 days), samples have
been expelled from composting and subsequently cleaned with filtered water to eradicate
remaining residues of compost and also to prevent additional microorganism attacks.
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Figure 5. Compost box with samples placed inside.

The samples were dehydrated over 24 h at 23 ◦C and 50 percent relative-humidity
prior to analysis.

The disintegrability values for every buried specimen have been determined by
employing the accompanying formula:

Disintegrability (%) =
W0 − Wt

W0
× 100% (6)

The percent volume-fraction of void-spaces in composites was estimated employing
the underlying correlation:

Vv =

(
ρth − ρac

ρth

)
× 100 (7)

3. Results and Discussion
3.1. Water Absorptivity

Water resistance tests were performed at 23 ◦C and 50% humidity. Figures 6 and 7
illustrated the variation of water-absorption (WA) and thickness-swelling (TS) respectively
with time for different wt % of PCP in PCL matrix. The percentage values of WA of
prepared composites were revealed to be raised [27] with an increase in weight percentage
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of PCP. Higher absorption percentages were observed for higher wt % of PC as compared
to neat PCL. However, water absorption values for 15 wt % loading of PC were found
to stabilize at 2% for the entire period of observation. TS tests have revealed that the
composites with 15 wt % of PCP have shown higher dimensional stability as compared
to other composites. The diffusion coefficient is a material property that describes how
solvent molecules migrate through solids, whereas the sorption coefficient is correlated to a
saturation of water absorbed by composites. Higher values of sorption coefficient mean that
a composite gets saturated in less time, whereas lower sorption coefficient values indicate
a longer period until saturation. The cumulative influence of the diffusion coefficient and
the sorption coefficient is given by that of the permeability coefficient. Fick’s law has been
utilized to elucidate the diffusing characteristics of composites [28]. Table 2 showed the
values of water absorption parameters for different composite designations. It was evident
from the results that neat PCL had maximum sorption coefficient as compared to the
samples with PCP content, which displays that pine cone enhanced the hydrophobicity of
the composite. Results of absorption tests also revealed that, among the composite fractions,
a 30% weight fraction produces better results for sorption, diffusion, and permeability
coefficients which indicates that this specimen is best suited for practical applications and
this trend was also supported by void volume results presented earlier.
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Where, 0% is the neat-matrix with no fibre; 15% is the fibre wt %; 30% is the fibre wt %;
and 45% is the fibre wt % and rest is the matrix with additives.

Table 2. Diffusion, sorption, and permeability study of composites.

Samples
Percentages of

Water-Uptake at
Infinite Time (W∞)

Sorption
Coefficient

(S)

Diffusion
Coefficient (D)

(mm2/s)

Permeability
Coefficient (P)

(mm2/s)

0% 0.43 26.88 6.44 × 10−8 1.73 × 10−6

15% 2.36 1.25 2.97× 10−5 3.72 × 10−5

30% 8.21 2.77 6.05 × 10−6 1.68 × 10−5

45% 20.99 2.12 1.04 × 10−5 2.20 × 10−5

Figure 6 also gives a relation between curve behavior and hydrophilic character of the
developed composites. P45 with maximum fibre wt % showed the most water absorption
as compared to the samples with low fibre content (P0, P15, P30) which concludes that
exposed fibre increased the hydrophilic character in the composite. The region of the curves
for all specimens above square root of time from 25 to 60 h show that the substantial rise in
the water absorption is due to hydrophilicity of the pine fibre and also due to cellulosic
content present in the fibre which causes swelling of the fibre. The hydroxyl group present
in the material structure reacts with the hydrogen bond of water molecules and results in
high water absorption [29,30]. From the time of 90 h on the X-axis, it can be seen that nearly
every specimen reached the saturation point of water uptake and therefore the curves
start to flatten, following the Fickian diffusion. Further incorporation of graphite in P45
specimens was also tested for water absorption and thickness swelling, results revealed
that graphite micro particles get settled in void, shown in SEM images, thus reducing the
water uptake of the specimens as the graphite content increased, as illustrated in Figure 7.

For graphite samples, the water absorption rate becomes constant after or around 90 h.
Whereas, for the P45G0 sample, it was around 84 h. Hybridisation of PCL–PCP composites
with graphite has somewhat declines the moisture-uptake performance of pine cone fibre
composite. It was also evaluated from the Figure 8 that at 5%, 10%, and 15% of graphite the
water uptake percentage decreases by 67%, 51.5%, and 61% respectively. This behaviour of
graphite was depicting that presence of graphite reduces the hydrophobicity of the pine
cone and fill the void-spaces existing in the vicinity of the fibres.
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Where, 0% is the neat-matrix with no fibre; 5% is the fibre wt %; 10% is the fibre wt %;
and 15% is the fibre wt %, and rest is the matrix with additives.

TS results also shows the same behaviour of graphite loading and dimensional stability
alters by a large amount for 15% loading. All the samples with graphite loading show
dimensional stability after or around 90 h of water absorption (Figure 9). Table 3 shows the
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values of water-absorption parameters for diverse composite samples loaded with graphite.
It was evident from the results that samples without graphite content have maximum
sorption coefficient as compared to the samples with graphite content, which displays that
graphite enhanced the hydrophobicity of the composites.
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Where, 0% is the neat-matrix with no fibre; 5% is the fibre wt %; 10% is the fibre wt %;
and 15% is the fibre wt %, and rest is the matrix with additives.

Table 3. Diffusion, sorption, and permeability study of graphite-loaded composites.

Samples % of Water-Uptake at
Infinite-Time (W∞)

Diffusion
Coefficient (D)

(mm2/s)

Sorption
Coefficient

(S)

Permeability
Coefficient (P)

(mm2/s)

CD-4 0.43 6.44064 × 10−8 26.875 3.71538 × 10−5

CD-5 7.04 4.34 × 10−8 32.74419 1.42 × 10−6

CD-6 10.2 3.1 × 10−7 12.24049 3.8 × 10−6

CD-7 8.17 6.09 × 10−7 8.742643 5.32 × 10−6

3.2. Biodegradability

Use of ligno-cellulosic material as a natural fibre reinforcement improves the microbial-
attack and bio-degradation by endorsing bio-fouling. Biodegradation rate generally de-
pends on the interfacial adhesion of fibre-matrix interactions and hydrophilicity of the
polymeric matrix [31,32]. The disintegration study was taken for 75 days, when PCL/PCP
biocomposites were 90% disintegrated, according to the ISO 20200 (ISO 20200:2006), for
a biodegradable material. Biocomposites comprising 15–45 wt % of PCP presented mas-
sive disintegration-rate that neat PCL as showed in Figure 9. Test specimens displayed
substantial change in their disintegration rate after 20 days of the burial with a nominal
roughing and hole formation. Initial PCL degradation was due to ester cleavage and diffu-
sion of oligomeric species causing bulk weight loss [33]. Further biodegradation process
was due to the water absorption by PCL matrix. Slow initial degradation was resulted
due to hydrophobic nature of PCL. In this sense, addition of PCP accelerated the rate of
water-absorption and facilitate the transfer of water to PCL matrix, and higher PCP content
enhances the biodegradation of PCL matrix [34]. In later stages, breakdown of cellulosic
chains contributes to the higher weight reduction suffered by the biocomposites.

Lignocellulosic natural fibre reinforcement modifies the microbe-based attack and
enhances the biodegradation by initiating bio-fouling. The rate of biodegradation greatly
depends on the interfacial adhesion of fibre–matrix interactions and hydrophilicity of the
polymeric matrix [35]. In the present work developed biodegradable polymer composite
was compatibilized with graphite at different weight fraction. Disintegration study of the
developed composites were taken for 75 days, when PCL-G-PCP bio-composites were
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90% disintegrated, according to the ISO 20200 [26], for a biodegradable material. Bio-
composites containing low graphite content showed higher disintegration rate as showed
in Figure 10. PCL-G-PCP specimens showed considerable change in their disintegration
rate after 30 days of the burial with a nominal surface roughing and holes formations.
Initial matrix degradation was due to cleavage of ester bonds and diffusion of oligomeric
species causing considerable weight loss [31]. Further biodegradation process was due
to the water absorption by PCL matrix. Slow initial degradation was resulted due to
hydrophobic nature of PCL approximately for first 10 days. In this sense, addition of PCP
accelerated the rate of water absorption and facilitate the transfer of water to PCL matrix,
and higher PCP content enhances the biodegradation of PCL matrix [36]. In later stages
(encircled in figure and in last 5–10 days), breakdown of cellulosic chains contributes to the
higher weight reduction suffered by the bio-composites.
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3.3. Fracture Energy

Fracture energy of the developed bio-composite was found to be optimized at 30%
weight fraction of pine cone particle as shown in Figure 11. Initially the fracture energy was
decreased as introducing fibres at 15% weight fraction in the matrix [37]. After increasing
the weight fraction to 30%, the energy required for crack initiation was increased by 68%.
Then it further decreases as weight fraction was increased to 45%, due to the increase in
void content. This trend of the tear results was supported by water absorption results
(permeability coefficient), in which a 30% weight fraction specimen of bio-composite shows
minimum water permeability which was due to the lower void content in the vicinity of
the particles clearly observed in SEM results shown in Figure 12. The presence of voids
hampers the stress transfer from matrix to fibre phase resulting in higher fracture energy at
30% than at 45% weight fraction [38–40].
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The experimentally measured and theoretical densities of developed composites
were depicted in Table 4. The difference calculated between experimental and theoretical
densities of the developed composites gives an idea of the voids in the fabricated composites
which adversely affect the properties significantly [36]. The difference in surface tension of
matrix and fibre is one of the reasons for void creation in mechanical stirring. Increasing
the content, increases the void content. Another reason for increased void content is
agglomeration of particles at higher weight fractions.

Table 4. Density and void content (%) of developed composites. Actual density by ASTM C693.

Samples Theoretical Density
(g/cm3)

Actual Density
(g/cm3) Void’s Volume (%)

CD-1 1.145 1.141 0.3
CD-2 0.9707 0.92 5.2
CD-3 0.9360 0.83 1.13
CD-4 0.7983 0.805 6.8

3.4. Morphology

Micrographs for various weight fractions (15%, 30%, and 45%) of PCP in PCL have
been shown in Figure 13 and for different wt % (5%, 10%, and 15%) of graphite loading have
been shown in Figure 14. Composites with 15 weight fraction reinforcement shows better
interfacial adhesion with the PCP particles as compared to 30 and 45 weight fractions [31].
A closer observation at higher magnifications of graphite loaded samples shows that
all the graphite granules were well-connected and the pores which are clearly visible
in unmodified samples were filled with graphite filler (Figure 13). Uniform blending
of graphite at higher graphite loading percentages can be easily seen by micrographs.
Micrographs had shown sites of voids for water accumulation which further hamper
adhesion and water resistance properties [41–46].
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4. Conclusions

Novel bio-composites were developed based on polycaprolactone (PCL) and plant-
based residue pine cone particles based on graphite compatibilization in polycaprolactone
(PCL-G) and PCP.

i. Compatibilising with graphite reduces the effect of the hydrophobic nature of pine
cone and improves the interfacial adhesion at a molecular level, as well as diminishing
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the voids in the agglomerated fibres, thus imparting graphite composites with lower
tendency for water absorption.

ii. Bio-composites reinforced with 15–45 wt % of PCP showed higher bio-disintegration
than neat PCL.

iii. Bio-composites containing low graphite content also showed higher disintegration
rate.

iv. Fracture energy was found to have negative slope with increasing fibres from
0–45 weight fraction in the matrix. After increasing the weight fraction to 30%, the
energy required for crack initiation was increased by 68%. Then it further diminishes
as weight fraction of fibre was increased to 45%, due to the increase in void content.

v. Microscopy of the composite fractured surfaces depicts the uniform dispersion of
PCP particle embedded in PCL matrix at higher fraction of reinforcement. Pine cone
particles (PCP) at 15 weight fractions in PCL matrix was observed.

This study presented a novel approach to utilize pine forest fuel as an alternative
for synthetic reinforcements in a polymer matrix. Tensile, flexural, water absorption and
morphology for the developed material were analysed and reported. Experimental values
depict the behavior of reinforcement over the evaluated properties, and it was found that
all specimens have achieved at-par performances for utilization as non-structural panels.
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