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Abstract

Introduction—Sleep is increasingly being viewed as an issue of public health concern, yet few
epidemiologic studies have explored associations between sleep habits and metabolomic profile.

Objectives—To assess the association between sleep and blood metabolites.

Methods—We examined the association between sleep and 891 fasting plasma metabolites in a
subgroup of 106 participants from the Dietary Approaches to Stop Hypertension (DASH)-Sodium
feeding trial (1997-1999). We produced two sleep variables to analyze, sleep midpoint (median
time between bedtime and waketime) and sleep duration, as well as bedtime and wake time.
Metabolites were measured using liquid and gas chromatography, coupled with mass spectrometry.
We assessed associations between sleep variables and log transformed metabolites using linear
mixed-effects models. We combined the resulting p-values using Fisher’s method to calculate
associations between sleep and 38 metabolic pathways.

Results—Sixteen pathways were associated (p <0.05) with midpoint. Only the y-glutamyl
amino acid metabolism pathway reached Bonferroni-corrected threshold (0.0013). Eighty-three
metabolites were associated with midpoint (FDR<0.20). Similar associations were found for wake
time. Neither bed time nor duration were strongly associated. The top metabolites (pathways
given in brackets) associated with sleep were erythrulose (advanced glycation end-product)
(positive association) and several y-glutamyl pathway metabolites, including CMPF (fatty

acid, dicarboxylate), isovalerate (valine, leucine and isoleucine and fatty acid metabolism) and
HWESASXX (polypeptide) (inverse association).
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Conclusion—Within our study, several metabolites that have previously been linked to
inflammation and oxidative stress (processes involved in diseases such as cardiovascular disease
and cancer) were found to be associated with sleep.
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1. Introduction

In recent years sleep deficiency has been increasingly acknowledged as an issue of public
health concern. In the US, increasing numbers of individuals are achieving insufficient
levels of sleep — the CDC estimates that around a third of American adults attained less
than 7 hours of sleep per night in 2016 (Yong Liu et al. 2016). Since the 1960s a number

of studies have observed a U-shaped relationship between sleep duration and all-cause
mortality and mortality from several causes including cardiovascular disease and accidents,
although the results have been somewhat heterogeneous, with some studies finding no
association (Cappuccio et al. 2010; Gallicchio and Kalesan 2009; Iftikhar et al. 2015; Rod
etal. 2011; Xiao et al. 2014). Lack of sleep has further been associated with increased
incidence of a number of health outcomes including metabolic syndrome, (Iftikhar et al.
2015) diabetes, (Shan et al. 2015), cardiovascular disease (Grandner et al. 2013) and several
site-specific cancers (Zhao et al. 2013). There is also a growing body of evidence that sleep
duration has an impact upon lipid/lipoprotein levels, (Kaneita et al. 2008; Kinuhata et al.
2014), the proinflammatory state (Grandner et al. 2013; Irwin et al. 2010) and overweight/
obesity (Beccuti and Pannain 2011; Fatima et al. 2015). Sleep timing is also associated with
increased calorie intake, consumption of free sugars, BMI, insulin resistance and diabetes
(Al Khatib et al. 2018; Baron et al. 2011; Knutson et al. 2017; Merikanto et al. 2013).

Few studies have explored the association between sleep and metabolomic profiles (Aho
et al. 2016). In small, experimental and epidemiological studies, sleep deprivation or
sleep fragmentation resulted in alterations in lipid profiles (Aho et al. 2016) and glucose
metabolism (Stamatakis and Punjabi 2010), increased insulin resistance (van den Berg et
al. 2016) and elevated blood concentrations of acylcarnitines (van den Berg et al. 2016),
formate (an intermediate of several metabolic processes, including indirect glycolysis
stimulation) (Tulpule et al. 2013) and citrate (Giskegdegard et al. 2015). In larger
epidemiological studies, increased sleep duration and sleep quality were associated with
lipid profiles reflective of cardiovascular disease (Xiao et al. 2017) (Lemke et al. 2017).
In experimental animal studies, sleep deprivation caused marked impairment in insulin
secretion (S. Zhan et al. 2016), adverse impact upon cognitive performance (Feng et al.
2016) and hormonal imbalance (Martins et al. 2011).

Our study examines the association between metabolites and sleep in a well-phenotyped set
of participants from the Dietary Approaches to Stop Hypertension (DASH)-Sodium Trial.
Importantly, their diet — a factor that is normally highly correlated with both sleep and serum
metabolite levels (Crispim et al. 2011) — was strictly controlled (Sacks et al. 2001). We aim
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to provide further insight into the potentially mediating role that metabolites play within the
relationship between sleep and health.

2. Methods

2.1 Study population

The study utilized participant data collected from the Dietary Approaches to Stop
Hypertension (DASH) - Sodium Trial, which has been described previously (Sacks et al.
2001; Svetkey et al. 1999). Briefly, the DASH-Sodium trial aimed to assess the impact of
two dietary patterns and three sodium levels upon blood pressure in individuals of European
and African American ancestry. Participants were randomized to one of the two dietary
patterns (parallel design) for 12 weeks and, within each dietary pattern arm, received each
of three sodium levels in random order (cross-over design) for 30 days (Sacks et al. 2001).
DASH-Sodium was a feeding study, therefore diet was strictly controlled. The two possible
diets were 1) the DASH diet — high in fruits and vegetables, low-fat dairy products, whole
grains, fish, nuts and poultry while being low in saturated fat or 2) the control diet, a diet
typical to that of many Americans — including red meat, sweets and sugary drinks. The three
sodium levels were 1) low (1150mg/d — representing optimal sodium levels); 2) medium
(2300mg/d — representing the upper limit of US sodium recommendations); and 3) high
(3450 mg/d - representing current consumption within the US) (Svetkey et al. 1999). Each
participant’s energy intake was adjusted to ensure that their weight remained constant during
the study (Svetkey et al. 1999; Vogt et al. 1999).To be included in the study, participants
had to be over the age of 22 years with a systolic blood pressure (SBP) of 120-159 mm/Hg
and a diastolic blood pressure (DBP) of 80-95 mm/Hg. Exclusion criteria included the
presence of comorbidities (insulin dependent diabetes, hyperlipidemia, use of medication
for hypertension, renal insufficiency) as well as several factors related to diet and alcohol
use. All participants signed an informed consent and the study was approved by the human
subject committees of each center (Sacks et al. 2001). The study was further approved by the
Office of Human Subjects Research at the National Institutes of Health.

2.2 Data collection and variables

Participant information (demographics, height, exercise, weight, blood samples and lifestyle
factors such as smoking and alcohol consumption) were gathered by trained staff during
visits to the study center at baseline and during follow-up (Sacks et al. 2001; Svetkey et

al. 1999). Blood pressure was measured using a random-zero sphygmomanometer while
participants were seated (Sacks et al. 2001). Body mass index (BMI kg/m?2) was calculated
using the height and weight measurements (weight in kg/height in m2). Activity was queried
as the number of times that a participant undertook either moderate or vigorous exercise

per week/month (Svetkey et al. 1999). Smoking was categorized as never, former or current.
At the end of each sodium intervention, fasting EDTA plasma samples were collected from
participants. The samples were stored at —80 degrees Celsius at the National Heart, Lung,
and Blood Institute repository. As metabolite measures are affected by sample handling, we
only used never-thawed samples. We preferred to measure metabolite levels in the samples
collected during the high- and low-sodium interventions, but when not possible (Derkach et
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al. 2017) we used the sample collected after the medium-sodium intervention in place of an
unavailable sample.

Participants recorded times they went to sleep and woke up while wearing 24-hour
ambulatory blood pressure monitors during the final week of each sodium intervention and
the same week as their blood draw. This provided us with bed and wake time for a single day
during the trial period. From this, we created two variables. The first was ‘midpoint’, which
we defined as the time point between when an individual went to bed and when they awoke.
The second was sleep duration, the amount of time the individual reported being asleep.

2.3 Metabolites and Metabolomic Sub-study

The methods and procedures used by Metabolon Inc. to measure the metabolites have

been described previously (Bridgewater BR 2014; Evans et al. 2009). Untargeted ultra-
HPLC coupled to tandem mass spectrometry (MS) and gas chromatography (GC)-MS
were used to assay the samples. The platform portion for Liquid chromatography (LC)-
MS utilized Waters ACQUITY ultra-performance liquid chromatographery, coupled with a
Thermo Scientific Q-Exactive high-resolution accurate mass spectrometer. This was further
integrated with a heated electrospray ionization source and an Orbitrap mass analyzer
(35,000 mass resolution). A Thermo Finnigan Trace DSQ fast-scanning single quadruple
mass spectrometer using electron impact ionization, and operated at unit mass resolving
power, was used for the GC-MS portion (Bridgewater BR 2014). Metabolite peak intensity
was normalized according to run-day by dividing each metabolite observation by the
median for that metabolite on that run-day. Peaks were identified using Metabolon Inc.’s
chemical reference library (Evans et al. 2009). Metabolon grouped the metabolites into the
chemical classes and metabolic sub-pathways based on the Kyoto Encyclopedia of Genes
and Genomes classifications.

For our sub-study, all blood samples were thawed, aliquoted and processed in a controlled
and consistent manner. Samples from the same participant were analyzed consecutively
within batches, and we included 24 blinded replicate samples for quality control. The
median (inter-quartile range) intra-class correlation coefficient for the metabolites was 0.84
(0.62-0.91) (Derkach et al. 2017).

We started with a subset of 120 participants of the trial with serum metabolites measured

at two time points (Derkach et al. 2017). These participants were equally divided between
the two dietary intervention patterns. Among these 120 participants, 73 participants had
metabolites measured after the high- and low-sodium interventions, 46 after high- and
medium-interventions, and 1 after medium- and low-sodium interventions. We excluded
participants if they had missing data related to the sleep variables (bed time, wake time,
sleep duration and sleep midpoint, n=5) or their sleep patterns indicated disturbed sleep
(they slept during the day/early evening only or for < 5 hours a night, n=9). In total, we
included 106 individuals. Seventeen participants had a single metabolite measurement, while
89 had two.

For our analysis, we focused upon only those metabolites that exceeded the limit of
detection within =50% of our study sample. In total, 891 plasma metabolites were found:

Metabolomics. Author manuscript; available in PMC 2021 October 13.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Gordon-Dseagu et al. Page 5

545 were chemically identified and 346 were unknown. We report the results of the
unknown metabolites in the supplemental information.

2.4 Statistical Analysis

We evaluated the relationship between the sleep variables (i.e. bed time, wake time, sleep
duration and sleep midpoint) and metabolite levels using the following mixed-effects model.
Let Yijk be the level of metabolite i in the kth sample (k=1,2) of subject j; Xijk be the sleep
variable and Cji be a vector of covariates that includes categorical age (<55, >55 years

old), sex, race (African American, non-Hispanic white or other), dietary pattern (DASH or
control) and sodium intervention (low, medium, high). Inclusion of BMI, smoking and other
variables in Table 1, difference (in days) between sleep measures and blood draw and season
of blood draw in the models did not substantially change the associations, therefore were not
included in our final model. We then fit the model

log(Y; k) = (Bio + 7ijo) + Bir X ji + Z BiCiki )
7

using mixed-effects linear regression with a subject-specific random intercept (i.e.

Vi j0~N(0, 0'2)). We report an estimate of the relative change, R; = exp(f;1), in metabolite level
when increasing the value of the sleep variable by 1 hour. For example, R; = 1.2 would
suggest that increasing the sleep variable by 1 hour increased the metabolite level by a factor
of 1.2 or 20%. We report both the p- and g-values from the likelihood ratio test for Bj;= 0.
Here, g; effectively estimates the proportion of associations with a p-value less than or equal
to pj that are likely to be false positives (Bass et al. n.d.; Storey 2002).

We determined the association between metabolic pathways and the sleep variables. The
metabolites were divided into defined pathways (Supplementary Table 1). For each pathway,
we combined the p-values of the included metabolites by Fisher’s method (Fisher’s Statistic

=¥ — 2In(py)).

Because the metabolites are correlated, the standard transformation of Fisher’s statistic does
not follow a chi-squared distribution. We therefore assessed the statistical significance and
assigned a pathway-level p-value by permutation. For the permutation test, we first obtained
residuals from fitting the mixed effects model without sleep exposure, and then randomly
permuted the pairs of residual vectors across participants. We reported the pathway-level
p-value as the proportion of the 10# permutations where the Fisher combined p-value was
below the observed value.

We also performed secondary/sensitivity analyses to test whether covariates (e.g. race,
gender, diet, age, BMI, smoking) modified the association between the metabolites and sleep
variables. We considered

log(Yiji) = (B + v50) + B X i+ D BiCia + B Cirr X ji @
i
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and tested whether each covariate modified the effect of intervention (i.e. g;; = 0). We report

the relative change in effect size, R} = exp( ;*1) per 1-unit increase in the covariate.

We used a false discovery rate (FDR) level of 0.20 for statistical significance (g-value <
0.2). However, we note that the Bonferroni-adjusted a.-level is 5.75 x 10~ (0.05/870) for
individual metabolites and 0.0013 (0.05/38) for metabolic pathways. All statistical analyses
were performed using R programming language (R Core Team 2017).

3. Results

The demographic characteristics of the study sample are given in Table 1 overall and
stratified by median midpoint (early: <2.40 hour and late: > 2.40 hour). Mean bedtime was
23.12 hour, mean wake time was 6.24 hour and the median sleep duration was 7.23-hrs
(SD: 1.28). Midpoint and wake time, and midpoint and bedtime, were correlated (r: 0.89
and 0.82, respectively). The remaining pairs of sleep variables were less strongly correlated:
r=0.68 for duration and wake time, r=0.48 for bedtime and waketime, r=0.32 for duration
and bedtime and r=0.28 for midpoint and sleep duration. Across the two sleep midpoint
groups, participants had a similar distribution of characteristics, although participants with
later sleep midpoint tended to have lower income.

Sleep midpoint was most strongly associated with blood metabolite levels. Sixteen
pathways were significantly associated with midpoint using a p-value of <0.05 (Table

2). In general, the results for wake time mirrored those for sleep midpoint with 15
pathways associated (p-value <0.05). The three most strongly associated pathways were
v-glutamyl amino acid, phenylalanine and tyrosine metabolism and glutamate metabolism.
Of the 11 metabolites within the y-glutamyl amino acid pathway, seven metabolites
(y-glutamylisoleucine, -y-glutamylphenylalanine, y-glutamylleucine, -y-glutamylvaline, -
glutamylalanine, y-glytamyltyrosine, y-glutamylglutamate) were positively (g-value < 0.2)
associated with sleep midpoint. For these seven metabolites (Table 3), a 1-hour increase

in sleep midpoint increased the metabolite level by factor between 1.04 and 1.19. Of the
five metabolites positively associated with sleep midpoint in the phenylalanine and tyrosine
metabolism pathway, a 1-hr increase in sleep midpoint increased the metabolite level by

a factor between 1.02 and 1.12. A 1-hr increase in sleep midpoint also increased the
metabolite level of glutamate (within the glutamate metabolism pathway) by a factor of 1.06.

Eighty-three known metabolites (out of 545) were associated with sleep midpoint at an FDR
of <0.20 (Table 3 and Supplemental Table 2), although none of them reached Bonferroni-
corrected significance (p-value <107°). In addition to those above, the most strongly
associated metabolites (p-value < 0.001, Q-value < 0.05) were erythrulose (advanced
glycation end-product), which decreased 0.94 per 1- hr increase in sleep mid-point and
CMPF (fatty acid, dicarboxylate), isovalerate (both an amino acid and short chain fatty acid
- valine, leucine and isoleucine and fatty acid metabolism) and HWESASXX (polypeptide),
which increased 1.06 to 1.15 per 1-hr increase.

Wake time showed a similar pattern of metabolic associations to sleep midpoint. Forty-one
metabolites were associated with wake time (Table 3 and supplemental table 2), with
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the metabolites within the -y-glutamyl amino acid metabolism pathway among the most
significantSeven y-glutamyl amino acid pathway metabolites were positively associated
with sleep wake time, a 1-hr increase in wake time increased the metabolite level by a

factor between 1.03 and 1.17. The corresponding metabolite levels for the phenylalanine
and tyrosine metabolism pathway were 1.02 to 1.10, while for glutamate it was 1.05.

Two metabolites (ergothioneine and palmitoycarnitine (C16)) were inversely associated with
wake time but were not associated with sleep midpoint.

Neither bedtime nor total sleep duration were strongly associated with metabolite levels.
Only the metabolite erythrulose was, inversely, associated (FDR = 0.12) with time of going
to sleep, while no metabolites were associated with sleep duration at an FDR < 0.20.

There was no significant interaction for the sleep associations by sex, race, BMI or dietary
intervention.

Among the unknown metabolites, 64 were associated with sleep midpoint (supplemental
table 3), 21 with wake time, three with bedtime and none with sleep duration (not shown) at
an FDR <0.2.

4. Discussion

We found sleep midpoint to be associated with the highest proportion of serum metabolites
compared with the other sleep measures under investigation. Among the 38 pathways, 16
were associated with sleep midpoint, as were 83 of the 545 known metabolites. Forty-one
metabolites were associated with wake time, while only one (erythrulose) was associated
with time of going to sleep and none were associated with sleep duration.

To our knowledge, only one epidemiologic study has examined metabolites and sleep habits.
Xiao et. al. examined sleep habits ascertained from self-recorded logs (~28 days) over a year
period and 329 fasting plasma metabolites in 277 Chinese adults (Xiao et al. 2017), and
similarly found sleep midpoint, but not sleep duration, to be associated with a large number
of metabolites (Xiao et al. 2017). The specific pathways and metabolites overlapped with
our own discoveries. For example, both studies found metabolites within the y-glutamyl
amino acid metabolism pathway to be positively associated with sleep midpoint. These
metabolites are formed through the mechanism of amino acid translocation across the

cell membrane with the involvement of y-glutamy| transpeptidase action upon glutathione
within the cell and amino acids outside the cell (O. W. Griffith et al. 1979). y-glutamyl
transferase (GGT), a membrane-bound enzyme involved within Meister’s y-glutamyl cycle
of moving y-glutamyl amino acids across the cell membrane and the metabolism of
glutathione, has been found to be positively associated with oxidative stress, alcohol
consumption, diabetes, the presence of heavy metals, cardiovascular disease and cancer risk
(Corti et al. 2010; Fentiman 2012; Kazemi-Shirazi et al. 2007). Elevated levels of GGT have
also been found to be associated with obstructive sleep apnea and severity of the condition,
which is further suggestive of a link between GGT and sleep disturbances (Kanbay et al.
2011; Sanchez-Armengol et al. 2015).
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Xiao et al. found the branch chain amino acid (BCAA) metabolites leucine, valine and
isoleucine to be positively associated with later sleep midpoint (Xiao et al. 2017), while our
study found significant associations with isoleucine, dipeptides that contain BCAAs, and
the valine, leucine and isoleucine pathway group. The magnitude of the associations was
similar across the two studies. Higher concentrations of BCAA have been associated with
obesity (Lynch and Adams 2014), insulin resistance and cardiovascular health (Ferguson
and Wang 2016). These metabolites play a role in the synthesis of proteins, alanine and
glutamine (Blomstrand et al. 2006). Isoleucine has also been found to prevent tumor

growth and metastasis within mouse models (Murata and Moriyama 2007) and, when orally
administered, to have anti-inflammatory properties (Saxena et al. 1984).

We found glutamate metabolism, involved in several metabolic pathways and stress
responses, to be associated with sleep. Glutamate, an amino acid, serves as a precursor
molecule for individual -y-glutamyl metabolites discussed above and is synthesized from
glutamine. It acts as a neurotransmitter in the central nervous system (Yelamanchi et al.
2016). Altered glutamate levels have been associated with obesity and type-2 diabetes,
(Davalli et al. 2012) as well as neurologic diseases (i.e. epilepsy, Parkinson’s/Alzheimer’s
and stroke), (H. R. Griffith et al. 2008) with glutamate related to increased apoptosis of cells
within the nervous system (Stepulak et al. 2014). A growing body of evidence suggests that
the metabolite, functioning as both a growth factor and signal mediator, is involved in tumor
development (Stepulak et al. 2014). Finally, a previous study is suggestive of exogenous
glutamate exacerbating inflammation of the nervous system after cerebral ischemia injury
(Xu 2004).

Metabolites in the phenylalanine and tyrosine metabolism pathway were associated with
later sleep midpoint and wake time within our study. Phenylalanine is known to play a

role in phenylketonuria, a rare familial condition defined by an inability to metabolize
phenylalanine (Romani et al. 2017), but may also be associated with obesity and insulin
resistance, both conditions associated with inflammation (Adams 2011; de Luca and Olefsky
2008).

Several lipid pathways and individual lipids were positively associated with sleep midpoint
and wake time within our study. CMPF, a metabolite of furan fatty acids, was among our
top associated metabolites and was positively associated with sleep mid-point in the previous
study (Xiao et al. 2017). Furan fatty acids are found in a wide range of food (fish, butter,
fruits, and vegetables) and derived from gut microbiota (Xu et al 2017). Increased CMPF
levels are associated with chronic renal failure (Zhang et al. 2017), as well as, with impaired
glucose tolerance, type 2 diabetes, and progression of pre-diabetes to type-2 diabetes in
both humans (Koppe and Poitout 2016) and mouse models (Ying Liu et al. 2016). CMPF
has been inversely associated with chronic fatigue among women with chronic widespread
musculoskeletal pain which was mediated through BMI (Freidin et al. 2018). Interestingly,
urinary excretion of CMPF has a circadian rhythm (Dietel et al. 1987). Previous studies
have found longer sleep duration to be associated with lipid perturbation (Petrov et al. 2013)
and sleep disruption appears to impact upon lipid levels (Wan Mahmood et al. 2013). The
results for sleep timing appear to be inconsistent with some studies finding late sleep time
to be associated with triglyceride/lower high-density lipoprotein levels (Berentzen et al.
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2014; Rey-Lépez et al. 2014; Wong et al. 2015). The relationship between lipid levels and
atherosclerotic cardiovascular conditions is well established (Chait and Eckel 2016).

Several individual metabolites that were strongly associated with habitual sleep deserve
mention. HWESASXX was positively, while erythrulose was inversely associated with wake
time and sleep mid-point. Although little is known about the role of HWESASXX or
erythrulose in disease development, the former is a peptide associated with the presence of
an inflammatory state and acts to increase blood pressure as well as several actions inherent
to insulin-like growth factor (Menni et al. 2016). Erythrulose is an advanced glycation
end-product synthesized from reducing sugars, especially glucose and a Mallard reaction
degradation product of ascorbic acid (Knight et al. 2016; Smuda et al. 2015). More research
is needed to understand these associations with sleep timing.

A strength of our analysis its use of DASH-Sodium trial data, a strictly controlled feeding
study of well-phenotyped participants, enabling evaluation of the associations between sleep
and metabolites while avoiding confounding by diet and potential changes in weight.

The metabolomic measures and agnostic approach permitted evaluation of metabolite
associations across a broad range of biochemical pathways not previously investigated.
Finally, we used fasting blood samples and included repeated measures of sleep habits and
metabolites for most participants, increasing validity of our measures and statistical power.

Our study also has limitations. We did not have information related to sleep quality, which a
number of studies have hypothesized is a factor related to metabolic health and metabolism
(Okubo et al. 2014; Y. Zhan et al. 2014). As with other self-reported exposures, self-reported
sleep may have issues with accuracy, however previous studies have found it reliable and
valid (Biddle et al. 2015; Cespedes et al. 2016). Further, the DASH-Sodium participants
recorded their sleep times while wearing 24-hour ambulatory blood pressure monitors which
may have increase the precision of reported sleep. We were also unable to gather exact
information about time of blood draw, although it was taken after an over-night fast. This
information may have given us a better understanding of the confounding role of the
circadian rhythm, and it may be that our results for midpoint and wake time are further
associated with circadian rhythm. Our study sample size was relatively small; therefore,

we may be underpowered to detect weak associations or heterogeneity across subgroups
including the interaction of the dietary intervention on the association of sleep habits and
metabolite levels. In addition, we did not have an independent population to replicate our
results. Our study is cross-sectional therefore, we were also unable to determine whether
sleep was impacting upon the metabolites associated with it or vice versa.

We did not observe associations between sleep duration and metabolites, and although there
is some evidence that sleep duration may affect metabolism and the risk of a number of
diseases (Sharma and Kavuru 2010). It appeared that sleep midpoint was most strongly
correlated with wake time, followed by bed time. Why our results for wake time closely
match those for midpoint, but those for bedtime do not is currently unclear — although
similar results were found within the early study (Xiao et al. 2017).
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Overall, we found sleep midpoint and, to a lesser extent, wake time, were associated with
several metabolic pathways and individual metabolites. Evidence indicates that several of
the metabolites are associated with inflammation and oxidative stress, processes that are
associated with health outcomes such as diabetes, cardiovascular disease and cancer (Adams
2011; Fentiman 2012; Ferguson and Wang 2016; Kazemi-Shirazi et al. 2007; Koppe and
Poitout 2016).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Baseline Characteristics of DASH-Sodium Study Participants (Total and by Early/Late Sleep Midpoint)l'z

Characteristic
Number of participants, n (%)
Sleep - Hours
Sleep Midpoint: Median (interquartile range)
Sleep Midpoint: Mean (SD)
Sleep Duration: Mean (SD)
Bedtime: Mean (SD)
Waketime: Mean (SD)
Age-group (n, %)

1810 30

31to 55

56 to 65

>65
Sex (n, %)
Male
Race/ethnicity (n, %)
Black/African-American
Non-Hispanic White or Other
Body massindex (kg/m?)
Mean (SD)
World Health Organization Classification n (%)
<=185
185-<=25
>25
Physical activity: moderate n (%)
> Four Times a Week
2-4 Times a Week
About Once a Week
2-3 Times a Month
Rarely or Never
Physical activity: vigorousn (%)
> Four Times a Week
2-4 Times a Week
About Once a Week
2-3 Times a Month

Rarely or Never

Blood Pressure (mm Hg), Mean (SD) 4
Systolic
Diastolic

Hypertension, n (%)

Metabolomics. Author manuscript; available in PMC 2021 October 13.

Overall
106

2.40 (1.30)
2.40 (1.08)
7.23 (1.28)
2312 (1.1)

6.24(1.4)

0(0)
69 (65)
28 (26)

9(8)

46 (43)

54 (51)
52 (49)

29.28 (4.13)

0(0)
12 (11)
94 (89)

21 (20)
40 (38)
16 (15)
13 (12)
16 (15)

2(2)
20 (19)
9(8)
10 (9)
65 (61)

142.51 (14.80)
94.13 (10.33)
8(8)

Early Midpoint (<2.40am)
47 (44)

2.00 (0.75)
1.52 (0.49)
6.53 (1.01)
22.30 (0.75)
5.24 (0.75)

0(0)
31 (66)
13 (28)

3(6)

18 (38)

24 (51)
23 (49)

29.52 (4.68)

0(0)
7(15)
40 (85)

6 (13)
22 (47)
8 (17)
4(9)

7 (15)

0(0)
9(19)
12)
3(6)
34(72)

142.98 (15.19)
94.68 (10.94)
4(9)

Late Midpoint (>=2.40am)
59 (56)

3.30 (0.85)
3.35(0.75)
7.30 (1.42)
2354 (0.9)

7.30 (1.1)

0(0)
38 (64)
15 (25)

6 (10)

28 (47)

30 (51)
29 (49)

29.08 (3.67)

0 (0)
5(8)
54 (92)

15 (25)
18 (31)
8 (14)
9 (15)
9 (15)

2(3)
11 (19)
8 (14)
7(12)
31 (53)

142.14 (14.61)
93.69 (9.88)
4(7)
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Characteristic Overall
Education, n (%)
High School Graduate or less 19 (18)
Some College 43 (41)
College Degree 18 (17)
Post-graduate Work/Degree 26 (25)
Household income (n, %)
< $30,000 30 (28)
$30,000-$60,000 44 (42)
>$ 60,000 30 (28)
Missing 2(2)
Smoker (n, %)
Never Smoked 59 (56)
Former Smoker 36 (34)
Current Smoker 11 (9)
Diet Intervention n (%)
Dietary pattern
Control 53 (50)
DASH-Combination Diet 53 (50)
Sodium L evel
Repeated Measures
High and Low/Medium 88 (83)
Medium and Low 1(1)
One measure
High 11 (10)
Medium 4 (4)
Low 2(2)
Alcohol: No. of Drinks per Week, n (%)
0 67 (63)
<5 28 (26)
6 + 11 (10)
No. of Metabolite M easurements, n (%)
1 17 (16)
2 89 (84)

Early Midpoint (<2.40am)

8(17)
19 (40)

7(15)
13 (28)

9(19)
19 (40)
18 (38)

1(2)

28 (60)
15 (32)
4(9)

21 (45)
26 (55)

42 (89)
0(0)

4(9)
1(2)
0(0)

29 (62)
15 (32)
3(6)

5(11)
42 (89)

Late Midpoint (>=2.40am)

11 (19)
24 (41)
11 (19)
13 (22)

21 (36)
25 (42)
12 (20)

1(2)

31 (53)
21 (36)
7(12)

32 (54)
27 (46)

46 (78)
1(2)

7(12)
3(5)
2(3)

38 (64)
13 (22)
8 (14)

12 (20)
47 (80)

Values are means (SD) or n (%). DASH, Dietary Approaches to Stop Hypertension Trial.

'ZEarIy and late midpoint defined by median midpoint sleep value for cohort.

2 .
Totals may not sum to 100 percent due to rounding.

Page 16

3Hypertension defined as an average systolic blood pressure of 140 to 159 mm Hg or an average diastolic blood pressure of 90 to 95 mm Hg during

the three screening visits.

4 . . . .
Blood pressure was the average of 3 screening measurements and 2 measurements during the run-in period.
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Table 2:
Pathways Sub Organized by Midpoint

Sleep Variable

Number of Bedtime | Waketime | Sleep Duration | Sleep Midpoint

Metabolites
Pathway Group P-value | P-value P-value P-value
Gamma-glutamyl amino acid 11 0.02 0.0008 0.14 0.0004
Phenylalanine & tyrosine metabolism 27 0.02 0.0072 0.58 0.0017
Glutamate metabolism 6 0.22 0.0023 0.03 0.0058
Dipeptide 9 0.06 0.01 0.40 0.0076
Pyrimidine metabolism group 12 0.06 0.04 0.89 0.01
Krebs cycle / TCA cycle 6 0.08 0.03 0.77 0.02
Methionine, cysteine, SAM and taurine 14 0.26 0.01 0.32 0.02
metabolism
Glycolysis, gluconeogenesis, pyruvate 7 0.37 0.01 0.26 0.02
metabolism group
Lysolipid 31 0.19 0.02 0.21 0.02
Others 56 0.10 0.03 0.87 0.02
Tocopherol metabolism 6 0.02 0.12 0.89 0.02
Tryptophan metabolism group 18 0.07 0.10 0.90 0.03
Leucine, Isoleucine and Valine Metabolism 30 0.26 0.04 0.66 0.03
Fatty acid group 15 0.10 0.04 0.20 0.04
Alanine and Aspartate Metabolism 8 0.27 0.05 0.69 0.04
Long chain fatty acid; polyunsaturated fatty acid 16 0.32 0.03 0.23 0.05
(n3 and n6)
Fatty acid, monohydroxy 13 0.33 0.05 0.66 0.06
Drug 5 0.35 0.08 0.44 0.08
Benzoate metabolism 15 0.79 0.03 0.15 0.09
Lysine metabolism 10 0.11 0.13 0.16 0.10
Monoacylglycerol 10 0.08 0.13 0.21 0.11
Pentose metabolism 9 0.46 0.20 0.65 0.16
Purine metabolism 17 0.28 0.18 0.58 0.16
Food component/plant 27 0.13 0.38 0.59 0.18
Glycine, Serine and Threonine Metabolism 10 0.62 0.05 0.05 0.19
Long chain fatty acid 15 0.42 0.19 0.41 0.19
Sterol/steroid 35 0.30 0.34 0.73 0.21
Xanthine metabolism 12 0.02 0.78 0.06 0.23
Chemical 15 0.47 0.42 0.77 0.29
Fatty acid, dicarboxylate 13 0.53 0.27 0.40 0.30
Urea cycle group 13 0.28 0.53 0.69 0.33
Carnitine metabolism group 12 0.56 0.38 0.44 0.40
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Sleep Variable

Number of Bedtime | Waketime | Sleep Duration | Sleep Midpoint

Metabolites
Pathway Group P-value | P-value P-value P-value
Fructose, mannose, galactose, starch, and sucrose 7 0.67 0.44 0.66 0.55
metabolism
Primary bile acid metabolism 6 0.69 0.34 0.15 0.66
Medium chain fatty acid group 9 0.48 0.73 0.66 0.70
Sphingolipid metabolism 10 0.63 0.87 0.98 0.70
Histidine metabolism 7 0.57 0.88 0.44 0.77
Secondary bile acid metabolism 12 0.37 0.91 0.40 0.89

The P-value was calculated using Fisher’s method to combined p-values of individual metabolite associations from linear random effect models
adjusted for age, sex, race, sodium level, dietary pattern and visit.

Pathways are based on the Kyoto Encyclopedia of Genes and Genomes.

The reported pathway-level values combine metabolite-level values obtained from adjusted random effects models.

The Bonferroni-corrected significance for the 38 pathways was 0.05/38 = 0.0013.
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