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Abstract

Discovered almost simultaneously with insulin, glucagon is a pleiotropic hormone with metabolic 

action that goes far beyond its classical role to increase blood glucose. Albeit best known for its 

ability to directly act on the liver to increase de novo glucose production and to inhibit glycogen 

breakdown, glucagon lowers body weight by decreasing food intake and by increasing metabolic 

rate. Glucagon further promotes lipolysis and lipid oxidation and has positive chronotropic 

and inotropic effects in the heart. Interestingly, recent decades have witnessed a remarkable 

renaissance of glucagon’s biology with the acknowledgment that glucagon has pharmacological 

value beyond its classical use as rescue medication to treat severe hypoglycemia. In this article, 

we summarize the multifaceted nature of glucagon with a special focus on its hepatic action and 

discuss the pharmacological potential of either agonizing or antagonizing the glucagon receptor 

for health and disease.

Introduction

Seeking to develop a rapid and inexpensive method to purify insulin from pancreatic 

homogenates, Charles Kimball and John Murlin in 1923 identified a pancreatic factor that 

opposes the hypoglycemic effect of insulin (203). Due to its ability to increase blood 

glucose, the factor was named “the glucose agonist,” or shortly glucagon. Subsequent 

studies by Earl Sutherland and Christian deDuve then identified the pancreatic α-cells as 

the origin of glucagon (101, 396). The hyperglycemic effect of glucagon resides in its 

ability to directly act on the liver where it stimulates de novo glucose production and 
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glycogen breakdown (36–38, 91, 115, 357, 382). Studies by Roger Unger then showed 

in 1970 that glucose inhibition of glucagon secretion is diminished in patients with 

type-2 diabetes, suggesting that postprandial hyperglucagonemia plays a causal role in the 

development of type-2 diabetes (271, 386). Several clinical studies subsequently assessed 

the pharmacological potential of suppressing glucagon action for the treatment of type-2 

diabetes, revealing that postprandial levels of glucagon are increased in patients with type-2 

diabetes (5, 6, 39, 93, 122, 192, 261, 271, 281, 282, 313, 371) and that blocking of 

glucagon action improves glucose handling in patients with type-2 diabetes (5, 6, 189, 193). 

For decades, these liver-mediated hyperglycemic effects of glucagon overshadowed that 

glucagon is a pleiotropic hormone with metabolic effects beyond its role to buffer against 

hypoglycemia. In line with this notion, glucagon stimulates insulin secretion (329), lowers 

body weight by decreasing food intake and by enhancing energy expenditure (23, 68, 326), 

stimulates lipolysis, while inhibiting lipid synthesis (4, 43, 71, 86, 286, 326), slows down 

gastric emptying (262, 345, 401), increases cardiac output (131, 188, 224, 241, 413), and 

stimulates autophagy and renal glomerular filtration (270). Recent years have witnessed 

a remarkable renaissance of glucagon’s multifaceted biology (as reviewed elsewhere (95, 

270)) with therapeutic implications not only as a life-saving rescue medication to treat 

severe hypoglycemia but also when combined with glucagon-like peptide-1 (GLP-1) to treat 

obesity and type-2 diabetes (5, 6, 53, 66, 159, 299, 377) and nonalcoholic steatohepatitis 

(NASH) (27). In this article, we summarize glucagon’s role in regulating systemic energy 

balance with a special focus on its hepatic action and highlight its multifaceted nature that 

led to its use to develop drugs to treat obesity and type-2 diabetes.

Transcriptional and Translational Control of Glucagon

In rodents, glucagon is the first hormone found in the developing endocrine pancreas (135, 

179, 294), with detectable levels as early as embryonic (E) day E9.5. In contrast, in the 

human pancreas, detection of insulin-expressing cells by week 8 of gestational age precedes 

the detection of glucagon-positive cells by approximately one week (175). Glucagon is 

derived from the cleavage of proglucagon, a 160-amino acid (AA) precursor protein 

originating from the preproglucagon (Gcg) gene. Proglucagon gives in a tissue-selective 

manner rise to several other peptides, including glicentin, glicentin-related pancreatic 

polypeptide (GRPP), oxyntomodulin (OXM), GLP-1 and −2 (GLP-2), and the major 

proglucagon fragment (MGPF) (18, 82, 265). Proglucagon processing into these smaller 

peptide fragments is cell-type specific. While glucagon, MPGF, and GRPP are mainly 

produced in the pancreatic α-cells, GLP-1, GLP-2, OXM, and glicentin are the main 

proglucagon cleavage products of the enteroendocrine L-cells, which are predominantly 

located in the large intestine. Tissue specificity in preproglucagon expression is achieved 

by binding of specific transcription factors (TFs) to distinct DNA control elements in the 

preproglucagon promoter region to initiate or inhibit preproglucagon expression (135, 179) 

(Figure 1). The rat preproglucagon promoter includes at least six DNA control elements 

positioned within a 0.3 kb region upstream of the ATG start codon of Gcg (179, 294). The 

control elements can be separated into a critical promoter, encompassing the TATA box and 

the G1 and G4 elements. These are pivotal for α-cell-specific expression of preproglucagon 

(127, 162, 179, 296) (Figure 1).
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The preproglucagon DNA control elements are targeted by several homeodomain proteins, 

which either activate or repress preproglucagon expression (179, 180, 206). In α-cells, 

Pax6 heterodimerizes with cMaf or MafB and induces preproglucagon expression through 

binding to the G1 element (117, 134). In β-cells, Pdx1, Pax4, and Nkx6.1 bind to G1 

and competitively inhibit preproglucagon expression through blocking the binding of the 

preproglucagon activating Pax6/Maf heterodimer to the G1 element (116, 135, 316) (Figure 

1). Adenoviral overexpression of Pdx1 alone, however, is not sufficient to suppress Gcg 
expression in α-cells (100). Pax6 stimulates preproglucagon expression through binding of 

Pax6 to the G3 element of the preproglucagon promoter (135). Mice devoid of Pax6 have 

markedly reduced levels of preproglucagon mRNA (356). In addition, Foxa1 (HNF-3α) and 

Foxa2 (HNF-3β) stimulate Gcg expression through binding to the G1 and G2 elements of 

the preproglucagon promoter (135). Mice lacking either Foxa1 or Foxa2 have a 70–90% 

reduction in preproglucagon mRNA levels and are hypoglycemic (85, 185).

In addition to the cell-type-specific expression of preproglucagon through direct interactions 

of selective TFs in the preproglucagon promotor region, preproglucagon expression is also 

controlled by increased levels of cAMP via the cAMP-response element (CRE) and the 

respective CRE-binding protein (CREB) (229), as well as the exchange protein activated 

by cAMP signaling pathways (Epac) (84, 127, 179, 206). Insulin inhibits preproglucagon 

expression in α-cells (293–295), while stimulating preproglucagon mRNA levels in the 

intestine (427). Finally, specific effectors of the Wnt signaling pathway have been shown to 

promote preproglucagon expression in the intestine but not the pancreas (275, 426, 427).

The majority of glucagon is produced in the pancreatic α-cells, with small amounts also 

being synthesized in a subset of neurons in the brain stem (83, 148, 178) and seemingly 

also in the gut (242). The latter has been subject of debate for several decades since the 

measurement of glucagon is challenging due to its low abundance in the circulation and 

cross-reactivity of glucagon detecting antibodies with oxm and glicentin, which both contain 

the full AA sequence of glucagon. However, more recently developed enzyme-linked 

immunosorbent assays (ELISAs) show reduced cross-reactivity to oxm (<5%) and glicentin 

(<2%) (407). Their use in combination with mass-spectrometry-based proteomics revealed 

that a 29 AA molecule indistinguishable from glucagon is detectable in the circulation of 

pancreatectomized patients and circulating levels of this molecule increase in response to 

oral but not intravenous administration of glucose (242). These data collectively suggest 

that extrahepatic glucagon secretion can, at least under conditions of α-cell dysfunction, 

contribute to postprandial hyperglucagonemia. Future studies need to clarify if and to 

which extent extrapancreatic glucagon is also produced in humans without disturbed α-cell 

function.

Specific prohormone convertase (PC) enzymes are responsible for tissue-specific 

proglucagon cleavage. In α-cells, the prohormone convertase 2 (PC2; also called PCSK2) 

cleaves the proglucagon protein to produce glucagon, GRPP, and MPGF. In contrast, 

prohormone convertase 1 (PC1; also called PCSK1)-mediated cleavage of proglucagon 

yields GLP-1, GLP-2, OXM, and glicentin in the brain and the intestine (12, 225, 379, 

395). Consistent with the crucial role of PC2 in proglucagon cleavage, PC2 knockout 

(KO) mice have lower circulating glucagon levels, are hypoglycemic and display signs 
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of α-cell hyperplasia. The latter can however be corrected by continuous intraperitoneal 

supplementation of glucagon (108, 402). The chaperone protein 7B2 is responsible for 

the maturation of PC2 as well as its enzymatic activity and thus helps to facilitate the 

αcell-specific processing of proglucagon to glucagon (319). While cell-specific expression 

of PC2 ensures that glucagon is the main proglucagon cleavage product in the α-cells, STZ

induced β-cell destruction increases PC1 expression in rat α-cells, resulting in concomitant 

production of Glp-1 in the islets, and plausibly in the α-cells itself (276). In line with 

these data, overexpression of PC1/3 in α-cells increases islet Glp-1 secretion and leads 

to improved glucose-stimulated insulin secretion (414). Collectively, these data suggest a 

potential role of the α-cells to produce Glp-1 under conditions of impaired β-cell function. 

The PC enzymes might thus play an important, yet underappreciated role in regulating this 

plasticity in islet function.

Regulation of Glucagon Secretion

Glucagon secretion is similar to insulin secretion intimately tied to circulating levels of 

blood glucose (318). In the β-cell, high levels of blood glucose increase the ATP over ADP 

ratio with the result that ATP-sensitive potassium (KATP) channels close and depolarize 

the cell membrane. This leads to opening of voltage-dependent Ca2+ channels (VDCC), 

influx of Ca2+, and exocytosis of the insulin granules (136). In the α-cells, low glucose 

levels lead via moderate activation of the KATP channels to a membrane potential of about 

~60 mV, which entails opening of T-type Ca2+ channels, followed by depolarization of 

the cell membrane and opening of voltage-dependent Ca2+ and Na+ channels. The influx 

of Ca2+ and Na+ then triggers release of glucagon into the circulation (305). An increase 

in extracellular glucose increases the cytosolic ATP over ADP ratio with the result that 

KATP channels close and depolarize the cell membrane to level where the voltage-dependent 

Ca2+ and Na+ channels are inactive. The resulting lack of Ca2+ and Na+ influx then shuts 

down glucagon secretion (305). In support of this model, sulfonylurea-induced blockage of 

KATP channels mimics high glucose-mediated inhibition of glucagon secretion in isolated 

α-cells (137) and islets independent of changes in insulin secretion (245). In addition to 

glucose-dependent mechanisms, AAs and free fatty acids (FFAs) also regulate glucagon 

secretion. Individual intravenous administration of 20 natural AAs in dogs identified that 

17 out of 20 natural AAs increase glucagon secretion (317). The branched-chain AA’s 

were the only ones that failed to stimulate glucagon secretion, while arginine produced the 

greatest stimulation (317). Consistently, high protein meals (113, 236, 248) also stimulate 

glucagon secretion in humans. However, hyperglycemia attenuates (309, 386) or abolishes 

(309) the increase in plasma glucagon following intravenous arginine or a high protein meal, 

suggesting AA-mediated regulation of glucagon secretion is dependent on glycemic status.

Early studies in dogs (246, 338) and humans (123) revealed that FFA inhibit glucagon 

secretion; however, more recent in vitro studies in isolated rodent islets suggest that 

palmitate increases glucagon secretion in euglycemic but not hyperglycemic conditions (28, 

167). These seemingly contradictory findings may depend on the type of FFA administered, 

or whether exogenous or endogenous FFAs were studied. Hong et al. (167) observed that 

FA chain length, spatial configuration, and degree of saturation influence glucagon secretion 

independent of glucose concentration. These data suggest that FFA may affect glucagon 
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secretion differently depending on the source (exogenous vs. endogenous) and the FFA 

characteristics. Another recent study suggests that glucagon secretion is also triggered by 

enhanced fatty acid oxidation since loss of CPT1a lowers glucagon secretion by decreasing 

the pool of ATP supply for the Na+/K+ ATPase (32).

Also, paracrine factors affect glucagon secretion. Insulin receptors are present on α-cells 

(74) and insulin inhibits glucagon secretion under hypoglycemic conditions (58) through 

modulating KATP channel activity (102) in a phosphoinositide 3 kinase-dependent manner 

(186). Additionally, insulin may indirectly suppress glucagon secretion through increasing 

translocation of α-cell GABA-A receptors (420). Inhibition of GABA receptors increases 

glucagon secretion (404) and GABA released from β-cells (103, 367) is postulated to 

mediate glucose-facilitated inhibition of glucagon secretion (404). Further, zinc (Zn2+) is co

secreted with insulin (102, 231) and inhibits glucagon secretion (102). Also, somatostatin, 

which is secreted from δ-cells, inhibits both insulin and glucagon secretion (107, 204, 

322, 353), suggesting that glucagon is tightly controlled by pancreatic factors. However, 

glucose is still sufficient to suppress glucagon secretion independently of insulin (143, 

310, 397), Zn2+96, GABA (245), or somatostatin (393), indicating a dominant regulatory 

function of glucose on glucagon action, most likely via its ability to modulate KATP channel 

activity. Nonetheless, GABA- or somatostatin-receptor antagonism at low glucose levels 

increased basal glucagon secretion, suggesting a paracrine role for GABA in the regulation 

of glucagon release independent of glucose levels (245). These observations collectively 

highlight the complex interaction of glycemia and paracrine signaling in regulating glucagon 

secretion. It is likely that all factors play a complementary role in inhibiting glucagon 

secretion, thereby ensuring compensation across multiple physiological conditions.

Also, gut hormones regulate glucagon secretion. GLP-1 (60, 153, 184) and glucose

dependent insulinotropic polypeptide (GIP) (49, 96) both indirectly inhibit glucagon 

secretion, presumably via their ability to stimulate the secretion of insulin and Zn2+. 

Importantly, while GIP stimulates insulin secretion under hyperglycemic conditions, it 

stimulates glucagon secretion in hypoglycemic or euglycemic states (51, 254, 288), 

suggesting a bi-functional role to maintain euglycemia. In line with these data, GIP 

inhibition of glucagon secretion seems to be mediated indirectly rather than directly, 

since GIP treatment of αTC1 cells does not decrease (but rather increases) glucagon 

secretion (49). In the isolated perfused rat pancreas, GIP affects glucagon (and insulin) 

secretion in a glucose-dependent manner with stimulation of insulin secretion under glucose 

concentrations >5.5 mM and stimulating of glucagon secretion at glucose concentrations 

<5.5 mM (288). These data align with studies in humans in which GIP increases 

postprandial glucagon levels (49, 243) and ameliorates insulin-induced hypoglycemia (52).

The pancreas is highly innervated by both the sympathetic (splanchnic) and parasympathetic 

(vagus) nervous system (283). Vagal stimulation increases insulin secretion (106), whereas 

splanchnic stimulation decreases insulin and increases glucagon secretion (26, 214, 283, 

364). While central regulation of glucose homeostasis has been appreciated since the 

mid-1800s (298, 380), it was not until 1971 that the ventromedial hypothalamus (VMH) 

was implicated in regulating glucagon secretion (105) and that neuronal activation of 

glucagon correlates with rises in blood glucose levels (249). Further, glucagon secretion 
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has been implicated in the cephalic phase (335, 369) of feeding. Intriguingly, this regulation 

is observed in healthy controls but not individuals with a kidney and pancreas transplant 

(335), suggesting functional pancreatic innervation is necessary to mediate cephalic-induced 

glucagon secretion. The relative contributions of direct and/or indirect neuronal efferents to 

glucagon secretion, however, remain unclear. Centrally regulated glucagon secretion could 

be mediated via direct sympathetic innervation on the α-cell, indirectly via the sympathetic 

tone and signaling through the hypothalamic-adrenal-pancreas signaling axis, and/or 

potential indirect parasympathetic signaling (283, 363). Altogether, glucagon secretion is a 

complex process regulated by multiple interactions between glycemic, paracrine, endocrine, 

and neural factors.

α-Cell Regulation of β-Cell Function

While PCSK2 is under nonpathological conditions the predominant PC in the α-cells, 

PCSK1/3 expression/activity increases in α-cells under pregnancy and under conditions of 

metabolic stress such as insulin resistance and diabetes (198, 276, 372, 415). Increased 

PCSK1/3 expression with concomitant GLP-1 production has also been demonstrated in 

α-cell lines and in isolated islets that have been cultured at conditions of high glucose (251, 

412). The production of GLP-1 in the α-cells has been linked to the action of interleukin 6 

(IL-6). The IL-6 receptor is highly expressed in murine α-cells (88) and administration of 

IL-6 increases expression of preproglucagon and of PCSK1/3 and accelerates the production 

of GLP-1 in the intestinal L-cells and the α-cells (89). Consistent with these data, adenoviral 

overexpression of PCSK1/3 in the α-cells enhances GLP-1 production and improves 

glucose-stimulation of insulin secretion and islet survival in mice (414). Collectively, there 

is growing evidence indicating that α-cells produce GLP-1 under conditions of higher β-cell 

demand to improve islet function in a paracrine fashion (47, 234, 264, 374, 391). Notably, 

intraislet paracrine signaling also plays a role in β-cell function under nonpathological 

conditions. In line with this notion, glucagon stimulation of insulin secretion was already 

described by Ellis Samols and Vincent Marks in 1965 (329) and was later confirmed 

in numerous other studies (263, 269, 270). β-Cells with contact to α-cells also secrete 

more insulin when challenged with glucose relative to β-cells without α-cell contact (416). 

Glucagon amplifies glucose-stimulated insulin secretion through direct action (169) and 

the receptors for glucagon and insulin are expressed on both α- and β-cells (190, 196). 

Glucagon was also recently shown to cross-react with GLP-1R in the β-cells and interaction 

of glucagon with GLP-1R has been demonstrated to enhance insulin secretion (360). Other 

factors potentially playing a paracrine role in α-cell regulation of β-cell function include 

glutamate and acetylcholine (263).

Glucagon Receptor Signaling

Once glucagon is secreted into the circulation, it elicits its function intracellularly by 

binding to its cell surface receptor, a seven-transmembrane protein belonging to the large 

superfamily of G protein-coupled receptors (GPCRs) (69). The glucagon receptor (Gcgr) 

belongs to the class B family of GPCRs, which are peptide hormone receptors of the 

secretin family that are widely used drug targets for many human diseases, including 

diabetes, cancer, neurodegeneration, cardiovascular diseases, and others (285). Gcgr is 
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mainly expressed in the liver. Only traces of Gcgr are found outside the liver such as in 

the kidney, adipose tissue, pancreas, spleen, lymphoblasts, brain, the gastrointestinal tract, 

and the adrenal gland (361). In the liver, Gcgr expression is zonated and occurs only at the 

periportal area, where also the metabolic effects of glucagon occur (213).

In liver cells, the Gcgr as a dimer induces the activation of two signaling cascades mediated 

by two classes of G proteins, a cAMP stimulatory G protein (Gs) and a Gq protein 

that signals via Ca2+ through the inositol 1,4,5-trisphosphate (IP3) pathway (174, 260). 

Production of IP3 is mediated by Gq-dependent activation of phospholipase C (PLC) and 

concomitant Ca2+ release from the endoplasmic reticulum (ER) to the cytosol and into 

the mitochondria. Increase of cellular calcium activates downstream signaling cascades and 

contributes to enhanced mitochondrial respiration observed under elevated glucagon levels 

(15, 34, 94). Interestingly, recent data highlight the role of the mitochondrial IP3R1 receptor 

in Ca2+ dependent activation of mitochondrial β-oxidation (422). The interaction between 

the mitochondria and the ER has received a lot of attention due to membrane contact site 

formation and their function in calcium flux and signaling (315). However, the effects 

of glucagon on this cellular interaction have not been elucidated and might represent an 

underappreciated site of glucagon action.

Glucagon signaling via Gs represents the canonical Gcgr signaling pathway. Here, glucagon

induced Gs activation leads to the dissociation of the Gsα subunit from the G protein 

α/β/γ heterotrimer and its subsequent interaction with adenylate cyclase. Activated 

adenylate cyclase enhances its production of cAMP and consequently activates protein 

kinase A (PKA), enhances signaling via Rap guanine nucleotide exchange factor 3 

(RAPGEF3, also known as Epac1) and the cAMP response element-binding protein (Creb)

regulated transcription coactivator 2 (Crtc2, also called Torc2) (144, 173). Stimulated PKA 

translocates to the nucleus, where it initiates the nuclear localization and phosphorylation 

of Creb at the serine-133 residue (Ser133) (174, 208). Once phosphorylated, Creb binds to 

the CRE elements located in the promoter region of downstream target genes and induces 

their transcription. This signaling cascade causes the expression of gluconeogenic and 

glycogenolytic genes, such as glucose-6-phosphatase (G6Pase), phosphoenolpyruvate kinase 

(Pepck), Pc, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha 

(Pgc-1α) (3, 163, 208, 306, 418). The activation of the transcriptional co-activator Crtc2 

is regulated by fasting-feeding cycles and changes in ATP levels. Underfeeding conditions, 

when ATP is high, salt-inducible kinase 2 (Sik2) and AMP-activated protein kinase (AMPK) 

phosphorylate Crtc2 on Ser171 and Ser307, respectively, causing its localization in the 

cytosol (3, 208, 381). Upon fasting, Sik2 is inhibited causing Crtc2 dephosphorylation 

by calcineurin in response to elevated cAMP and calcium levels, leading to its nuclear 

translocation (3, 30). In the nucleus, Crtc2 binds along with Creb to the CRE element in 

the promoter region of target genes and thereby, for example, enhances the expression of 

gluconeogenic and glycogenolytic gene programs in the liver (3, 208, 323).

Glucagon Receptor Trafficking

GPCR signaling is regulated by endosomal membrane trafficking, where rapid 

internalization of the ligand-receptor complex contributes to signal termination and receptor 
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desensitization (150). GPCRs are mainly internalized via clathrin-mediated endocytosis 

involving the β-arrestin family (14, 266). Here, arrestins are recruited to the activated GPCR, 

upon phosphorylation via the G protein-coupled receptor kinase (GRK) family, which results 

in uncoupling the GPCR from its corresponding G protein (244). Arrestins then connect 

the GPCR to the clathrin coat due to its dual binding function and facilitate internalization 

(244, 297). Importantly, GPCRs differ substantially in their way in which they engage with 

the GRK/arrestin/clathrin machinery. This helps to provide GPCR diversity in signaling, 

as only limited amounts of G protein pathways exist. In fact, class B receptors have been 

shown to recruit both β-arrestin-1 and 2 equally well and co-internalize with them, whereas 

class A receptors (e.g. β2-adrenergic receptors, β2AR) preferentially recruit arrestin-2 and 

co-localize only transiently on the plasma membrane with clathrin and arrestin (150). An 

alternative way of internalization involves caveolin-mediated endocytosis, where mainly 

GPCRs with primary signaling pathways via Gq are internalized (50, 279). In fact, GPCRs, 

G proteins, as well as arrestins, have been shown to sequester in caveolae, mediated through 

direct interaction of Caveolin 1 (Cav1) with Gq leading to internalization and initiation of 

Ca2+ signaling (50, 279, 337). These data suggest that Gq signaling is mainly mediated via 

caveolin-mediated endocytosis.

The Gcgr, a prototypical class B receptor, has been shown selectively interact with 

β-arrestin-2, and not β-arrestin-1, as only the knock-down of β-arrestin-2 lead to an 

impaired glucose tolerance as consequence to enhanced GPCR cell surface signaling (433). 

However, other in vitro overexpression studies reported the importance of both β-arrestins 

for Gcgr trafficking, emphasizing the differences between endogenous and exogenously 

overexpressed receptors (211) and the requirement for research in appropriate cell types. 

Gcgr has been shown to be internalized into endosomal fractions within 30 min after 

glucagon stimulation in vitro (Figure 1) (33, 212) and in vivo (255), causing a relatively 

mild decrease in membrane-localized Gcgr (8, 255, 387). Short-term activation leads to 

its phosphorylation through GRKs, both at the cell surface and after internalization into 

endosomes (255), highlighting the importance of phosphorylation for internalization and 

a potential endosomal contribution to signaling. In fact, endo-lysosomal transfer of Gαs 

subunit but not β-arrestins have been observed upon glucagon stimulation, together with 

increased adenylate cyclase activity, suggesting sustained Gcgr signaling at the level of 

endosomes (8, 255, 390). This can be achieved through the different binding properties of 

β-arrestins in class B versus class A GPCRs. While β-arrestins bind to the common binding 

pocket in the transmembrane core of the receptor in class A GPCRs, they bind class B 

GPCRs in the C-terminal tail, leaving the binding site for G proteins free for interactions in 

endosomes. In fact, a second wave of G protein-induced and β-arrestin-mediated signalling 

from endosomal membranes has been reported (87, 210, 378). Why β-arrestins have not 

been shown to traffic to endosomes upon glucagon treatment is puzzling in this regard, 

however, limitation of antibody sensitivity and resolution of the subcellular fractionation 

could have influenced this study (255).

The fate of the GPCRs is decided at the level of the endosomes, which determine their re

usage or disposal. Internalized GPCRs can be either recycled back to the plasma membrane 

via the recycling endosomes for re-sensitization and continued signaling or can be degraded 

through the lysosomal system for a transient response (Figure 2) (150). These fates are 
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determined by multiple mechanisms in the endosomal system. Targeting GPCRs to recycling 

usually requires sequence-directed mechanisms involving the cis-sorting sequence in their 

C-terminal tails (151, 375). These are recognized by multiple sorting complexes in the 

endosomal network, including the retromer and WASH (Wiskott-Aldrich syndrome protein 

and SCAR homolog) complexes (62, 252), highlighting the complexity of the recycling 

system. Interestingly, the recycling kinetics can be altered depending on the extracellular 

environment, suggesting sensitivity in the sorting machinery to external nutritional cues 

(151, 405).

The fate of the Gcgr is dependent upon the duration of glucagon stimulation. Acute 

glucagon injections have no effect on Gcgr protein levels, leading to Gcgr internalization 

and reoccurrence after 2 h (8), suggesting activated recycling (Figure 2, right side). As 

for other GPCRs, this is dependent on the C-terminus of Gcgr, as its truncation causes 

reduced internalization, phosphorylation of the receptor, and a complete block on recycling 

(33, 212), resulting in presumably enhanced Gcgr localization to endosomes. Although the 

concept of sustained endosomal signaling of Gcgr has been proposed (8, 255, 390), the 

resulting consequences on signaling under these conditions have not been investigated. This 

would be of interest also in comparison to the fact that GPCRs can couple to G proteins even 

without inducing G protein signaling (150), which has also been shown for the Gcgr, as its 

antagonist (des-His1-[Glu9]glucagon) also induces detectable internalization of Gcgr (255).

GPCR internalization can be regulated by additional posttranslational modifications, such 

as palmitoylation and ubiquitination (150). Ubiquitination is a strong signal for receptor 

downregulation through the endo-lysosomal system (160). Lysosomal targeting is especially 

important for chronically activated receptors to downregulate their activity. In addition, 

it is also thought to play a role in drug tachyphylaxis or tolerance (411), which is 

particularly relevant for class B receptors that are used as drug targets. Indeed, the use 

of the pharmacological inhibitor, the receptor activity modifying protein (RAMP2), has been 

shown to co-localize with Gcgr and induces a reduction in cell surface-bound Gcgr (46). 

Whether enhanced degradation is achieved under these conditions need to be elucidated.

Receptor downregulation involves the trafficking through Rab7 positive late endosomes, 

multivesicular body formation, and concomitantly fusion with lysosomes (62, 128, 

399). Membrane receptors designed for degradation are ubiquitinated at lysine residues 

that are recognized by the endosomal sorting complex required for transport (ESCRT) 

machinery, which binds ubiquitinated cargo and sequester those into intraluminal vesicles 

in multivesicular bodies/late endosomes, leading to receptor downregulation (160, 362). 

Activation of this process has been shown to be beneficial for degrading toll-like receptor 

4 (TLR4) thus reducing its signaling in nonalcoholic fatty liver disease (NAFLD) to NASH 

progression (432). Although investigated for other GPCRs, such as chemokine receptor 

CXCR4 and β2AR (194, 392), this cellular mechanism has not been shown for Gcgr. In fact, 

some GPCRs are not ubiquitinated (80), however, arrestins are known to recruit E3 ligases to 

GPCRs (130, 342, 343), thereby inducing ubiquitination and potentially thereby marking the 

bound GPCR for downregulation. As for the Gcgr, prolonged and chronicle treatment with 

glucagon results in a net decrease of glucagon binding efficiency and colocalization with 

lysosomes (Figure 2, left side) (7, 212), suggesting receptor downregulation under these 
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conditions. Whether chronic glucagon treatment enhances arrestin-2 ubiquitination and thus 

Gcgr trafficking to lysosomes has not been investigated but would be an interesting concept 

that could be exploited to downregulate Gcgr in conditions of type-2 diabetes, where the 

overactivation of glucagon signaling is contributing to enhanced glucose output.

In fact, many of the studies on GPCRs have been performed on other members of the 

family, hampering our knowledge of Gcgr trafficking and its connection to signaling. Most 

of the studies on Gcgr were performed 20–30 years ago, where the detection techniques 

were less developed and subcellular fractionation or overexpression studies in cell lines, 

which do not endogenously express the Gcgr, were used. Given the fact that a complex 

trafficking machinery is involved in GPCR sorting, tissues with endogenous levels of Gcgr 

might engage other regulatory trafficking proteins than cell lines with an overexpression 

of nonendogenous Gcgr. In addition, studies with iodinated glucagon might have given 

misleading results, as iodoglucagons have been reported to alter adenylate cyclase activity in 
vitro and exhibit hyperglycemia in vivo (73, 235). Thus, further studies are needed to shed 

light into the regulation of Gcgr trafficking and signaling under physiological conditions and 

to connect this to its function as a fasting-induced receptor.

Glucagon Effects on Food Intake

Albeit its classical function to increase blood glucose under conditions of hypoglycemia, 

glucagon also lowers food intake and body weight in rodents (23, 68, 326) and humans 

(118, 289, 327, 333, 359) (Figure 3). Glucagon’s anorexigenic effect is driven by the 

liver-vagus-hypothalamus axis and is achieved via a decrease in meal size without affecting 

meal frequency (119, 227), taste aversion, or postprandial behavior (120). Consistent with 

its role as a meal terminating factor, circulating levels of glucagon rise during food 

intake (70, 221, 385) and preprandial inhibition of glucagon signaling (222, 227), or 

antibody-based blocking of glucagon action (222), increase meal size, while stimulation 

of glucagon signaling during a meal terminates food intake (118). Glucagon’s role in satiety 

is substantiated by increases in glucagon secretion following ingestion of high carbohydrate, 

high protein, and high-fat meals (70, 221), while antagonism of endogenous glucagon via 

hepatic-infused glucagon antibodies increases spontaneous meal size (119). Early studies 

observed that glucagon reduces meal size in humans (333), rodents (119), and sheep (215) 

independent of meal frequency (119, 227). Moreover, glucagon infused directly into the 

hepatic portal vein of rats reduces food intake and this effect is lost in hepatic-vagotomized 

rats (119), suggesting liver glucagon signaling mediates satiety via vagal afferents to the 

brain.

While the liver-hypothalamus axis regulates this process, direct neuronal glucagon signaling 

may also play a role. Acute intracerebroventricular (ICV) administration of glucagon 

decreases food intake acutely (1–4 h) in male mice in a dose-dependent manner and this 

effect was lost >6 h postadministration (307). Inhibition of PKA, the main downstream 

mediator of glucagon signaling, blunted glucagon’s hypophagic effects, by decreasing 

Ca2+-calmodulin-dependent protein kinase β (CaMKKβ) levels and AMPK activity (307). 

Further, ICV glucagon decreased expression of Agouti-related protein (AgRP) without 
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changes in POMC, NPY, and CART; suggesting glucagon may decrease food intake via 

modulation of AgRP levels (307).

Genetically modified mice deficient for whole body Gcgr (Gcgr−/−) also support glucagon’s 

regulation of food intake. Gcgr−/− mice are resistant to diet-induced obesity (DIO), most 

likely due to a decrease in food intake compared to control animals (56). Interestingly, 

mice deficient for hepatic Gcgr (Gcgrliver) are not resistant to DIO. Chronic Gcgr agonism 

via the long-acting Gcgr agonist, IUB288, in DIO mice reduces food intake (201, 274) 

in addition to increasing energy expenditure (201). However, the same glucagon-receptor 

agonism stimulates a similar suppression of food intake in Gcgrliver mice as compared 

to littermate controls (201), further supporting hepatocyte-independent regulation and 

potentially implicating central Gcgr signaling in regulating HFD-food intake. Interestingly, 

chronic Gcgr agonism in lean male mice stimulates hyperphagia and a defense of their body 

weight (145), most likely to offset the increase in energy expenditure. Together these data 

suggest differential effects of glucagon on food intake depending on energy balance status.

While there is convincing data to support that central and liver-specific glucagon signaling 

both act to regulate food intake, the respective contributions of each pathway remain unclear. 

It is likely that both pathways work in concert with each other or selective pathways may 

dominate in a specific nutrient milieu. Regardless, further studies are needed to tease apart 

the contributions of central glucagon versus liver-mediated reductions in food intake.

CNS Regulation of Glucagon Action

While liver-regulated glucose homeostasis is well established (344), the hypothalamus 

likewise comprises a glucose-sensing network that is sensitive to hormonal signaling and 

known to modify peripheral glucose homeostasis (320, 347). Shimazu et al. (346) were 

the first to uncover that electrical stimulation, specifically in the VMH, resulted in an 

increase in blood glucose levels, accompanied by a decrease in liver glycogen. It is now 

appreciated that within the VMH there are both glucose excitatory (GE) neurons, which 

control peripheral glucose utilization, and glucose inhibitory (GI) neurons, which control 

hepatic glucose production (347). Insulin and glucagon are well characterized in targeting 

peripheral tissues to mediate glucose homeostasis. However, there is a growing body of 

evidence that insulin is an important neuroregulatory peptide, involved in energy balance 

and glucose homeostasis (76). Despite greater appreciation for glucagon in energy balance 

beyond glucose metabolism, little attention has been given to its central actions.

Historically considered a diabetogenic hormone, glucagon signaling increases blood glucose 

levels via PKA-dependent signaling in the liver. However, this glycemic effect is transient, 

despite continuous intravenous glucagon infusion and lack of insulin (29, 92). This suggests 

an insulin-independent compensatory mechanism may be triggered to restore glucose 

homeostasis. A possible explanation for this effect may involve a negative feedback 

loop involving glucagon. Glucagon crosses the blood-brain barrier (13) and glucagon 

immunoreactivity has been identified in the hypothalamus (332), suggesting a potential 

physiological role for central glucagon signaling. Consistently, administration of glucagon to 

the mediobasal hypothalamus (MBH) decreases hepatic glucose production in clamped rats 
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and improves glucose tolerance in nonclamped rats mediated via PKA-dependent signaling 

and hepatic vagal efferents (256). Similarly, central glucagon infusion also decreases hepatic 

glucose production in control, but not Gcgr−/− mice (256). While these data support 

that central glucagon signaling is sufficient to regulate hepatic glucose production, the 

physiological role of endogenous central glucagon signaling remains unclear.

Intriguingly, a high protein meal (65.4% protein) improves glucose tolerance, despite 

increasing glucagon signaling in the dorsal vagal complex (DVC) of the brainstem (223). 

DVC administration of either a Gcgr antagonist or a glucagon mAb blunts high protein 

diet-induced improvements in glucose tolerance, highlighting a role for endogenous central 

glucagon signaling in the regulation of glucose homeostasis. Interestingly, inhibition of 

Gcgr signaling on a normal protein diet (21.5% protein) did not alter glucose production, 

suggesting that DVC glucagon signaling may be important in specific nutrient states (e.g. 

high protein consumption).

Hormone resistance is common in rodents (67, 97) and humans with obesity (90, 425). 

Consistently, acute (3d) and chronic (3w) HFD-feeding resulted in Gcgr resistance in the 

MBH (256), indicating that hypothalamic Gcgr resistance may play a role in diet-induced 

hyperglycemia. Data support that the brain is sensitive to glucagon; however, most studies 

to date involve central glucagon administration, which may not reflect endogenous glucagon 

action. Further studies utilizing neuronal Gcgr knockout or central Gcgr-antagonist models 

will be essential for dissecting the endogenous role of central glucagon signaling. The 

focus of these studies will likely involve both the hypothalamus and the brainstem and the 

respective contributions of direct neuronal glucagon signaling versus indirect liver-brain 

communication. In addition, further studies are warranted to uncover whether central 

glucagon signaling mediates other facets of energy balance beyond peripheral glucose 

homeostasis.

Glucagon Effects on Energy Expenditure

Glucagon was first shown to increase energy expenditure in rats in 1960 (65) and 

has since then been confirmed in several human studies (205) (Figure 3). The energy 

expenditure effect in patients is rapid, with oxygen consumption elevated within minutes 

after intravenous glucagon infusion (366). In the fed state, glucagon’s ability to stimulate 

energy expenditure is less effective compared to a robust increase by 100–200 kcal per 

day when administered in the fasted state (205). The magnitude of glucagon’s energy 

expenditure effect in humans is similar to that of the β3-adrenergic receptor agonist 

mirabegron, which primarily targets the brown adipose tissue (BAT) (+203 kcal/day) (63), 

and to the energy expenditure increase detected during acute cold exposure (+193 kcal/day) 

(325).

Early studies investigating how glucagon leads to rapid increases in energy expenditure 

pointed to the BAT as the main responsible organ; this was based on studies showing that 

glucagon increases oxygen consumption in isolated BAT cells and BAT tissue explants from 

rats (181, 216), albeit at supraphysiological doses. In different animal models, glucagon 

elevates the temperature over interscapular BAT and augments blood flow into BAT (54, 
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157, 421). Moreover, in cold-adapted mice, which have more BAT glucagon’s effect on 

energy expenditure is potentiated (77).

Substantial literature indicating that glucagon affects energy expenditure via BAT-dependent 

(181, 216) and - independent mechanisms. In animals with little (adult dog) or no functional 

BAT (pig) glucagon is still able to acutely increase energy expenditure (172, 403). Moreover, 

while BAT thermogenesis relies predominantly on the uncoupling protein 1 (UCP1), 

glucagon injection in mice lacking UCP1 increases energy expenditure to similar extent as 

in wild-type controls (17). In addition, mice with selective deletion of the Gcgr in BAT also 

increase their energy expenditure normally following glucagon injection (17). Collectively, 

this suggests that in vivo neither BAT per se nor Gcgr signaling in BAT are required for 

the acute energy expenditure effect of glucagon in mice. Fittingly, in humans, glucagon 

was recently shown to increase energy expenditure without increasing BAT activity in 

subjects specifically screened for functional BAT (325). An alternative, BAT-independent 

explanation for how glucagon mediates increased energy expenditure could comprise the 

engagement of multiple metabolic (predominantly catabolic) pathways. For example, liver 

oxygen consumption has been shown to increase by up to 20% during glucagon infusion in 

rats (57).

In addition to its acute effects, glucagon can also elevate energy expenditure chronically. 

Notably, glucagon fails to promote body weight loss in mice lacking liver glucagon receptor 

(Gcgrliver) (201), suggesting that liver Gcgr-signaling is necessary for the energetic response 

to glucagon. In the liver, glucagon stimulates the synthesis and release of fibroblast growth 

factor 21 (Fgf21) (64, 145), a circulating peptide hormone that regulates energy homeostasis 

(99, 129) via centrally mediated mechanisms (81, 284). Chronic glucagon treatment fails 

to augment energy expenditure and to prevent HFD-induced obesity in Fgf21 null mice, 

suggesting that glucagons effect on energy expenditure requires Ffg21 signaling (145). 

Similarly, in obese liver-specific Fgf21-deficient mice, glucagon-mediated body weight loss 

is blunted (201), suggesting that specifically hepatic Fgf21 secretion contributes to the 

chronic effects of glucagon on energy expenditure. In addition to Fgf21, prolonged glucagon 

treatment increases circulating levels of bile acids in DIO mice (201). Bile acids are ligands 

for the farnesoid X receptor (FXR) (201) and both, bile acids and FXR, regulate energy 

expenditure (370). In liver-specific FXR knockout mice, the body weight lowering effects 

of glucagon is blunted, despite normal Fgf21 secretion (201); indicating that in addition 

to Fgf21, a hepatic bile acid—FXR axis contributes to the chronic effects of glucagon on 

energy expenditure.

It remains possible, that other factors that have been shown to be regulated by glucagon, like 

epinephrine, cortisol, and thyroid hormone (205) may play a role in glucagon’s prolonged 

thermogenic effect. Also, glucagon can cross the blood-brain barrier (13) and the Gcgr 

is expressed in hypothalamus and brainstem regions, two sites known to modulate energy 

metabolism (168, 332). However, chronic ICV studies assessing the role of glucagon on 

energy expenditure are still missing.
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Glucagon Action in the Heart

Traces of the Gcgr are expressed in the heart (1). Whole-body knockout of the Gcgr results 

in a lower intrinsic heart rate (268), whereas glucagon administration increases heart rate 

(chronotropic effect), contraction force (inotropic effect), and stroke volume in animals and 

humans (241, 287) (Figure 3). Glucagon fails to increase heart rate in Gcgr null mice (268). 

Mechanistically, glucagon triggers adenylyl cyclase activation through Gs protein-coupled 

signaling. Glucagon-mediated adenylyl cyclase activation occurs independently of the β

adrenergic system and its activation leads to an increase in cAMP levels, which engage 

the cyclic nucleotide-gated channels to elevate calcium concentrations in cardiac conduction 

tissue like the sinoatrial (SA) node (291). These effects are transient, lasting only several 

minutes rather than hours (287), because adenylyl cyclase quickly becomes uncoupled from 

the Gcgr (424), cAMP is rapidly broken down by phosphodiesterase (183), and receptor 

internalization reduces the number of available Gcgrs (164).

In the context of cardiac health following injury, like myocardial infarction, the role 

of augmenting versus diminishing cardiac glucagon signaling has been investigated in 

several preclinical studies. In mice, glucagon treatment impairs survival after myocardial 

infarction, whereas cardiac-specific deletion of the Gcgr markedly improves survival rates 

compared to wild-type mice (1). Similarly, treatment with monoclonal Gcgr antagonistic 

antibody ameliorates onset and progression of heart failure (114, 187, 341). Whether Gcgr 

antagonism improves heart health in humans has not been tested.

Glucagon Regulation of Hepatic Metabolism

The fundamental aspect of liver glucagon action is its function on increasing hepatic 

glucose output (308). Initially recognized as a hormonal factor that counter-regulates the 

hypoglycemic effects of insulin, glucagon was later identified to increase hepatic glucose 

production through stimulation of glycogenolysis and gluconeogenesis, while at the same 

time inhibiting glycogenesis and glycolysis (308). Glucagon’s role on hepatic glucose 

production is most prominent via intra-portal injection and is absent in hepatectomized rats 

(25). Consistent with this observation, glucagon has been identified to be secreted into the 

portal vein from the pancreas and reaches the liver at a much higher concentration than the 

in the systemic circulation (365), indicating an acute and preferential effect on the liver.

Regulation of glycogenolysis

Upon short-term starvation, glucagon induces rapid mobilization of hepatic glycogen stores 

leading to an immediate increase in hepatic glucose output (176). This is achieved via 

glucagon signaling through PKA (144) and activation of glycogen phosphorylase kinase 

(GPK), which leads to phosphorylation and activation of glycogen phosphorylase (GP) 

initiating glycogen breakdown (Figure 4) (144). Besides this, glucagon has also been shown 

to reduce acetylation of hepatic GP thereby enhancing its activity (430). In addition to 

stimulating glycogen breakdown, glucagon also inhibits the activity of glycogen synthase, 

causing an overall net increase in glycogenolysis (292), thereby channeling glucose into the 

plasma. Glucagon thus becomes an important counter regulatory hormone during conditions 

of hypoglycemia as a direct access to release hepatic glycogen (352). Thus, the glucose 
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releasing effect of glucagon is directly proportional to glycogen levels, as seen in fasted 

animals or patients with liver cirrhosis (61).

Regulation of gluconeogenesis

After depletion of glycogen stores upon longer starvation, glucagon activates 

gluconeogenesis to increase hepatic glucose output and to maintain blood glucose levels 

(292). This is achieved by allosterically modulating the activity of several enzymes 

shifting the metabolic flux from glycolysis to gluconeogenesis (176). Glucagon binding 

to its receptor induces the production of cAMP causing PKA activation. Then, PKA 

phosphorylates and inhibits the activity of phospho-fructokinase 2 (PFK-2), a bifunctional 

enzyme acting on fructose 2,6-bisphosphatase (FBPase 2) and 6-phosphofructo-2 kinase 

(409). Inhibition of PFK-2 activates FBPase 2 and inhibits 6-phospho fructo-2-kinase, 

causing a rapid reduction in the secondary metabolite fructose-2,6-bisphosphate [F(2,6)P2], 

shifting the flux toward gluconeogenesis (409). PKA also phosphorylates pyruvate kinase 

causing a reduction in its activity. This enhances fructose-1,6-bisphosphate, which lowers 

pyruvate levels leading again to reduced glycolysis and redirection of substrate toward 

gluconeogenesis (Figure 4) (176, 409).

Activation of PKA strongly depends on maintaining high cAMP levels. Thus, controlling 

cAMP amounts is crucial for downstream signaling. Interestingly, a recent paper has shown 

another level of regulation of cAMP-PKA signaling, through controlling phosphodiesterase 

4B (Pde4b) transcription (431). Pde4b is responsible for the degradation of cAMP thereby 

terminating signaling (182). Glucagon-stimulated nuclear factor-kappa B2 (NF-κb2) (p52) 

binding to PDE4B promotor inhibits its transcription, thus strengthening cAMP action (431).

Besides direct modulation of enzyme activity by phosphorylation, transcriptional regulation 

by glucagon also enhances gluconeogenesis. Glucagon signaling increases phosphorylation 

of Creb at serine residue 133 and dephosphorylation and nuclear translocation of 

its co-activator, Creb-regulated transcription coactivator 2 (Crtc2) (see above) (237). 

Phosphorylated Creb binds to DNA and promotes expression of its target gluconeogenic 

genes G6Pase, Pepck, Pgc1α, and hepatocyte nuclear factor 4 (Hnf4), thereby enhancing 

glucose output (Figure 4).

In addition to the transcriptional regulation, glucagon has been shown to facilitate 

gluconeogenic gene transcription by regulating histone modifications that alter chromatin 

environment for gene induction. Other than Crtc2, Creb is also associated with 

coactivators—histone acyl transferase p300 and Creb-binding protein (Cbp) (237). Glucagon 

dephosphorylates p300 at Ser89, thereby increasing its activity (3). This is achieved by 

adenylyl cyclase-mediated inhibition of salt-inducible kinase 2 (Sik2) (237). p300 in turn, 

acetylates Crtc2 at Lys628, enhancing the transcription of G6Pase and Pepck (154, 237). 

Importantly, Crtc2 interaction with p300/Cbp is essential for their recruitment to Creb 

target genes and subsequent transcription (Figure 4) (312). Cbp and p300 are known 

to acetylate H3K27 lysine residue at enhancers, facilitating a chromatin environment 

more accessible to TF binding (48) and an enhanced transcript elongation rate of RNA 

polymerase 2 (354). Furthermore, p300/Cbp also directly acetylate lysine residues in TFs 

such as p53 (314). Substantiating this, p53 has been shown to promote gluconeogenic 
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gene expression (133). Aside from p300, glucagon stimulation also recruits other histone 

acyltransferases. Glucagon induced nuclear translocation of Crtc2 has been shown to 

recruit lysine acetyltransferase 2B (Kat2b/Pcaf) to gluconeogenic genes (311). Kat2b then 

enhances histone H3 acetylation at Lys9 (H3K9Ac) promoting gene transcription and 

further potentiating Crtc2 occupancy at Creb-binding sites. Along with Kat2b, WD repeat

containing protein 5 (Wdr5), a core subunit of histone methyltransferase (HMT) is also 

recruited and exhibits concerted action with Kat2b on enhancing H3K9Ac (311).

Besides Creb, the Forkhead box protein O1 (Foxo1) is a major transcriptional regulator 

of gluconeogenic gene expression. Foxo1’s nuclear binding activity is modulated by 

acetylation/deacetylation cycles, where acetylation reduces and de-acetylation enhances 

binding of Foxo1 to gluconeogenic gene promoters (303). Inhibition of Foxo1 activity by 

E26 oncogene homolog 1 (Ets-1) (230) is attenuated by glucagon-mediated downregulation 

of Ets-1, reducing its acetylation (230). In addition, glucagon rapidly dephosphorylates 

class IIa histone deacetylases (HDACs), facilitating their translocation to the nucleus and 

concomitant deacetylation of Foxo1 (257). Sirtuins, another class of deacetylases involved 

in metabolic control, are also regulated by glucagon. Here, sirtuin 6 (Sirt6) deacetylates 

and thus activates the general control nonrepressed protein 5 (Gcn5/Kat2a), causing 

Pgc1α acetylation and reduction of its gluconeogenic gene transcriptional activity (79). 

By reducing the expression of Sirt6, glucagon indirectly enhances the activation of Pgc1α 
(78). Altogether, glucagon activates gluconeogenic gene transcription by modulating the 

deacetylation of transcriptional co-regulators. For a more detailed description on glucagon

mediated histone acetylation and its implication in glucagon biology visit a recent review by 

Zhang et al. (429).

In addition to acetylation, gluconeogenic gene expression is enhanced through histone 

methylation by protein arginine methyltransferase 5 (Prmt5) (376). Glucagon stimulates 

Crtc2 interaction with Prmt5 thereby increasing the methylation (H3R2me2) of 

gluconeogenic genes, while the downregulation of Prmt5 reduces gluconeogenic gene 

expression and circulating glucose levels (376). Altogether, these studies show the 

importance of histone modifications, chromatin environment, and TF binding/interaction for 

Creb activity and adds to the complexity in the regulation of gene transcription by glucagon 

(132).

Regulation of amino acid metabolism

Gluconeogenesis is a substrate driven process, wherein substrates from other tissues such 

as adipose-derived glycerol or muscle-derived AAs contribute to gluconeogenesis in the 

liver, also known as the Cori cycle (161). There is no indication of Gcgr expression in the 

skeletal muscle or adipose tissue in humans (238), indicating that glucagon may not directly 

mobilize precursors for gluconeogenesis from these tissues (240). Thus other mechanisms, 

such as catecholamines and cortisol, participate in precursor mobilization from muscle and 

fat.

However, glucagon stimulates AA influx into hepatocytes providing AA substrates for 

gluconeogenesis (2). This is achieved by glucagon-stimulated expression of the AA 

transporters for alanine (A system) and glutamine, histidine, and asparagine (N system) 
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in the liver, resulting in increased AA uptake (197, 233). After influx, these AAs are 

further processed to be used as precursors for gluconeogenesis. Essential for this is their 

deamination, after which the amine groups enter the urea cycle for excretion (334). For this, 

glucagon induces the rapid deamination of glutamine, resulting in an immediate increase 

in ureagenesis and AA metabolism (16, 217). How the deamination is acutely regulated is 

unclear. The rapid increase in ureagenesis by glucagon is induced by allosteric activation 

of Sirt3 and Sirt5, which in turn increases the activity of ornithine transcarbamylase (Otc) 

and carbamoyl phosphate synthetase 1 (Cps1), critical enzymes in ureagenesis (146, 273). 

In addition, glucagon also induces the transcript levels of enzymes involved in the urea 

cycle through the cAMP-PKA-Creb mediated pathway (349). Particularly, enzyme N-acetyl 

glutamate synthetase (Nags) transcription is enhanced by glucagon, driving AA flux toward 

ureagenesis (156). Altogether, glucagon primes the hepatocytes for the uptake of AAs from 

the circulation, which are used as precursors of gluconeogenesis in periods of long-term 

starvation (61, 240).

The importance of hepatic glucagon signaling in AA metabolism is further supported by 

studies, where Gcgr antagonism causes hyper-aminoacidemia, due to reduced uptake of 

circulating AAs and decreased ureagenesis (112, 267). Hyper-aminoacidemia has been 

suggested to be a factor for increase in α-cell mass (350). In fact, interfering with 

liver glucagon signaling through liver-specific deletion of Gcgr results in pancreatic α

cell hyperplasia (112), suggesting a liver to α-cell axis. Importantly, the increase in 

circulating AAs upon Gcgr ablation then further stimulates glucagon secretion from α-cells 

(410), creating a vicious cycle of overproduction of glucagon. This partly explains the 

hyperglucagonemia observed after ablation of liver Gcgr signaling. In particular, arginine, 

alanine, and proline have been shown to stimulate the secretion of glucagon from α-cells 

(110), while glutamine induces α-cell mass (72). In addition, the pancreatic amino-acid 

transporter, Slc38a5 was found to play a vital role in α-cell hyperplasia induced by liver 

Gcgr inhibition in mice and its absence prevented hyperplasia development (72). The 

occurrence of hyperglucagonemia and hyperaminoacidemia is observed in type-2 diabetes 

patients (313) and patients with NAFLD (406, 408), underlining the association between 

these conditions and metabolic diseases. These data emphasize the need to further clearly 

characterize the role of glucagon on hepatic AA metabolism and to delineate the underlying 

mechanisms regulating the liver-α-cell axis.

Regulation of mitochondrial metabolism and hepatic calcium signaling

Gluconeogenic flux is deeply linked to respiration rate and ATP production (302). 

Indeed, glucagon stimulates mitochondrial oxygen consumption correlating well with 

the physiological requirement for energy production during gluconeogenesis (31, 422). 

Interestingly, glucagon via signaling through Gq and PLC-mediated IP3 formation increases 

intracellular and mitochondrial calcium levels as one of the ways to enhance mitochondrial 

respiration (55). This is achieved by release of intracellular calcium stores from the 

ER (94), through cAMP-mediated regulation of inositol triphosphate receptor (IP3R) by 

several independent mechanisms (reviewed in (368)). This includes cAMP-activated PKA 

phosphorylation of IP3R2, the major subtype expressed in hepatocytes, at serine residue 

937 resulting in enhanced burst of IP3R channel gating (21). More importantly, cAMP 
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directly delivered to IP3R2 signaling junctions on the ER potentiates its response to 

IP3 independent of PKA or Epac, as observed through nuclear patch-clamp recordings 

(373), suggesting a direct role for cAMP in sensitizing the IP3R2. Subsequent increase in 

cytosolic calcium stimulates gluconeogenesis either by directly modulating enzyme activity 

of pyruvate carboxylase and Pepck or by modulating the expression of gluconeogenic genes 

(3, 278). The later is mediated by cytosolic calcium sensors such as calmodulin-dependent 

kinases and calcineurin, which together increase the nuclear transcription of Foxo1, Creb, 

and Crtc2, thereby enhancing gluconeogenesis (3, 278). Additionally, cytosolic calcium also 

regulates glycogenolysis through stimulation of the phosphorylase kinase and activation 

of GP (3, 278). Recently, Perry et al. (290) have shown that glucagon stimulates hepatic 

gluconeogenesis through activation of mitochondria localized IP3R1-mediated stimulation 

of mitochondrial fat oxidation and lipolysis, indicating the physiological importance of this 

process in glucagon biology.

Calcium release from the ER occurs either directly into the cytosol, as described above, 

or can be taken up into the mitochondria thought mitochondria/ER contact sites (42). 

Mitochondrial calcium influx stimulates mitochondrial oxidative metabolism and electron 

transport. This is mediated by increasing the activity of calcium-sensitive dehydrogenases 

of the TCA cycle: pyruvate dehydrogenase, isocitrate dehydrogenase, and α-ketoglutarate 

dehydrogenase (258). Additionally, direct activation of the mitochondrial ATPase through 

calcium stimulates ATP synthesis (258). Besides this, glucagon stimulated mitochondrial 

calcium influx accumulates adenine nucleotides via the mitochondrial ATP-Mg/Pi carrier 

(SCaMC-3/slc25a23), which serve as precursors for gluconeogenesis (358).

Carbon source for glucose production during gluconeogenesis is provided by pyruvate 

and acetate as well as alanine, glutamine, and glycerol. Recently, the carbon share from 

glutamine has been shown to be enriched upon glucagon stimulation in hepatocytes (72). 

It is proposed that mitochondrial calcium influx following glucagon treatment stimulates 

the activity of α-ketoglutarate dehydrogenase paving the way to increased anaplerotic flux 

from glutamine. Consistent with this, deletion of glutaminase (Gls2), the enzyme involved 

in conversion of glutamine to glutamate, results in reduced glucagon stimulated glutamine 

turnover and decreased fasting blood glucose levels in mice (72). Importantly, a mutation at 

human GLS2 locus causes enhanced glutaminase activity stimulating glutamine influx and is 

connected with higher fasting blood glucose in humans (259). Altogether, these data reveal 

the main function of glucagon on calcium influx and mitochondrial respiration is to tune the 

system for maximal gluconeogenic capacity.

Glucagon action on lipid metabolism in the adipose tissue and liver

Consistent with glucagon’s main function during fasting, where lipid mobilization is needed 

to provide energy through β-oxidation and production of ketone bodies (321), glucagon 

has been connected to lipid metabolism since the 1960s (44, 286). Subsequently, glucagon 

has been shown to reduce plasma cholesterol (43, 141), triglycerides (43, 141, 240), and 

esterified fatty acid levels (45). The involvement of the adipose tissue in these effects has 

been investigated in mice, where small amounts of Gcgr are also detectable (35). Here, 

glucagon stimulates lipolysis through cAMP-PKA-hormone sensitive lipase (HSL)-mediated 
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pathway thereby, however, increasing circulating FFA levels (155, 348, 361). Despite this, 

there has been no solid evidence of Gcgr expression in human adipocytes (417) and 

glucagon induced lipolysis was only obtained at supra-physiological concentration in human 

adipocytes (possibly through glucagon stimulated catecholamine secretion) rather than at 

physiological levels (124). Consistent with the fact that Gcgr expression is highest in 

the liver, these data indicate hepatic Gcgr signaling to be the primary regulator of lipid 

metabolism by glucagon.

Glucagon affects liver lipid metabolism through inhibition of lipogenesis and stimulation 

of lipolysis (111). In hepatocytes, glucagon activates AMPK and p38 MAPK which leads 

to nuclear translocation and transcriptional activation of peroxisome proliferator-activated 

receptor alpha (Ppar-α) that in turn increases the transcript level of fatty acid oxidation 

gene-carnitine palmitoyltransferase-1a (Cpt-1a) (240, 355). Cpt-1a enables catabolism of 

long-chain fatty acids by converting them to acyl-carnitines (240, 355). These acyl-carnitines 

are then transported into mitochondria thereby activating β-oxidation wherein fatty acids are 

degraded to acetate. Acetate and CoA combine to form acetyl-CoA, which then condenses 

with oxaloacetate to form citrate ultimately entering citric cycle. This process enhances fatty 

acid catabolism and inhibits glycolysis (Figure 4).

Apart from transcriptional activation, glucagon also regulates lipid metabolism by 

acetylation and deacetylation, similar to its control of gluconeogenesis. Here, the activity of 

forkhead transcription factor A2 (Foxa2) is increased upon its acetylation (394) via adenylyl 

cyclase mediated inhibition of Sik2 and subsequent enhancement of p300 activity (237). 

Foxa2 then induces the transcription of β-oxidation genes such as Cpt-1 and medium-chain 

acyl-CoA dehydrogenase (Mcad) (394). Recruitment of Kat2b/Pcaf by glucagon acetylates 

cAMP-responsive element-binding protein H (Crebh) at Lys294 (199), which induces its 

nuclear localization and interaction with PPARα, leading to increased transcription of 

fibroblast growth factor 21 (Fgf21). Fgf21 then increases energy expenditure and inhibits 

lipogenesis (200) as described above. In addition, glucagon induces the expression of Sirt3 

(207), that in-turn deacetylates and enhances activity of long-chain acyl-CoA dehydrogenase 

(Lcad) (166). Lcad, a key mitochondrial fatty acid oxidation enzyme, reduces triglyceride 

accumulation and stimulates fatty acid oxidation.

Glucagon-induced cAMP formation shifts the intracellular AMP/ATP ratio to an energy

depleted state sufficient to activate AMPK (19). This leads to phosphorylation and 

inactivation of acetyl-CoA carboxylase, causing a reduction in malonyl-CoA formation. As 

accumulation of Malonyl-CoA inhibits Cpt-1 induced β-oxidation, reducing its production 

will redirect FFAs from re-esterification as triglyceride to β-oxidation (75). FFAs are 

either stored as triglycerides or are processed by lipases to be released as very-low-density

lipoprotein (VLDL) into circulation. As FFAs are used for β-oxidation, VLDL secretion is 

also downregulated in this process (Figure 4) (22, 24).

Consistent with the allosteric activations, acute and long-term administration of glucagon 

in mice in vivo showed reduced plasma FFA (111), TG (111, 140), and phospholipid 

(140) concentrations along with decreased hepatic triglyceride content (111, 158), which is 

dependent upon Gcgr, as Gcgr−/− mice and glucagon antagonists do not show this effect 
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(121, 240). Also, Gcgr knockdown in db/db mice increases plasma low-density-lipoprotein 

(LDL) cholesterol, liver triglycerides, and liver cholesterol, which is accompanied by 

increases in lipogenic genes including fatty acid synthase, acetyl-CoA carboxylase, stearoyl

CoA desaturase 1, and elongation of very long-chain fatty acids protein (147), further 

supporting evidence for a role of glucagon in lipid metabolism. In fact, humans with 

hyperglucagonemia exhibit a decrease in lipoprotein particle turnover and induced β

oxidation (301, 419), confirming its clinical relevance. These observations have hampered 

the pharmacotherapeutic use of Gcgr antagonists as treatment options for the hyperglycemia 

in type-2 diabetic patients (see below) (142, 189, 328). Thus, there is a pressing need for 

identification of clear mechanisms and pathways mediating the glucose and lipid metabolic 

effects downstream of Gcgr upon ligand activation.

Regulation of ketone body metabolism

During prolonged starvation, the liver produces ketone bodies that provide energy 

fuel for the brain. Glucagon functions to stimulate ketogenesis, a process occurring 

in the mitochondria of perivenous hepatocytes, which transforms fatty acids (FAs) 

into acetoacetate (AcAc) and 3-hydroxy butyrate (3HB) (152). FAs shuttled into the 

mitochondria via Cpt-1 undergo β-oxidation to form acetyl-CoA, to enter the citric cycle 

or for utilization in ketone body formation. Since the activity of the citric cycle is reduced 

under long-term starvation, as all intermediates are used for gluconeogenesis, acetyl-CoA 

becomes available for ketone body formation (220). Glucagon stimulates the activity of 

hepatic mitochondrial HMG-CoA synthase, a key rate-limiting enzyme for AcAc formation, 

and thereby enhances ketone body production (Figure 4) (304). This is achieved by 

lowering the concentration of succinyl-CoA, which inactivates HMG-CoA synthase, thus 

increasing ketogenesis (304). Interestingly, elevated blood glucagon levels have been shown 

to contribute to increased circulating ketone bodies and metabolic acidosis in diabetic 

ketoacidosis and alcoholic ketoacidosis, suggesting its human relevance (220). In fact, in 

uncontrolled insulin-deficient diabetic patients hyperglucagonemia was found to be essential 

for ketosis rather than hyperglycemia (191, 253). However, recent conflicting data implies 

a limited role for glucagon in ketogenesis, since interruption of glucagon signaling has no 

effect on fasting stimulated ketosis (41), emphasizing the need to revisit the direct role of 

glucagon in ketone body metabolism.

Regulation of bile acid metabolism

Synthesized from cholesterol in hepatocytes, bile acids have emerged as pivotal modulators 

of lipid, glucose, and energy metabolism in the liver (340). Cyp7a1 is the first and rate

limiting enzyme in bile acid biosynthetic pathway. Glucagon represses the gene expression 

of CYP7A1 in human and rat hepatocytes, through PKA-dependent phosphorylation and 

inactivation of HNF4α (351). Importantly, chronic Gcgr agonism increases circulating bile 

acid levels in DIO mice and induces body weight reduction (140, 201). While bile acids are 

ligands for FXR and induce energy expenditure, the weight lowering effect of chronic Gcgr 

agonism was reduced in liver-specific-FXR knockout mice (201). This opens the possibility 

for bile acid-FXR axis in hepatocytes mediating the glucagon-stimulated effects on energy 

expenditure.
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Glucagon and Fgf21

Fibroblast growth factor 21 (Fgf21) was first described in 2000 as a novel FGF with high 

homology to the endocrine Fgf19 (277). Fgf21 is secreted via coat protein complex II 

vesicles (400) in response to diverse nutritional stressors including fasting (11, 109, 171), a 

ketogenic diet (10, 11) a low protein diet (165, 218, 219), and carbohydrate refeeding (170, 

330). First reported as a novel metabolic regulator in 2005 (195), Fgf21 has been shown to 

have pluripotent effects, including regulating energy expenditure (59, 331), thermogenesis 

(98, 398), fatty acid oxidation (300), glucose metabolism (40, 247, 250, 331), and body 

weight (59) in rodents. As such, Fgf21 has emerged as an appealing therapeutic for the 

metabolic syndrome (9, 171, 177).

Consistent with fasting-induced Fgf21 secretion, acute glucagon administration increases 

plasma FGF21 levels in rodents (64, 145) and humans (145, 149). This is a direct effect 

of liver glucagon signaling, as glucagon treatment in mouse primary hepatocytes increases 

both Fgf21 gene expression and Fgf21 in the cultured media (145). Consistently, this effect 

is lost in hepatocytes isolated from mice deficient for Gcgrs (Gcgr; Gcgr−/− and Gcgr−liver) 

(145, 201). This regulation is consistent and more robust in mice treated either acutely 

(145) or chronically with the potent Gcgr agonist IUB288 (145, 201). Fasting-induced Fgf21 

is regulated by Ppar-α (109, 171) and glucagon signaling regulates Ppar-α transcriptional 

activity (240). While it is logical to assume glucagon regulates Fgf21 in a Ppar-α dependent 

manner, this has yet to be definitively elucidated. Glucagon also regulates Fgf21 secretion 

in rat primary hepatocytes via posttranslational modifications mediated in a PKA and 

Epac-dependent manner, with no differences in gene expression (64). This model-specific 

difference in glucagon-mediated Fgf21 gene regulation may be a result of differences in 

the model organism, time of treatment, or culture conditions. While Fgf21 is regulated 

by multiple factors, Gcgr−/− mice are refractive to fasting-induced liver Fgf21 expression, 

suggesting glucagon is the primary stimulator of Fgf21 in a fasted state (240).

Mice deficient for Fgf21 (Fgf21−/−) are likewise refractive to Gcgr-mediated increases 

in EE and prevention of DIO with no genotypic differences in food intake, suggesting 

glucagon regulates energy balance via Fgf21. Further, overexpression of liver Fgf21 and 

administration of recombinant Fgf21 increases EE in a brain-dependent manner (331). 

While it has yet to be elucidated, it is plausible that glucagon regulates energy balance 

via central Fgf21 action. Chronic Gcgr agonism additionally decreases plasma cholesterol, 

liver triglycerides, and increases day-time locomotor activity (145). Fgf21 likewise regulates 

plasma cholesterol and locomotor activity, highlighting Fgf21 as an important mediator of 

specific glucagon actions. While Fgf21 is sufficient to mediate Gcgr-prevention of body 

weight gain on high-fat diet, hepatic Fgf21 is only partially responsible for the weight loss 

effects of Gcgr-agonism in DIO mice (201). These observations may be due to differential 

glucagon-mediated mechanisms regulating obesity prevention versus treatment.

Pharmacological Actions of Glucagon in Type-1 and Type-2 Diabetes

Insulin deficiency is traditionally viewed as the major culprit in diabetes. In the early 

1970s, however, Roger Unger proposed that elevated postprandial glucagon levels are an 

equally critical factor underpinning diabetes (272, 384). Indeed, postprandial glucagon 
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levels are higher in all forms of diabetes, including type-1 and type-2 diabetes (383). 

It is postulated that in patients with diabetes, a relative excess of glucagon compared 

to the decrease in insulin drives excessive hepatic glucose production, contributing to 

fasting hyperglycemia (313) and greater postprandial glucose excursion (339). In support, 

in patients with type-2 diabetes, hepatic gluconeogenesis is increased compared to age- and 

BMI-matched nondiabetic control subjects. Therefore, attenuating glucagon action has been 

investigated as a treatment of diabetes. The first seminal study to explore this concept used 

somatostatin to inhibit endogenous glucagon production in patients with type-1 diabetes and 

observed a decrease in blood glucose levels (125). Similarly, somatostatin administration 

ameliorated hyperglycemia in dogs rendered diabetic by either alloxan or by removal of 

the pancreas (126, 324). Subsequently, genetic mouse models have been used to explore 

the metabolic consequences of lack of glucagon signaling. Glucagon-receptor knock-out 

mice (Gcgr−/−), in which the ratio of insulin to glucagon signaling is shifted entirely to 

the side of insulin, have lower blood glucose levels, are more glucose tolerant, and are 

resistant to HFD-induced insulin resistance (56, 228). Remarkably, Gcgr−/− mice are even 

resistant to STZ-induces hyperglycemia and β-cell destruction (56), without exhibiting signs 

of hypoglycemia (121).

In light of these observations, strategies to pharmacologically suppress Gcgr signaling 

have received a lot of attention in recent years for the potential treatment of diabetes. 

In the preclinical models, Gcgr antagonists improve glucose tolerance in mouse models 

of diabetes (104, 226, 267). Similarly, Gcgr antibodies decrease glucose levels and 

improve glucose tolerance in diabetic rodents and monkeys (138, 202, 280, 423) and anti

sense oligonucleotide-mediated reduction of hepatic Gcgr expression similarly ameliorated 

hyperglycemia in diabetic mice (232).

In healthy humans, single administration of a Gcgr antagonist reduced glucagon-induced 

glucose production. In longer-term trials, Gcgr antagonists lower fasting and postprandial 

blood glucose concentrations, as well as HbA1c levels in patients with type-2 diabetes (63, 

189, 388). Similarly, antisense oligonucleotides also improve HbA1c in people with diabetes 

(389), while monoclonal antibodies against the Gcgr diminish glucagon-induced glucose 

excursions (209).

These encouraging clinical data, however, have been associated with significant side effects 

that have thwarted the clinical use of these agents. Increased hepatic transaminases have 

been seen with Gcgr antagonists (20, 142, 189, 193, 388) and humanized monoclonal 

antibodies (209), suggesting adverse effects on the liver. Gcgr antagonists increase LDL 

cholesterol (20, 139) and liver fat (142). Another concern pertains to pre-clinical studies 

showing that Gcgr antibodies cause α-cell hyperplasia (138, 280), which also has been 

observed in global Gcgr−/− mice (121) as well as in liver-specific Gcgr−/− mice (239). 

Whether this translates into serious clinical side effects will have to be determined in 

longer-term studies, but the concern that this hyperplasia may become malignant has to be 

carefully assessed.

However, in light of the support of glucagon in the regulation of lipid metabolism, Gcgr 

agonism may be useful for treatment of hepatic steatosis (336), to which there are no 
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FDA-approved therapeutics (428). Chronic Gcgr agonism decreases liver triglycerides and 

plasma cholesterol in DIO mice (145, 201, 274). This effect is dependent on liver Gcgr 

signaling, as the benefits of Gcgr agonism on dyslipidemia are lost in mice deficient for 

hepatic Gcgr (Gcgrliver) (145, 201, 274). These pharmacological effects are consistent with 

results from clinical trials utilizing GLP1R and Gcgr dual agonist. Treatment with the dual 

agonist reduces liver triglycerides and plasma cholesterol (6). While glucagon monotherapy 

has not been tested directly in clinical trials, the dual agonists are superior to GLP1 agonism 

alone in reducing hepatic steatosis in rodent models (66, 299). These additional metabolic 

actions of glucagon warrant further study as promising avenues for the treatment of obesity 

and hepatic steatosis.

Outlook and Future Questions

Identified nearly a century ago in a process to optimize insulin purification, glucagon 

has ever since been stigmatized for its hepatic effects to increase blood glucose. Long 

overshadowed by the monumental importance of insulin, recent years have witnessed a 

renaissance of glucagon pharmacology with acknowledged applications that go far beyond 

its initial use as a life-saving rescue medication for severe hypoglycemia. A plethora of 

studies nowadays testify glucagon pharmacological value to improve body weight and lipid 

metabolism and dual-agonists targeting the receptors for glucagon and GLP-1 are in clinical 

development for the treatment of type-2 diabetes.
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Figure 1. 
Schematic on the transcriptional regulation of preproglucagon in the pancreatic α- and 

β-cells. The expression of preproglucagon is regulated through interaction of home domain 

proteins that bind to the preproglucagon promoter region, which comprises a minimal 

promoter region and an enhancer region. For further explanations please see text.
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Figure 2. 
Proposed model of Gcgr trafficking and signaling. Stimulations with glucagon induce 

glucagon receptor recruitment into clathrin-coated vesicles on the plasma membrane through 

the interaction of β-arrestins with the cytoplasmic tail of the receptor and subsequent 

interaction with the clathrin coat. Short-term stimulations with glucagon increase glucagon 

receptor presence in early endosomes and enhanced signaling, followed by receptor 

recycling. Upon long-term treatments, reoccurrence of the receptor on the membrane is 

reduced, and its lysosomal degradation increases. Regulators of these sorting mechanisms on 

early and late endosomes, such as retromer and WASH complex for recycling and ESCRTs 

for degradation have been shown to be involved in other GPCR trafficking, however, the 

knowledge on Gcgr is still very limited and represented by question marks.
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Figure 3. 
Schematic on the direct and indirect metabolic effects of glucagon.
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Figure 4. 
Glucagon effects on hepatic glucose and lipid metabolism. Activation of glucagon 

receptor by glucagon in hepatocyte stimulates adenylate cyclase-/cAMP-/PKA-dependent 

phosphorylation of Creb and dephosphorylation/nuclear translocation of Crtc2. p-Creb 

induces transcription of gluconeogenic genes G6Pase and Pck1. PKA activates 

phosphorylase synthase and inhibits glycogen synthase, thus stimulating glycogen 

breakdown. In addition, PKA activates FBPase2 and inhibits PFK-1 and pyruvate kinase, 

thereby enhancing gluconeogenesis and inhibiting glycolysis. By AC dependent inhibition 

of SIK2, glucagon stimulates activation of p300, which facilitates transcription of 

gluconeogenic genes. p-CREB induces transcription of Ppar-α that enhances transcription of 

β-oxidation genes Cpt1 and Mcad. ATP to cAMP conversion leads to enhanced AMP/ATP 

ratio leading to AMPK activation and inhibition of ACC. This results in inhibiting the 

conversion of acetyl-CoA to malonyl-CoA by ACC and subsequent decreases the lipid 

synthesis pathway. As a consequence malonyl-CoA formation is reduced which induces 

an accumulation of Cpt1. Cpt1 enhances fatty acyl-CoA transport into mitochondria 

and induces β-oxidation. In addition, glucagon stimulates AMPK and mitochondrial 

IP3R1 further activating β-oxidation. Acetyl-CoA subsequently enters Krebs cycle for 

ketone body formation during prolonged starvation. Abbreviations, AC, adenylyl cyclase; 

cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; Creb, cAMP-responsive 

element-binding protein; G6Pase, glucose 6 phosphatase; Pck1, phosphoenol pyruvate 

carboxykinase 1; FBPase 2, fructose 2,6-bisphosphatase; PFK-1, phospho-fructokinase 

1; Crtc2, Creb-regulated transcription coactivator 2; SIK2, salt-inducible kinase 2; Ppar-

α, peroxisome proliferator-activated receptor alpha; Cpt1, carnitine palmitoyltransferase 

1; Mcad, medium-chain acyl-CoA dehydrogenase; ATP, adenosine triphosphate; AMP, 

adenosine monophosphate; AMPK, AMP-activated protein kinase; ACC, acetyl-CoA 
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carboxylase; IP3R1, inositol triphosphate receptor 1; FFA, free fatty acid; TAG, tri-acyl 

glycerol; VLDL, very low-density-lipoprotein; LCAD, long-chain acyl-CoA dehydrogenase.
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