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Abstract 

Diabetic mellitus (DM) is the most communal metabolic disease resulting from a defect in insulin secretion, causing 
hyperglycemia by promoting the progressive destruction of pancreatic β cells. This autoimmune disease causes many 
severe disorders leading to organ failure, lower extremity amputations, and ultimately death. Modern delivery systems 
e.g., nanofiber (NF)-based systems fabricated by natural and synthetic or both materials to deliver therapeutics agents 
and cells, could be the harbinger of a new era to obviate DM complications. Such delivery systems can effectively 
deliver macromolecules (insulin) and small molecules. Besides, NF scaffolds can provide an ideal microenvironment 
to cell therapy for pancreatic β cell transplantation and pancreatic tissue engineering. Numerous studies indicated 
the potential usage of therapeutics/cells-incorporated NF mats to proliferate/regenerate/remodeling the structural 
and functional properties of diabetic skin ulcers. Thus, we intended to discuss the aforementioned features of the NF 
system for DM complications in detail.
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Introduction
Nowadays, diabetes mellitus (DM) acts as a colossal 
problem and life-threatening disease for humanity health 
by globally escalating prevalence. DM is recognized by 
glucose level dysregulation in blood result from defects 
in insulin secretion by pancreas (type 1 DM) and/or 
impair  the  response  of body to insulin (type 2 DM) [1, 
2]. In 2019, all over the world, 463 million people suf-
fered from DM, with 4.2 million deaths yearly and it is 
estimated to strike about 700 million by 2045 [3]. World 
Health Organization (WHO) expressed that DM will turn 

into the seventh greatest reason for mortality in 2030 [4]. 
Numerous macrovascular/microvascular complications 
are associated with DM as an effect on vital organs in 
the body, including high risks of heart disease, peripheral 
vascular disease, kidney failure, neuropathy, retinopathy, 
and  even  lower  extremity  amputations [5]. As a result, 
exogenous insulin administration and other therapeutics 
are indispensable for regulating blood glucose levels. The 
conventional route of insulin delivery may be accompa-
nied by pain, needle phobia, local tissue-damaging, and 
decreased compliance, as well as the risk of infection [6].

To  obviate  these  restrictions, an immense  variety of 
delivery methods were investigated to control blood glu-
cose levels, including oral, nasal, pulmonary, and trans-
dermal approaches, etc. [7–9]. Nevertheless, each of 
these methods encounters with some limitations includ-
ing poor permeability across the barriers of body, pos-
sible allergic or irritation reactions, difficulty to achieve 
high plasma drug concentration, and low or variable 
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bioavailability owning to degradation by proteolytic 
enzymes [10–17]. Therefore, using alternative delivery 
strategies is imperative to prevent limitation/problems 
and improve effectiveness as well satisfaction of diabetic 
patients. A number of nanostructure-based delivery sys-
tems were studied to conquer different DM-associated 
complications [18–20]. Therefore, NF-based systems 
have presented tremendous capabilities as delivery sys-
tems and as artificial scaffolds to deliver therapeutics 
agents and cells (Fig. 1).

As a delivery system or reservoirs, NFs can provide an 
adequate matrix for encapsulation and incorporation of 
therapeutic agents as well as able to prevent destruction 
before reaching their target sites with high-efficiency, and 
low-adverse effects. Such structures possess high flex-
ibility in producing various morphologies (Fig.  2) [21], 
high drug-loading capacity (up to 60%), and encapsula-
tion efficiency (up to 100%), as well as have the poten-
tial to deliver their content [22, 23]. Therapeutic agents 
are loaded in the fibers by different methods, including 
a combination of agent with the polymer solution before 
spinning, producing core/shell structures through coaxial 
spinning, attaching active agents on the surface of the 
fiber, post-fabrication surface modification, and grafting 
on the surface [24, 25]. These methods can be applied for 
more precise control over release kinetics and achieve 
timely release of therapeutic agents.

Artificial scaffolds can create three-dimensional (3D) 
fibrous frameworks that mimic the natural extracellular 

matrix (ECM) multi-fibril networks in design and struc-
ture which are mostly used as ECM substitutes to sup-
port the vital functions of cells [26, 27]. NF scaffolds 
with architectural similarity to native ECM can provide 
an immense surface area for cell-scaffold interaction/
adherence and effective exchange for oxygen and nutri-
tion transportation. NFs can be incorporated with ECM 
proteins, growth factors (GF), and nanomaterials to pro-
mote the formation of tissue-like structures for tissue-
engineered implantation/transplantation [28].

Multifarious natural materials and synthetic polymers 
were exploited to synthesis NF structures for DM treat-
ment. In general, natural polymers showed superior bio-
compatibility, suitable biodegradation, and significantly 
lower immunogenicity, whereas synthetic polymers 
can form electrospun much  easier  with good  mechani-
cal  strength  and high  flexibility. To take the maximum 
advantages from those materials, using a combination 
strategy is recommended.

NF–based systems regarding several approaches were 
broadly applied in recent years for DM treatment (Fig. 1). 
Delivery of biomacromolecules e.g., insulin, GFs, small 
interfering RNA, as well as anti-diabetic chemical agents, 
is one of the most prominent features of NF–based struc-
tures for DM treatment [29, 30]. Insulin can be incor-
porated/coated in NF patches to be administered via 
dermal/transdermal or by other routes e.g., sublingual to 
decline plasma glucose level. In particular, insulin-loaded 
dressings can promote the formation of a wound matrix 

Fig. 1  Utilization of nanofiber-based systems for treatment of DM through several approaches
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and accelerate wound healing in patients with DM [31, 
32]. Furthermore, Genes and GFs can be incorporated 
within or onto NFs [33, 34]. These biomolecules stimu-
late cell proliferation, differentiation, angiogenesis, tissue 
repair, and regeneration. Hence, using locally controlled 
and efficient delivery to target cells e.g. NF scaffolds can 
achieve to further increase delivery efficiency or extend 
function duration, thereby could be fruitful to induce the 
healing of diabetic ulcers and promote cell’s activities to 
skin or pancreatic tissue engineering (TE).

Diabetic Wound (DW) remains a major clinical chal-
lenge due to impaired healing process composed of mul-
tifactorial which resulted from peripheral neuropathy, 
impaired vascular function, impaired angiogenesis, and/
or chronic inflammation as well as microbial infection 
in chronic wounds [35, 36]. By the inhibition of wound 

healing process, these complications resulted in delayed 
healing or even non-healing so which caused to 15% sur-
gical amputation of all diabetic patients, despite a care-
fully calculated diet and intensive medical treatment [37]. 
Consequently, desirable wound dressings with biomi-
metic multifunctional  features are indispensable to pro-
vide hemostasis, moisture retention, antibacterial effect, 
regeneration promotion capability, and ability to deliver 
bioactive agents. NF dressings/scaffolds are emerging 
technologies in wound healing making ECM-like net-
works that can deliver herbal/chemical drugs, GFs, and 
nanomaterials in a controlled manner as well as propel 
and promote cell proliferation and differentiation [28, 38, 
39].

Pancreatic TE and β cell replacement are another 
emerging areas in which NFs serve as a ECM-mimicking 

Fig. 2  Fibers with multifarious morphologies prepared by electrospinning. a–d Different NF assembly morphologies: a random oriented, b aligned 
as well as (c) patterned and (d) spider-web-like nano-fiber/net structures. e–q Various single NFs with (e) bead-on-string, (f) ribbon-like, (g) helical, 
(h) porous [30], (i) necklace-like, (j) firecracker-shaped, (k) rice grain-shaped, (l) core—shell, (m) multichannel tubular, (n) multi-core cable-like, (o) 
tube-in-tube, (p) nanowire-in-microtube and (q) hollow structures. Reproduced with permission from Ref. [21]
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matrix for support and growth of islet β‐cells and dif-
ferentiation of stem cell-generated β cells to treat DM. 
Using a bio-inspired hybrid scaffold is a novel approach 
to simulate pancreatic micro/nanoenvironment for pre-
serving survival and function of cells as well as promot-
ing cell differentiation into insulin-producing cells (IPCs) 
[27, 40]. It seems that these 3D scaffolds are a consider-
able candidate to hinder the limitations of current β cell 
production and islet transplantation (IT) to use in clinical 
pancreatic TE application.

Based on above-mentioned knowledge, the present 
study is focused on the capability of NFs-based platforms 
for therapeutics delivery, wound healing, and TE for DM 
treatment. At first, a brief description of electrospinning 
(ES) method as the most applicable technique for the fab-
rication of NFs and the characteristics of natural and syn-
thetic polymers applied for NF preparation are described. 
Then, we have reviewed various  studies  related to the 
incorporation of drugs/genes/GFs in NFs-based deliv-
ery systems. Afterward, the capability of NFs for DW 
healing/dressing is discussed. Finally, we addressed the 
usability of NF scaffolds to function as artificial ECM in 
pancreatic β cells replacement and TE for DM.

Fabrication methods and characteristics of NFs
As a significant matrix/scaffold, NFs are featured with 
small diameter, high porosity, high specific surface area, 
controlling of their composition, tailoring mechanical 
and surface features, and ease of synthesis [27, 41]. These 
structures possess proper sponginess for the absorption 
of exudates, highly  permeable to water vapor, allowed 
an effective exchange of oxygen, water, and nutrient, and 
also can be functionalized with different molecular moi-
eties [38]. The common strategies to create NFs include 
drawing solution blowing, self-assembly, template syn-
thesis, phase separation, and ES [42, 43]. ES techniques 
are considered the most used technique to enable the 
fabrication of continuous fibers in the nanoscale dimen-
sion from a wide-ranging of either natural and synthetic 
polymer or a combination of both polymers. ES acts as 
a remarkably robust, versatile, and one-step technique 
for fabricating ordered and complex NF architectures 
using a high voltage electrical field applied to a polymer 
solution or melt [44, 45]. Furthermore, fibers with varied 
morphologies could be fabricated via the control of pro-
cessing condition and modifying standard set up of ES to 
produce nonwoven fibers with randomly aligned, straight 
aligned, core–shell, ribbon, porous structures, and so on 
(Fig. 2) [21, 46].

Electrospun NFs with desirable physical character-
istics and high uniformity structure can be obtained by 
modulating the effective parameters, including param-
eters related to polymer solution, the electrospinning 

equipment, and environmental condition. Amid these, 
polymer solution parameters have a critical role in the 
formation of NFs with a broad range of sizes and mor-
phologies, including concentration and molecular weight 
of polymer, solution conductivity, and solvent volatility. 
Viscosity and surface tension of polymer solution pos-
sess a decisive role in the morphology and size of elec-
trospun NFs and are directly under the influence‏  of the 
molecular weight of polymer and solution concentra-
tion. Generally, low solution concentration that caused 
to low viscosity and high surface tension of the solution 
leads to the formation of beads and droplets, while very 
high solution concentration leads to blocking the capil-
lary tip and disturbing rate of charged polymer flow lead-
ing to appear helix-shaped fibers and/or fibers could 
not be formed [47, 48]. Besides, the molecular weight of 
polymer in a range suitable is necessary for the entangle-
ment of polymer chains in solutions so that low molecu-
lar weight solutions resulted in the formation of beads 
instead of fibers and high molecular weight inclined to 
form microribbons [47, 49]. A proper solvent is crucial 
for the dissolution of polymer and the formation of fib-
ers during the electrospinning jet elongation through the 
evaporation of solvent and phase separation. Applying 
solvents with a higher evaporation rate and boiling point 
can lead to the generation of surface roughness and pores 
on the surface fiber [48, 50]. The other important param-
eter, the solution conductivity is determined by types of 
polymer, solvent, and salt. In this regard, by increasing 
conductivity the electrospinning jet carries more charges 
as well as NFs with smaller diameters and fewer beads 
can be produced [49, 50]. Furthermore, the fabrication of 
NFs is affected by parameters related to the electrospin-
ning process (e.g., applied voltage, tip-to-collector dis-
tance, and feed rate) and environmental parameters in 
the spinning chamber (e.g., temperature, humidity, and 
air velocity), which all of these parameters must be opti-
mized [47–50].

In terms of length of NFs, they are produced and elon-
gated continuously from a few ‏µ‏m to tens of meters with 
distinctive orientation and alignment that are required 
to cater to particular demands in the biomedical field 
[51, 52]. Moreover, diameter of NFs is proportional to 
the various fabrication parameters as mentioned ear-
lier and could be adjusted from nanometer to microns 
[52]. Such extraordinarily small diameters can provide 
an extremely high surface-to-mass ratio (ranging from 1 
to 35  m/g depending on the fibers’ diameter), high and 
interconnected porosity as well as high accessible sites 
for functionalization and immobilization [53]. Besides, 
with control over the NF diameter, its mode of encapsu-
lation, and varying the morphology to core–shell type, 
the release kinetic from NFs mats can be modulated 
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[54]. The diameter and morphology of electrospun NFs 
possess similar to the human ECM in terms of scale and 
morphology, thereby they have ability to accelerate the 
process of cell functions e.g., adhesion, proliferation, and 
differentiation [54, 55].

The mechanical properties of nanofibrous scaffolds/
mats are depended on the different structural param-
eters such as fiber diameter, alignment, porosity, and 
spatial distribution of NFs [43]. Both elastic modulus and 
strength of nanofibers significantly increase with declin-
ing fiber diameter that is attributed to increment in the 
crystallinity, the densely packed lamellae, and aligned 
fibrillar structures [56].

Porosity is another outstanding parameter of NFs 
that  could be controlled the pore size distribution, 
by forming a highly open porous architecture and inter-
connected pore structure [57, 58]. Thus, they have a ben-
eficial effect on cell survival and proliferation as well as 
permit the transport of fluids and gases, the diffusion 
of nutrients, and prevention from bacterial infections 
[48]. Meanwhile, conventional hydrogels as another 
3D cross-linked polymer matrices are capable of imbib-
ing high water content, swelling without dissolving, and 
providing high porosity and elasticity [59, 60]. However, 
such hydrogels often lack fibrous structures and the ani-
sotropy features of native tissue ECM as well as possess 
insufficient mechanical strength [61]. Besides, precise 
control over porosity and the microarchitectural features 
of hydrogels still remained challenging issues [62]. In 
addition, several electrospun materials can able to form 
hydrogel NF systems with combined the desirable prop-
erties of both NF and hydrogel [63]. Particularly, porosity 
and swelling behavior significantly increased in hydrogel 
NFs due to their small pore size compare with conven-
tional hydrogels [63].

Characteristics of natural materials to NFs preparation
Since the components of designed NF scaffolds should 
be located in proximity to native ECM, thereby they are 
frequently fabricated of natural, biodegradable, and bio-
compatible materials. Naturally occurring materials have 
garnered much interest in the field of biomedical applica-
tions due to better biocompatibility, biodegradability, low 
immunogenicity, and moderate mechanical stability com-
pared to synthetic polymers [64]. Various biopolymers 
were utilized to make NFs for DM treatment which can 
be categorized into two major groups, polysaccharides 
and polypeptides; for instance, collagen, gelatin (Gel), silk 
fibroin (SF) of polypeptides, cellulose, chitosan (CS), hya-
luronic acid (HA), and alginate from polysaccharides.

Collagen is the most prevalent fibrous protein in the 
ECM of connective tissues and comprised up to 30% 
of the total protein mass of a multicellular animal [65]. 

Collagen is formed by self-assembly of collagen triple 
helices, providing tensile strength, regulate cell adhe-
sion, support chemotaxis and migration, and direct 
tissue development [66]. Denatured collagen, or Gel, 
has attracted a great deal of interest in NF synthesis, 
owning to its biological origin, biocompatibility, and 
excellent biodegradability with low immunogenicity 
and commercial availability at low cost [67]. The gel is 
derived from partial physical or chemical hydrolysis 
of collagen which is a soluble and amphoteric protein, 
enabling it to form a thermally reversible network in 
water because of alkaline and acidic amino acid resi-
dues [68, 69].

SF is amongst the most impressive natural materials 
is that abundantly utilized in a multitude of biomedical 
applications. SF is the main component of silk produced 
by some creatures like silkworms (Bombyx mori) [44]. 
The raw silk consists of two parallel fibroin filaments 
wrapped with the glue-like sericin protein [70]. SF is an 
amphiphilic block copolymer made up of hydrophobic 
and hydrophilic segments endowed with an amalgama-
tion of remarkable tensile strength and toughness, good 
biocompatibility, perfect proteolytic degradability, and 
thermostability [44, 70].

Like other groups of biomaterials, polysaccharides are 
frequently applied to develop NF structures in terms of 
their innate physicochemical properties. Cellulose is con-
sidered the most profuse polysaccharide due to its ubiq-
uitous nature and abundance as well as can be derivate 
to proper polymers for various utilizations. Thus, the 
most important acetate ester of cellulose, cellulose ace-
tate (CA), is a biocompatible, biodegradable, renewable 
compound with excellent chemical resistance [71–73]. 
CA was broadly used for a broad spectrum of utilities in 
different engineered architectures/forms e.g., NF struc-
tures [74]. Besides, CA is used more than cellulose to 
make NFs because of more capability to ES to generate 
nanoscale fibers [71].

As de-acetylated derivative of chitin, CS is a heter-
opolysaccharide composed of glucosamine and Nacetyl 
glucosamine units linked by β(1–4) glycosidic bonds. CS 
showed numerous inherent attributes e.g., biocompatibil-
ity, biodegradability, mucoadhesive ability, and anti-bac-
teria activity [19, 55, 75].

HA is a non-sulfated glycosaminoglycan with the 
pleiotropic function which is found abundantly through 
body. HA merits attention for biomedicine applications 
due to its fascinating properties, comprising biocom-
patibility, biodegradability, non-immunogenicity, high 
water retention ability, and high viscoelasticity [28, 69]. 
Moreover, HA enables to facilitate all phases of wound 
healing cascade and influences cell activities [19]. HA-
based NFs were reported as being very considerable 
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biomaterial for DW healing and developing bio-mim-
icking scaffolds for pancreatic TE applications.

Characteristics of synthetic materials to NFs preparation
Synthetic polymers possess especially benefits relative 
to natural polymers including easier ES with excellent 
mechanical strength, desired degradation rate, and 
proper thermal stability [55]. The most profuse syn-
thetic polymers used the fabrication of NFs for dia-
betics’ treatment can include polycaprolactone (PCL), 
poly vinyl alcohol (PVA), polylactic acid (PLA), poly 
lactic-co-glycolide (PLGA) copolymers, polyethylene 
glycol (PEG) as well as other less commonly used poly-
mers e.g., polyethersulfone (PES), poly 3-hydroxybu-
tyrate-co-3-hydroxyvalerate (PHBV), polyacrylonitrile 
(PAN) and so on. Although these polymers can be sepa-
rately used to produce NFs, they are mostly applied in 
combination with other natural and synthetic materials 
to achieve higher or combined advantages.

PCL is a sufficiently biocompatible and slowly biode-
gradable polyester with high mechanical strength and 
good thermal stability which was intensively studied 
as worthy material for fabrication of 3D architectures 
[27, 29, 44]. PCL NFs provide mimic natural ECM for 
TE utilizations which are employed as long-term drug 
delivery carriers, although its hydrophobic nature 
resulted in poor cell attachment and proliferation [34, 
55]. Combination with other hydrophilic polymers 
such as collagen, Gel, or CS and also high porosity on 
the surface of PCL NFs can obviate this limitation. PVA 
is other widely used synthetic polymers for NF fabri-
cation for treating DM which is a water-soluble, non-
toxic, biodegradable, and biocompatible polymer [55]. 
PVA NFs showed excellent mechanical properties and 
chemical resistance with a high swelling capacity [19, 
55].

PLA is a natural-derived thermoplastic polyester 
which is very popular for NF fabrication. It is in terms 
of the unique characteristics such as favorable biocom-
patibility, excellent bioresorbable, and good solubil-
ity [76]. PLGA, the most well-known copolymer, is a 
food and drug administration (FDA)-cleared synthetic 
polymer which is widely applied thanks to its unique 
features e.g., non-toxicity, biocompatibility, and pro-
cessability [76, 77].

As alluded to above, many types of NFs were applied for 
DWs treatment; however, unmet need for comprehensive 
investigation of therapeutic agents and cells delivery via 
nanofiber-based systems proposed for diabetic mellitus 
still remained. Thus, we aimed to focus the summary 
points of nanofiber-based systems effects on DM wounds 
as a novel therapeutic and preventive approach.

Insulin delivery
Insulin is a 5.8  kDa protein which plays an important 
role in regulating metabolism and enhancement of cell 
growth [78, 79]. The oral use of insulin is still challenging 
owing to easy degradation in the gastro-intestinal tract. 
Toward to end of prescribing insulin, several studies were 
carried out to develop the oral form of this protein [80, 
81]. Some studies tried to encapsulate the insulin into the 
nanoparticle or fibers to prevent the degradation in the 
stomach and early intestine [82–84]. Besides, insulin can 
be applied to the skin directly for a sustainable release 
system. Therefore, we tried to focus on studies consid-
ered nanoparticles in adjuvant to insulin in scaffolds to 
utilize in cell cultures and develop oral insulin.

Asako Nishimura et  al. applied insulin as a peptide 
model (PuraMatrix™, PM), promoting drug delivery after 
injection of insulin via a self-assembling nanofiber hydro-
gel scaffold which is called PM-insulin sol (PM-Isol). The 
findings displayed that the plasma level of insulin was 
increased with an increment of PM-Isol concentration. 
Moreover, the bioavailability and hypoglycemic efficiency 
of insulin was increased after subcutaneous injection of 
the PM-Isol [37]. Another study by Yan et  al. reported 
that they could construct a film from poly (vinyl alco-
hol-co-ethylene)/CS nanocomposite via a green and facile 
electrodeposition method. By decreasing pH, the perme-
ability of nanocomposite progressively increased. The 
releasing behaviors of this component can manage by the 
external imposing of electric signal [85]. Adnan Haider 
et  al. carried out a study to develop tissue engineering 
in orthopedic surgery. They revealed that PLGA insulin-
grafted hydroxyapatite nanorods composite nanofiber 
scaffold had increased osteoblastic cell growth. It may 
indicate that this scaffold released appropriate insulin 
molecules and insulin to enhance osteoblastic prolifera-
tion [86].

Shih-Jung Liu et al. developed loaded insulin into bio-
degradable core–shell nanofibers from PLGA by leading 
the solution from Insulin and PLGA into two capillary 
tubes using two pumps. This study revealed that nanofi-
brous core–shell insulin-loaded scaffold could decrease 
the quantity of type I collagen and increase the trans-
forming growth factor-beta (Fig. 3) [87].

Other study in Denmark that Karen Stephansen et  al. 
performed applied the bioactive electrospun fish sarco-
plasmic protein (FSP) for careering of small protein such 
as insulin to small intestine cells. Encapsulation of insu-
lin can prevent insulin degradation by chymotrypsin and 
12% increase of insulin transportation into cells by the 
interaction between nanofibers and Caco-2 cells which 
leads to open of tight junction proteins [88]. In a simi-
lar study by S. R. Dhakate tried to develop a transder-
mal patch from nanofibers of PVA and sodium alginate 
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electrospun composite with loaded insulin. Insulin was 
released sustainably from the developed nanofiber patch 
which was compatible with the commercial formulation. 
An encapsulation efficiency provides a satisfactory indi-
cation which obtained nanofibers act as a perfect carrier 
for sublingually delivery of insulin [89].

Michael G. Lancina et  al. used CS electrospun 
nanofiber polyethylene oxide scaffold to develop a car-
rier for insulin. Different ratios of Poly (ethylene oxide) 
(PEO) were utilized to regulate the morphology and 
physical characteristics of scaffold. They observed that a 
higher CS: PEO ratio in smaller fibers can result in more 
rapid insulin release. One interesting finding was that 
CS: PEO20 fibers 16 times higher preheatable to buc-
cal cells compared to free insulin. They suggested that 

electrospun CS nanofibers may able to use to produce 
oral insulin components [90]. Table 1 shows the charac-
teristics of mentioned investigations in detail.

It is believed that the conservation of the bioactive 
form of several biomolecules like proteins, growth fac-
tors, some other hormones, vitamins, and steroids for 
sustainable release from scaffold was required in tissue 
engineering. Besides, insulin-loaded scaffolds can be 
served as a sustainable release form to increase insulin 
proliferation. Several studies indicated that electrospun 
scaffolds can be suitable to apply in the wound and a 
combination of six biomolecules (vitamin C, hydrocorti-
sone, insulin, triiodothyronine, epidermal growth factor, 
and dihydroxyvitamin D3 needs to add to scaffolds which 
gradually deliver these components to wound.

Fig. 3  Functionally active insulin released from insulin-loaded nanofibrous scaffolds to accelerate the healing wound Reproduced with permission 
from Ref. [87]

Table 1  Various characteristics of nanofibrous delivery systems incorporated with insulin

a Not available data in the article

PuraMatrix™ acetyl-(Arg-Ala-Asp-Ala)4-CONH2, PGL plasma glucose level, PVA poly (vinyl alcohol), PE poly(ethylene), CS Chitosan, PLGA/nHA-I poly(lactide-co-
glycolide)/insulin-grafted hydroxyapatite nanorods, FSP fish sarcoplasmic protein, NaAlg sodium alginate, PEO poly(ethylene oxide)

Type of 
polymer/
material

Diameter of 
nanofiber 
(nm)

Applied cell type/animal Main finding Refs.

PuraMatrix™ –a Male Wistar rats PGLmarkedly decreased and maintained up to 24 h via subcutaneous 
route

[37]

PVA-co-PE/CS 100–600 – Nanofibers with the electrochemically controlled release system [85]

PLGA/nHA-I 520 Osteoblastic cells (MC3T3-E1) Accelerate the cell adhesion, proliferation, and differentiation of the 
osteoblastic cells

[86]

PLGA 432 ± 106 Atrial fibroblasts/prague–Dawley rats Supported accelerated wound healing and favored epithelial cell 
proliferation

[87]

FSP 360 ± 37 Caco-2 cells Physically protect the degradation of insulin and increased transport 
crossing the cell monolayer

[88]

PVA/NaAlg 300–400 Induced diabetes Wistar rats The composite nanofibers serve as an ideal carrier for the delivery of 
insulin via the sublingual route

[89]

CS/PEO 200–2000 3T3-L1 preadipocyte cells/ex-vivo 
porcine buccal mucosa

Nanofiber mats capable of delivering insulin via the buccal mucosa [90]
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Growth factors and gene therapy
NFs decorates with different GFs and DNA, or RNA mol-
ecules are significant tools for diabetic ulcer treatment. 
Most small molecules delivered using NFs are intended 
to increase damaged cell viability, promote migration and 
their proliferation. Furthermore, GFs are used to increase 
angiogenesis around ulcers which affects healing process 
(Table 2).

GFs and genes delivery systems via NFs networks 
could be carried out via two different approaches. In first 
approach, bioactive molecules (i.e., proteins) form NFs 
network, which could carry GFs or act alone at the ulcer 
site. The latter was applied as biocompatible and biode-
gradable polymers to form NFs networks which act as a 
carrier.

The heparin-mimetic peptide was used to prepare bio-
active NFs networks for IT. NFs were prepared during the 
self-assembly process, which is driven by noncovalent 
interactions [91]. Heparin-binding peptide amphiphiles 
(HBPAs) formed NFs networks via self-assembly pro-
cess using PLA matrices. Then, the fiber was decorated 
by vascular endothelial growth factor (VEGF) and fibro-
blast growth factor 2 (FGF2) for IT. HBPAs protect GFs 
from proteolysis and activate them for signaling pathway. 
Moreover, the peptide affected GFs release in  vivo and 
resulted in having more control on release profile [92].

PCL NF was used to design a carrier system for an 
endothelial growth factor (EGF) and graphene oxide 
(GO) simultaneously [93]. EGF in mixture with PCL and 
GO affected nitric oxide synthase 3 genes expression in 
the vascular VEGF pathway.

The combination of different polymers for NF syn-
thesis was mostly employed in numerous studies due 
to designing a wide range of NF mesh in terms of phys-
icochemical and mechanical properties. In combina-
tion with PEG as diblock copolymer, PCL was used for 
DNA delivery [94], small interfering RNA [94], plasmid 
human epidermal growth factor (phEGF) [95], and multi-
ple GFs (i.e., basic fibroblast growth factor (bFGF)/EGF) 
[96]. Release control of DNA and RNA is usually done 
using linear polyethyleneimine (LPEI) immobilized on 
NF. LPEI linker was cleavaged by matrix metalloprotein-
ase existed in high concentration at diabetic ulcer. The 
release profile of LPEI mediated NFs delivery systems 
were controlled by LPEI/NFs ratio [94, 95]. Different 
proteins could be simultaneously immobilized via dif-
ferent physical and chemical methods on NFs. The bFGF 
was loaded in coaxial electrospun PCL/PEG NFs, then 
EGF was attached on fiber surface using a simple peptide 
bond (i.e., amine group of the fiber and carboxyl group 
of the GF). The capability of NFs to design binary release 
systems resulted in accelerating wound healing [96]. 
PCL was electrospun with PCL-PEG block copolymer to 

form NFs mat having functional amine group on the sur-
face. Then, amine group was used for EGF immobiliza-
tion. Functional group density affected loading capacity 
and release profile of EGF, which was simply adjusted by 
PCL/PCL-PEG ratio [97].

PLA as another common polymer was used as PLGA 
[25, 98], PVA/PLA [23], poly (ethylene glycol)-poly(dl-
lactide) (PELA) [99] for NFs preparation which delivers 
platelet-derived growth factor (PDGF), Connective tis-
sue growth factor (CTGF), and basic fibroblast growth 
factor (bFGF), respectively. The electrospun PDGF and 
PLGA/antibiotic were obtained using different needles 
to prepare co-axial sheath-core NFs. NFs sustain release 
antibiotic and GF preventing ulcer infection and promot-
ing cell viability simultaneously [98]. PLGA-decorated 
cellulose nanocrystal (CNC) was used for the delivery 
of inflammatory mediators which affected diabetic foot 
ulcer (DFU) healing. PLGA/CNC NFs were prepared in 
one step by adding CNC in PLGA solution before ES pro-
cess. CNC improved PLGA mechanical properties and 
increased cell response (attachment, migration, and pro-
liferation) at diabetic ulcer sites in vivo [100]. In another 
work, PVA was used as a core polymer for CTGF delivery 
in core-sheath NFs. PLA as a sheet resulted in having a 
porous medium which facilitates release profile control 
[23].

NFs can deliver different small molecules to ulcer sites. 
As mentioned earlier, different proteins and nucleic 
acids were loaded inside of NFs or attached on the sur-
face of fiber using functional groups. Using nanoparticles 
(NPs) that carry special GF incorporation by NFs results 
in increasing release time and loading capacity. Gela-
tion NPs (GN) were used to VEGF and PDGF delivery 
systems which exploited collagen and HA as NFs mesh. 
VEGF-loaded GN and bFGF HA solution and PDGF/
VEGF-loaded GN and EGF collagen solution were elec-
trospun during dual source dual power process. The 
obtained NPs-decorated NFs released four different GFs 
simultaneously (Fig. 4), which revealed the potential and 
capacity of NFs to deliver bioactive agents [101].

Cell delivery and tissue engineering
Currently, one of the most effective methods for DM 
treatment is the replacement of IPCs using TE and regen-
erative medicine approaches. In this regard, IT, pancre-
atic TE, and cell replacement therapy by assisting fibrous 
scaffolds have emerged as powerful platforms with 
immense potential in DM treatment.

IT has been suggesting a perpetual treatment for DM 
patients which was providing some progress in clini-
cal practice. Besides, It is divided into intrahepatic and 
extra-hepatic sites, proposing its advantages and disad-
vantages [104–107]. Several restrictions and limitations 
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are present for the  islet  transplant  procedure mostly 
maintaining viability and the functionality of islets after 
transplantation are limited by the loss of integrity and 
destruction of blood vessel networks as well as lack of 
proper access to nutrients and GFs [95, 108]. Moreo-
ver, the development and clinical application of IT have 
encountered some restrictions including insufficient 
donor source for transplantation, damage to the ECM 
of islets during the process of isolating by collagenase 
and patients need to take immunosuppressive agents 
for a lifetime [76, 109]. Therefore, it is essential to 
establish a suitable mechanically and biologically sup-
portive scaffold/environment to improve islet culturing 
and transplantation efficiency. In this regard, NF sys-
tems open a new avenue to design advanced nanoenvi-
ronments for IT.

The preliminary study for developing NF scaffolds 
intended for islet cell transplantation was undertaken 
by Saahir Khan et al. [110]. They developed a glucagon-
like peptide 1-mimetic peptide amphiphiles (PA) self-
assembled NF gels to encapsulate RINm5f cells which 
could enhance insulin release and proliferation of 
encapsulated β-cells. Another PA NF, heparin mimetic 
nanofibrous gels, was employed in the long-term cul-
ture of islets as a new therapeutic approach for type 1 
DM. The findings indicated that ECM-like environment 
by PA NFs provided with the ability to enhance islets 
viability, angiogenesis, and more efficient IT [95].

The possibility of PCL electrospun NF scaffold for an 
increment of growth and differentiation was confirmed 
as a good nanoenvironment for the differentiation of 
human-induced pluripotent stem cells (iPSCs) to endo-
dermal cells (as precursors of hepatocytes and pancreatic 
cells) which revealed high viability, growth, and dif-
ferentiation [70]. In another study, a biomimetic hybrid 
scaffold composed of electrospun SF and pancreatic 
decellularized ECM was developed for islet survival that 
had shown improved islet survival and promoted insu-
lin secretion [111]. Whereas, the differentiation capa-
bility of conjunctiva mesenchymal stem cells (MSCs) 
into IPCs were studied on natural SF NFs and compared 
with synthetic PLA NF scaffolds which resulted in more 
pancreatic gene expression and higher insulin secretion 
by synthetic scaffolds [102]. Furthermore, the potential 
of unadulterated synthetic scaffolds including CA, PES, 
and polytetrafluoroethylene as active materials for islet 
cell encapsulation was evaluated. ES process can cause 
induced hydrophobicity to electrospun membranes 
which restrict cell attachment, preserving their inherent 
organization and cells maintained in an aggregated form 
compared to commercial ones [112]. In another pan-
creatic TE study, Yang B et  al. subcutaneous space had 
chosen as an extra-hepatic site for IT. PVA/silicone NFs 
conjugated with VEGF were applied for subcutaneous 
IT [113]. The corresponding procedure is represented 
in Fig.  5. They found that modified NFs had no delete-
rious effect on cell viability, raised neovascularization, 

Fig. 4  NFs preparation process for immobilization of four different GF using gelation NPs and dual source dual power ES. Reproduced with the 
permission from reference [101]
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and induced mild inflammation, thereby the function of 
subcutaneously transplanted islets was augmented in dia-
betic mice.

Cells, scaffolds, and growth-stimulating factors are 
the main triad for TE and cell delivery. Numerous stud-
ies were undertaken to provide the right environment 
for pancreatic islet seeding and culture. At this point, 
NF scaffolds have attracted great attention for pancreatic 
TE due to their plentiful benefits. Sojoodi et al. reported 
the culture of rat islets on synthetic laminin-coated poly-
amide electrospun NFs that induced comparable gene 
expression to adult β cells and enhanced maintenance of 
functional islets [114]. Besides, coating β cell membranes 
onto PCL/poly-d-lysine electrospun NFs offered a natu-
ral environment recapitulating cell–cell interaction and 

significantly enhanced β cell function and proliferation 
rate [115]. In similar studies, the pancreatic differentia-
tion capacity of induced iPSCs into IPCs on electrospun 
PES NFs [116] and collagen-coated PES NFs [117] were 
evaluated. The finding reveals that both scaffolds caused 
the expression of pancreatic tissue-specific markers and 
proteins at a high level and promoted differentiation of 
hiPSCs into IPCs.

In another study published by Enderami et  al., PLA/
PVA scaffolds were exploited as a substrate for the dif-
ferentiation of iPSCs into IPC [118]. It was reported that 
the expression of pancreas-specific transcription fac-
tors considerably increased and IPCs formed spherical-
shaped cell aggregations morphologically was similar 
to that of pancreatic islet cells [118]. Likewise, the same 

Fig. 5  Schematic illustrating the device-less (DL) procedure and DL in the combination of SiO2-VEGF scaffolds for IT at subcutaneous. It comprised 
of 3 steps including: A A silicone/nylon catheter was pre-implanted subcutaneously (A1) (red arrow) to prevascularization and removed after 
14 days; B islet isolation and SiO2-VEGF NFs wrapping (Blue mats = NFs, yellow dots = VEGF). (B1: wrapped islets; B2: expanded mouse islet for 
isolation; B3: syngeneic islets are isolated and collected (bar = 100 µm); B4. islet viability is detected by live/dead assay (bar = 100 µm)); C islet or 
wrapped islet (C1) transplantation in the prevascularized percutaneous cavity in diabetic mice. Reproduced with the permission from reference 
[113]
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NF scaffolds were applied to promote the differentiation 
of adipose‐derived mesenchymal stem cells (ADMSC) 
into IPCs which resulted in a long time IPCs survival 
and function of cells [119]. The transplantation of pan-
creatic β cell precursors derived from human Whar-
ton’s jelly MSCs by culturing on PLA/CS NF scaffold in 
a diabetic mice model resulted in a significant decline in 
blood glucose level and an increase in insulin levels after 
transplantation [120]. Moreover, the possibility of PLA/
CS nano-scaffold treated with zinc oxide (ZnO) NPs to 
differentiate human endometrial stem cells (EnSC) into 
IPCs was assessed aiming at DM cell therapy [121].

As other NF scaffold, SF was constructed to simulate 
the pancreatic microenvironment for differentiation of 
iPSCs into IPCs which significantly evoked proliferation 
of the hiPSCs and its differentiation potential into IPCs 
[122]. Furthermore, IPC differentiation potency of hAD-
SCs was examined on a hybrid NF scaffold composed of 
SF and PES polymers. This hybrid scaffold provided an 
in  vivo-like 3D microenvironment, enabling to promote 
the proliferation and differentiation of hADSCs into IPCs 
[123]. Recently, a cell-co-polymer complex constructed 
from PHBV NFs was developed to differentiate human 
iPSCs into IPCs which increased the survival of iPSCs, 
the amount of IPC relevant genes and insulin secretion 
[124].

As a proper candidate for cell therapy and pancreatic 
TE in a diabetic’s autologous transplantation, hADSCs, 
were applied to induce efficient differentiation into IPCs 
in the presence of PVA NFs and platelet-rich plasma. The 
differentiated IPCs showed the expression of beta cell 
markers of differentiation together with enhanced prolif-
eration capability and insulin production [125]. Abazari 
et al. fabricated a 3D NF scaffold comprised of PCL and 
PVA polymers which provided a suitable synthetic ECM 
for the improvement differentiation of hiPSC to IPCs 
[126]. The differentiation potency of human endome-
trial stem cells (EnSC) from definitive endoderm cells 
on PAN scaffolds in culture medium containing Y-27632 
molecules  was also confirmed that the expression of 
pancreatic precursor markers elevated considerably. 
Subsequently, differentiated cells transplanted into the 
peritoneal cavity and/or injected via the tail of diabetic 
rats that the former caused a lower blood glucose con-
centration, and the latter was more effective in increasing 
the bodyweight of rats [127].

Thanks to the ability to mimicking native ECM archi-
tecture using electrospun NFs, cell-based therapies have 
warranted enormous attention in DW healing and skin 
regeneration. PCL‐Gel scaffold associated to CD93+ 
hematopoietic stem cells was used as a suitable tissue‐
engineered construct in DW healing. They found that 
the CD93+ cells are enabled to accelerate the healing and 

closing of diabetic ulcers by upregulating VEGF expres-
sion level and downregulating death‐associated protein 
kinase 1 expression level at the wound sites [128]. In a 
subsequent study, wound healing effects of 3D scaffolds 
comprised of radially-aligned and/or vertically-aligned 
NFs in conjunction with bone marrow MSCs were evalu-
ated for DW healing applications [129]. 3D scaffolds were 
capable of enhancing the biological functions of laden 
cells, regulating the local inflammation, and allowed 
wounds to heal via promoting angiogenesis, improv-
ing the formation of granulation tissue, and increasing 
collagen deposition. Moreover, the results showed that 
radically-aligned scaffold could accelerate wound heal-
ing via the re-epithelialization of superficial wounds 
(DFU = stages 0–1) and vertically-aligned scaffold was 
able to enhance the formation of granulation tissues of 
deep wounds (DFU = stages 2–3) (Fig. 6) [129].

An exclusive multi-functional TE architecture was con-
structed with GO-PEG synthesized with quercetin (Que) 
and then loaded on the surface of artificial acellular der-
mal matrix (ADM) scaffolds (ADM-GO-PEG/Que), 
which can provide the biodegradable, biodegradable, 
cell-adhesive substrates with great stability. The resulting 
hybrid scaffold meaningfully promoted MSCs adhesion, 
proliferation, and differentiation into osteoblast and adi-
pocyte as well as accelerated DW healing by promoting 
collagen synthesis and improving capillary construction 
[130].

Table 3 represents some of the main features of above-
mentioned studies in this section. This table provides 
the characteristics of polymers/materials, incorporated/
modified agents, and the fiber diameter of scaffolds 
as well as the differentiated cell type and their main 
achievement/applications.

Therapeutics delivery for wound healing
Wound healing is one of the most sophisticated, highly 
regulated processes in the human body that is crucial for 
the restoration of tissue integrity and maintaining the 
barrier function of the skin. It involves the spatial and 
temporal synchronization and interplay of several cells, 
growth factors, and cytokines. It consists of sequential 
phases as the natural progression of a completely healed 
wound, including hemostasis, inflammation, prolifera-
tion, and remodeling, occurring within the immediate 
hours, days 1–4, days 4–21, and days 21-years after an 
injury, respectively [131]. Wounds can be caused by non-
pathologic or pathologic conditions such as diabetes. A 
diabetic skin ulcer is one of the foremost complications 
of DM which can cause severe disorders e.g., DFU and 
even  lower  extremity  amputations [132]. Numerous 
investigations were considered the potential procedures 
of therapeutic agents- loaded electrospun NF mats as a 
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wound dressing to rapidly regenerate the structural and 
functional properties of injured skin in patients with DM 
[132–138]. Among these agents, antidiabetic drugs such 
as metformin (Met) and glibenclamide received much 
attention. Besides, the various synthetic and natural 
materials, including a blend of biocompatible and biode-
gradable polymers with or without the mentioned agents 
were extensively applied to fabricate NFs for wound heal-
ing applications.

For this purpose, we attempted to represent all capa-
ble polymers used as a wound dressing, including PVA/
PCL, hydrogel-based, CS-based, cellulose-based, metal-
based, and miscellaneous NF mats intended for DW. 
Besides, we investigated all in  vitro and in  vivo studies 
which examined the application of different therapeutic 

agents-loaded NF systems to treat DM or its complica-
tions e.g., DWs.

PVA/PCL‑based mats
PVA‑based mats
Regarding small-molecule, Sena et  al. produced PVA/
PLA core–shell NFs containing Met that resulted in sus-
tained release and good cell compatibility intended for 
DW healing [139]. Basha et al. prepared an electrospun 
fibrous scaffold containing PVA/curdlan blend by the 
addition of silver nitrate-based antimicrobial activity. 
The results from in  vitro and in  vivo studies presented 
noteworthy wound healing and better cell spreading and 
faster healing of removal wounds in diabetic rats, respec-
tively [140]. In another study, Chouhan et al. investigated 

Fig. 6  Schematic diagram describing the use of 3D scaffolds comprised of radially or vertically aligned NFs together with BMSCs for the treatment 
of DWs along with their potential mechanisms. A Illustration of radially aligned NFs applied for healing stage 0 and stage 1 DFU, with the potential 
mechanisms comprising improving angiogenesis, granulation tissue formation, ECM deposition, and re-epithelialization (C). B Illustration of 
vertically aligned NFs applied for healing stage 3 and stage 4 DFU, with the potential mechanisms comprising improving promoting granulation 
tissue formation, angiogenesis, and ECM deposition (D). Reproduced with the permission from Ref. [129]
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Table 3  The characteristics of fibrous scaffolds applied in cell delivery and TE intended for treating DM

Type of polymer/material Incorporated/modified 
agents

Diameter of fibers (nm) Applied cell type to 
differentiation

Main achievement/
application

Refs.

Glucagon-like peptide 1 –a 10 Rat insulinoma cells A proper cell-encapsulating 
network for enhanced 
activity and proliferation 
of IPCs

[110]

Heparin mimetic peptide 
amphiphilic

VEGF and FGF2 20–30 Pancreatic islet Nanofiber gel platform for 
islet culture and transplan‑
tation

[95]

PCL – 200 hiPSCs An ideal scaffold for dif‑
ferentiation of hiPSCs in 3D 
culture

[70]

SF and pig pancreatic 
decellularized ECM

– 97–707 Mouse islet A promising candidate for 
pancreatic TE

[111]

CA, PES, and PTFE – 365 ± 136 (CA), 
224 ± 140 (PES), 
261 ± 140 (PTFE)

– Potential for islet cell 
encapsulation application

[112]

PVA /Silicone VEGF 4–10 Mouse islet The ECM to improve the 
vitality of subcutaneous 
islet transplantation

[113]

SF/PLA – – Conjunctiva
MSCs

A potential supportive 
matrix for islet TE

[102]

Polyamide Laminin – Pancreatic β cell Providing an ECM-like 
system for islet culture

[114]

PCL/poly-D-lysine MIN6 cell membrane 50–280 Pancreatic β cell As scaffolds to culture beta 
cells

[115]

PES – – hiPSCs A 3D matrix to enhance 
pancreatic differentiation 
of hiPSCs

[116]

PES Collagen coating – hiPSCs As a potential scaffold 
for pancreatic TE and 
regenerative medicine 
applications

[117]

PLLA/PVA Oxygen modification – hiPSCs As an ideal scaffold to pro‑
vide a microenvironment 
for pancreatic differentia‑
tion

[118]

PLLA/PVA – – hADSCs A suitable option in pan‑
creatic TE

[119]

PLA/CS – 70,000 Human Wharton’s jelly 
MSCs

A precursor for cell trans‑
plantation for diabetes 
treatment

[120]

PLA/CS – 70–100 EnCSs An ideal scaffold for IPCs 
development for diabetes 
mellitus cell therapy

[121]

Silk – – hiPSCs A great potential to use 
in clinical pancreatic TE 
application

[122]

Silk/PES – – hADSCs As a supportive matrix to 
mimic 3D in vivo microen‑
vironment

[123]

PHBV – 900 ± 600 hiPSCs As a promising cell-
copolymer construct for 
pancreatic TE

[124]

PVA Oxygen plasma – hADSCs A new approach for 
pancreatic TE and β cell 
replacement therapies

[125]

PCL/PVA – – hiPSCs A new approach to beta-
like cells replacement 
therapies and pancreatic TE

[126]
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wound healing efficiency of dressings generated of vari-
ous SF diversities blended with PVA intended for alloxan‐
induced diabetic rabbit model. The results confirmed 
that the potential of non‐mulberry SF (NMSF)‐based bio-
active dressings could regulate ECM deposition resulting 
in earlier and widespread treatment of chronic diabetic 
cutaneous wounds [141].

PCL‑based mats
Curcumin (Cur), a plant-derived polyphenolic compound 
with anti-inflammatory, anti-bacterial, anti-oxidant, and 
angiogenic characteristics, was incorporated in two dif-
ferent NFs scaffolds, including PCL/GT and PCL, which 
enhance healing properties in both of them [142]. Fabri-
cation of Cur-loaded PCL/gum  tragacanth  (GT) (PCL/
GT/Cur)  electrospun NFs  with/without MSCs were 
investigated for wound healing in diabetic rats as well 
as antibacterial activity of these mats was studied. The 
resultant obtained from final mats with MSc approved 
that all quantification analysis of mats can be more 
potent than GT/PCL/Cur NFs [143]. In a similar study, 
the fabrication of electrospun PCL/Gel NFs loaded with 
Aloe Vera (AV) and Hypericum perforatum oil (HPO) 
was individually considered for the wound healing appli-
cations. Obtained results revealed that HPO-loaded mats 
played an effective role in healing DWs than AV [144]. In 
another study, Bixin, a carotenoid derived from the seeds 
of the Annatto plant (Bixa orellana L.) with antioxidant 
and anti-inflammatory activity, was loaded to PCL NFs as 
a wound dressing which alleviates scar tissues and accel-
erates DW healing [145].

Based on a novel approach, Zehra et  al. designed to 
improve PCL-based oxygen-releasing electrospun mats 
and assess their value for enhancement of wound heal-
ing process in diabetic rats. The experimental results, 
including cell studies, chorioallantoic membrane, and 
histological assessment indicated that PCL-sodium per-
carbonate dressings could constantly generate oxygen 
within 10  days. The developed oxygen-generating mats 
could be applied for well-organized recovery of chronic 
DWs [146].

Some studies have applied the combination of antidia-
betic agents to enhance the wound healing properties of 
NF wound dressing. In a study conducted by Cam et al. 
pioglitazone (Pio), Met, and glibenclamide were loaded 
alone or in combination (Pio and Met or Pio and gliben-
clamide) with either CS/Gel/PCL or Polyvinylpyrrolidone 
(PVP)/PCL NF scaffolds by ES and pressurized gyration, 
respectively to compare their efficacy in DW healing. 
Their results suggested that CS/Gel/PCL scaffolds loaded 
by the combination of Pio and Met offer a suitable choice 
for DW dressing [147]. In a similar study, Yu et  al. suc-
cessfully prepared an asymmetric wettable composite 
mat with an extremely hydrophobic outer layer includ-
ing PCL on nylon mesh with microporosity as well as 
the hydrophilic inner layer was attained using ES of Pio-
merged Gel-Pio for DW healing (Fig. 7). The developed 
mat can boost the wound healing process by stimulating 
cell proliferation, angiogenesis, collagen deposition, and 
re-epithelialization [148].

Rehman Khan reported an electrospun poly (l-lac-
tide-co-caprolactone) (PLCL) NF loaded with ZnO 
NPs and oregano essential oil, applying a novel loading 

a Not available data in the article

PCL polycaprolactone, hiPSCs human-induced pluripotent stem cells, CS Chitosan, SF silk fibroin, VEGF vascular endothelial growth factor, FGF2 fibroblast growth factor 
2, TE tissue engineering, ECM extracellular matrix, CA cellulose acetate, PES polyethersulfone, PTFE polytetrafluoroethylene, PVA polyvinyl alcohol, PLA polylactic acid, 
PLLA poly (l-lactic acid), MSC mesenchymal stem cell, hADSC human adipose-derived stem cells, hESCs human embryonic stem cells, EnSCs endometrial stem cells, IPCs 
insulin-producing cells, PHBV poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PEG polyethylene glycol

Table 3  (continued)

Type of polymer/material Incorporated/modified 
agents

Diameter of fibers (nm) Applied cell type to 
differentiation

Main achievement/
application

Refs.

Polyacrylonitrile – 250 Human endometrial cells Transplantation of pancre‑
atic precursor from endo‑
metrium for the treatment 
of diabetes

[127]

PCL/gelatin – – Rat CD93+ hematopoietic 
stem cells

As a more appropriate tis‑
sue‐engineered construct 
in DW repair

[128]

PCL/pluronic-F-127 – – Bone marrow MSCs Personalized 3D scaffolds 
with controlled structure 
for DW healing

[129]

Natural and artificial acel‑
lular dermal matrix

Graphene oxide- PEG-
mediated quercetin

– MSCs A suitable architecture and 
environment for cell attach‑
ment and proliferation

[130]
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approach, able to sustainedly co-deliver bioactive agents. 
The bioactive mats critically drove the angiogenesis 
through the expression of VEGF. Furthermore, the pro-
posed system effectively completed the inflammatory 
cycle using inhibiting pro-inflammatory cytokines inter-
leukin-6 (IL-6) and matrix metalloproteinases-9 (MMP-
9) [149].

Lv et  al. designed a conducive PCL/Gel NF scaf-
fold loaded by nagelschmidtite (Ca7P2Si2O16) particles, 
a silicate-based bioceramic, for DW dressing (Fig.  8). 
The composite scaffolds released the silicate ions in a 

sustained release manner during the degradation of NFs 
and showed accelerating wound healing by induction of 
collagen deposition, re-epithelialization, and angiogen-
esis [150].

Dimethyloxalylglycine (DMOG) can improve angio-
genesis and tissue repair by inhibiting prolyl hydroxy-
lases, an enzyme responsible for the degradation of 
hypoxia-inducible factor-1α (a key transcription factor 
which regulates angiogenesis in hypoxic conditions; e.g. 
wounds microenvironment). In one study, Goa et al. pre-
sented DMOG-loaded mono-axial and co-axial PCL/

Fig. 7  Conceptual design of an asymmetric wettable composite mat consisting PCL-Gel-Pio for DW healing. Reproduced with permission from Ref. 
[148]

Fig. 8  Conceptual design of Ca7P2Si2O16-loaded conducive PCL/Gel for wound healing process in diabetic mice. Reproduced with permission from 
Ref. [150]
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collagen for the wound healing process. The results con-
firmed that proposed system stabilized local hypoxia-
inducible factor 1α levels in wounds and consequently 
enhanced the DW regeneration by speeding up re-epi-
thelialization angiogenesis [151].

PVA‑PCL mats
Fabrication and characterization of electrospun scaf-
folds including GT, PCL, and PVA were studied to heal 
diabetic ulcers. Histological analyses of mats holding 
stem cells into diabetic rats displayed tissue healing and 
regeneration consisting of re-epithelization and collagen 
formation within 15 days. Finally, the authors concluded 
that made-up NFs with remarkable mechanical and bio-
logical characteristics are promising scaffolds in wound 
healing of diabetic ulcers [152].

Gholipour-Kanani et  al. fabricated different combi-
nations of CS: PVA and PCL: CS: PVA electrospun bio-
logical scaffolds on diabetic dorsum skin wounds and 
diabetic foot wounds on rat models. Pathological results 
showed much better healing efficacy for test samples 
as well as proved the presence of more pronounced 

granulation tissues in scaffold-treated wounds compared 
with the control ones [153].

Nanofibrous hydrogel‑based mats
Liu et al. developed an absorbable NF hydrogel contain-
ing electrospun thioether grafted hyaluronic acid NFs 
(FHHA‐S/Fe) for a synergistic pattern of inflamma-
tion microenvironment to speed up chronic DW heal-
ing (Fig.  9). FHHA‐S/Fe treatment was more effective 
on the chronic DW model than that of FHHA/Fe with-
out grafted thioethers, specifically in the initial wound 
healing stage. Hence, this simple dressing plan with fun-
damental dual modulation mechanisms of the wound 
inflammation microenvironment could play an impres-
sive and safe therapeutic strategy for chronic DW [133].

In a similar study, self-assembling NF gel encapsulated-
polydeoxyribonucleotide (PDRN) were fabricated to dis-
cover the treatment efficacy of chronic wounds in the 
diabetic animal model. The results obtained from human 
embryonic (HE) staining and immunohistochemical 
confirmed that poly-N-acetyl glucosamine (sNAG), and 

Fig. 9  Schematic illustration of the absorbable thioether grafted hyaluronic acid nanofibrous hydrogel for synergistic modulation of the 
inflammation microenvironment to accelerate chronic DW healing. Illustration of the preparation procedure of FHHA-S/Fe, dressing of FHHA-S/
Fe on full-thickness wound model in diabetic C57BL/6 mouse, and the mechanism of FHHA-S/Fe for enhanced chronic wound healing effect. 
Reproduced with permission from Ref. [133]



Page 19 of 34Maleki et al. J Nanobiotechnol          (2021) 19:317 	

sNAG encapsulated-PDRN might ameliorate wound 
healing [154].

A novel wound care hydrogel-based product consist-
ing of turmeric, oregano, and CS NPs diminishes inflam-
mation, clear infection, and enhances wound healing 
in ulcers in diabetic rats. The proposed system can be 
applied as an effective scaffold in diabetic and non-DWs. 
This combination can also be applied as a potent new 
product that is antibacterial, anti-inflammatory, and anti-
oxidant even though in low concentration [155].

TEMPO-oxidized sacchachitin nanofibers (SCNF) and 
microfludized SCNF were fabricated to form a 3D gel 
structure as an ideal hydrogel-based mat. The proposed 
hydrogel-based mats exhibited greater potentials in tis-
sue regeneration as well as accelerated DW healing due 
to their exclusive physical and chemical properties [156]. 
Beta-glucan (βG), a major component of saccharomyces 
cerevisiae cell wall with immunomodulatory proper-
ties which can improve angiogenesis and tissue repair 
by inhibition of prolyl hydroxylases. In hydrogel-based 
study, βG-loaded hydroxypropyl methylcellulose and pol-
yethylene oxide were prepared to improve DW healing 
[157].

Chitosan‑based mats
Chogan et  al. also showed that using a three-layer mat 
containing two PCL-CS layers on each side and an 
inside layer of PVA-Met could stimulate wound healing 
and mitigate skin fibrosis by down-regulation of genes 

involved in fibrosis [158]. Ahmadi Majd et al. fabricated 
PVA/CS electrospun NF wound dressings and used them 
to induce in diabetic rats. Obtained results revealed that 
PVA/CS NFs significantly improved wound healing in 
diabetic rats [159]. In another study, Ahmed et al. applied 
a mixture of CS, PVA, and ZnO as an effective possibil-
ity for an accelerated healing process owing to the wound 
healing activities of CS-PVA NFs and  the antibacterial 
ability of ZnO [160].

Gel-based electrospun NFs, including Cur and Lith-
ospermi radix extract were electrospun onto CS scaf-
folds to produce bilayer NF scaffolds as well as the final 
mat was applied to enhance the wound healing process 
in diabetic rats. The proposed mat indicated high anti-
inflammatory effects and a satisfying recovery rate within 
7 days for chronic DW [161].

Chen et  al. prepared nanobioglass integrated CS-PVA 
trilayer electrospun NF membrane (nBG-TFM). The as-
prepared membrane indicated outstanding biocompat-
ibility, antibacterial activity, and regeneration promotion 
effect (Fig. 10). The obtained system displayed shed new 
light on scheming functional wound dressings, which can 
ameliorate the healing of chronic wounds [162].

Cellulose‑based mats
Bacterial cellulose (BC)/Gel NFs loaded with glybencla-
mide and Met were produced using a transportable elec-
trohydrodynamic gun for DW healing by Emin Cam et al. 
(Fig.  11). This study’s results revealed both antidiabetic 

Fig. 10  Schematic illustration of CS-PVA- electrospun NFs intended for chronic and acute wounds. Reproduced with permission from Ref. [162]
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drugs-eluting dressing enhance DW healing. However, 
glibenclamide loaded scaffolds had better results [163].

Sesamol, one of the phenolic compounds of a ses-
ame seed, was loaded into CA-zein composite NF that 
resulted in accelerated reepithelization and improvement 
in DW healing [164].

Almasian et  al. prepared a new polyurethane (PU)-
based NF scaffolds with different amounts of carboxyme-
thyl cellulose (CMC) comprising Malva sylvestris extract, 
and they assessed their consequence on DW healing pro-
cess. The extract-loaded PU/CMC presented high col-
lagen deposition and neovascularization in treated DW 
compared with a gauze bandage and bare PU/CMC [165].

Metal‑based mats
Li et  al. prepared a cobalt-based metal–organic frame-
work (MOF, ZIF-67) into micro-patterned PLLA/Gel 
NF scaffolds as a carrier for loading a small molecular 
drug (DMOG). The results confirmed that cobalt-based 
metal–organic framework as a dual cooperative control-
lable release system provides a new strategy for eliminat-
ing inflammation, enhancing collagen deposition and 
angiogenesis, and promoting DW healing [166].

El-Lakany et  al. used copper (Cu)-grafted GO-
crosslinked zein scaffolds as a DW dressing and showed 
promising results [167]. In another study, an electrospun 
Cu-based MOF (HKUST-1) was presented as a NO-load-
ing carrier, and a NO sustainable release system with the 
core–shell structure was considered (Fig. 12). The results 
confirmed that endothelial cell growth could meliorate 
and remarkably enhance angiogenesis, collagen deposi-
tion as well as anti-inflammatory property in the scaf-
folds which ultimately speed up DW healing [168].

Jiang et  al. reported a spaced-oriented electrospun 
scaffold with silicon-doped amorphous calcium phos-
phate nanocoating on the surface (Si-ACP/PM). The 
study pointed out that Si-ACP/PM can notably improve 
the angiogenesis process for DW healing, as well as can 
display great potential for DW healing therapy [169].

PLGA‑based mats
In some investigations, Met was incorporated in NF 
wound dressing to get advantages of their properties. In 
this regard, Met-eluting dressing made from PLGA by ES 
showed a controlled release profile over 3 weeks and also 
supported re-epithelialization and accelerated cutaneous 
wound closure in the early stages of DW healing [170, 
171].

H.T. Liao et  al. fabricated aligned Cur-loaded PLGA 
NF membranes (PC NFMs), followed by merging of 
heparin to produce PLGA/Cur (PCH) NFMs for DW 
healing (Fig.  13). Obtained results from this study con-
firmed that NFs along with grafted heparin and Cur 
could easily absorb the key GFs for the wound heal-
ing process, via lessening the high oxidative stress and 
the inflammatory cascade [172]. In a similar study, SF 
and PLGA were applied for the fabrication of a hybrid 
membrane.  The results obtained from histopathologi-
cal evaluation outcomes proved that these potent mats 
could potentially be applied for wound healing with or 
without biological agents [160]. In the case of large mol-
ecules, liraglutide (Lira), a glucagon-like peptide-1 (GLP-
1) receptor agonist, was applied as an antidiabetic agent 
loaded on PLGA/Gel scaffold to accelerate DW healing. 
It was indicated that by applying Lira-loaded PLGA/Gel, 

Fig. 11  Schematic illustration of BC/Gel mats loaded with Gb and Met. Reproduced with permission from Ref. [163]
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meaningfully higher vascular density, higher collagen 
deposition level, and faster wound healing were achieved 
[173].

Miscellaneous‑based mats
Pietramaggiori et  al. prepared poly-N-acetyl glucosa-
mine (pGlcNAc) fiber mats, and then they considered it 
for wound healing in the db/db mice. The obtained mat 

can be potentially applied as an effective agent for com-
plex wounds owing to its blend of hemostatic and wound 
healing properties [174].

Kanji et  al. proposed an aminated PES NF-extended 
human umbilical cord blood-derived CD34+ cells (hence-
forth CD34+  cells) real therapy, examined in cutaneous 
wounds for DW healing process in mice. They offered 
the proof of an innovative NF-expanded CD34+ stem cell 

Fig. 12  Schematic illustration of an electrospun copper-based MOF (HKUST-1) applied for the acceleration of DW healing process. Reproduced 
with permission from Ref. [168]

Fig. 13  Conceptual design of heparin implanted Cur embedded aligned mats. Reproduced with permission from Ref. [172]
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healing for improving DWs by describing their cellular 
and molecular mechanisms [175].

In addition to antidiabetic agents, several other small 
molecules with varying biological characteristics were 
loaded into different NF scaffolds for wound dressing. 
In this regard, Han et  al. showed that asiatic acid, an 
active ingredient of Centella asiatica (a Chinese medici-
nal herb), which have antioxidant, anti-inflammatory, 
and anti-bacterial properties when embedded in aligned 
porous PLLA electrospun fibrous scaffold could treat 
non-healing DWs [176].

SF derived from Antheraea assama  silkworm (AaSF), 
coated with several recombinant spider silk fusion pro-
teins over silk–silk connections, was employed as a bio-
active NF mat for the wound healing process in diabetic 
rabbits (Fig.  14). The proposed system declared quick 
granulation tissue improvement, re-epithelialization, and 
well-organized matrix remodelling of wounds. Hence, 
the results obviously proved possible of achieved mats 
in earlier treatment of DWs [177]. In the case of dia-
betic rabbits, Elshazly et al. reported a novel formula of 
electrospun bioactive glass nanofibers (BGnf) contain-
ing B2O3, SiO2, and CaO for the improvement of oral 
mucosal wound regeneration. The findings indicated 
that obtained system can be applied as a sustainable oral 
cavity bioscaffold in a wet environment as well as can be 
applied for an immune-compromised disorder as DM 
[178].

Cui et  al. also compared the effectiveness of topical 
doxycycline, an antibacterial agent, versus doxycycline-
loaded PLA NF mats produced by ES technique for 
treatment/prevention of infection in DWs. Their results 
showed that doxycycline-PLA NF mats were superior 
to topical doxycycline to treat DWs, due to fewer side 
effects and better release profile [179].

Taking together, the results obtained from these stud-
ies revealed that proposed systems with different strat-
egies are an ideal choice for scaffolds not only because 
of their biological characteristics but also owing to the 
possibility of using different therapeutic and preven-
tive agents-loaded mats for DWs healing. Based on our 
observations, proposed mats were suggested as great 
tools with the ability to improve epidermal regenera-
tion and re-epithelialization,  promoting angiogenesis, 
and collagen deposition, and lessening inflammatory 
response. At last, it seems that antidiabetic agents 
and MSCs-loaded scaffolds can be a better choice for 
encapsulation in different mats so that we could apply 
for treatment of DWs, specifically chronic wounds.

Table  4 indicates several key features of above-men-
tioned studies. We tried to represent the most common 
characteristics, including the type of polymers/materi-
als, the incorporated/modified agents, and diameter 
of NFs, applied cell type, and the main finding of pro-
posed systems in this table.

Fig. 14  Schematic representation of the experimental design describing (a) methodology to prepare bioactive silk dressings by modifying spider 
SF proteins on top of SF nanofibrous mats and (b) approach of acting cutaneous wounds in a diabetic rabbit model by silk mats; DM condition was 
found for 28 days before wounding, mats were replaced after 3 days for 12 days, and groups were accomplished on day 7, 14, and 21 as indicated 
by (T) in the sketch. Reproduced with permission from Ref. [177]
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Electrospun NF mats and drug delivery systems
Despite numerous NFs in wound dressing applications, 
these biocompatible electrospun NFS have also been 
developed for drug delivery systems [168–170].In this 
regard, PVA NF patches loaded with linagliptin, an anti-
diabetic drug, were applied for sublingual administra-
tion [181]. In another example, the water solubility, drug 
release profile, and efficiency of repaglinide (an antidia-
betic agent) for glycemic control were improved while 
loaded to PVA- PVP NFs [182]. Besides, Heydari-Majd 
et al. considered zein NFs as a delivery carrier for Barije 
(Ferula gummosa) essential oil (EO) which has anti-
oxidant and antidiabetic (by inhibition of α-glucosidase 
and α-amylase enzymes) activity. Their results verified 
that, under the simulated gastrointestinal conditions, the 
release profile of Barije EO was found suitable for encap-
sulation using zein NFs and could consider as a novel tool 
for DM treatment [183]. In one study, Vildagliptin-elut-
ing PLGA electrospun NFs was prepared as stents to treat 
diabetic vascular disease. The obtained membranes indi-
cated great recovery of diabetic endothelial and reduc-
tion of smooth muscle cell (SMC) hyperplasia. Obtained 
results revealed that proposed stent could potentially 
accelerate the healing of diabetic arterial disorders [184].

It is concluded that the proposed systems in this sec-
tion can be delivered in a controlled manner, and an 
adjustable glycemic control can be achieved via encap-
sulation of various antidiabetic agents in the scaffolds. 
Although for DM treatment, scaffolds loaded with thera-
peutic agents intended for oral administration could be 
more efficient than the topical ones, however, topical 
scaffolds were extensively applied due to simplicity and 
capability of sustained and controlled drug delivery to the 
wound site.

Market size of advanced wound care
The global advanced wound care market size exceeded 
$10.2 billion (BN) in 2019 and is poised to raise at over 
5.2% compound around growth rate (CAGR) between 
2020 and 2026 (Fig.  15). The increasing prevalence of 
acute and chronic wounds in diabetes and obese popula-
tion, as well as increasing geriatric population base that 
is at high risk of developing chronic wounds specifically 
DW, will augment the market size [185].

The strategic trends in the market are the growing 
consumption of NF-based wound dressing and ris-
ing demand for incorporation dressings. Incorporation 
dressings including natural and chemical agents, such 
as silver alginate, collagen hydrochloride, and silver col-
lagen, averts infection and speeds up wound healing 
process. Thanks to the great preventive and therapeutic 
efficiency of advanced wound dressings, it is a foremost 
trend in the advanced wound care market.

Limitations, future perspectives, and conclusions
Even though various studies showed that electrospun 
NF mats play a key role in wound healing applications, 
ES process possesses definite limitations in elastic possi-
bility due to its conservative setup that is typically fairly 
bulky and extremely dependent on a plug. The selection 
of suitable blend polymers and therapeutic agents has 
still remained the main challenge for wound dressing fab-
rication. Furthermore, some restrictions and limitations 
for islet transplant procedure are restricted by the loss of 
integrity and demolition of blood vessel networks as well 
as insufficient access to nutrients and GFs.

The wound healing process using dressings is grow-
ing faster progressively owing to an increase in the world 
population ($45.5 billion by 2024). Hence, chronic wound 
cases also need to improve proper medication, which 
can effectively conquest the gentle wound healing pro-
cess and hinder wound infection. Consequently, physi-
cians, pharmacologists, biomedical engineers, and other 
relevant fields should research together in this path for 
better releasing of the wound healing process, enhanced 
drug efficacy, and enhanced drug delivery systems. This 
research review article defines the wound healing pro-
cess using various nanosystems, including electrospun 
NFs for DWs healing. These systems, including thera-
peutic and preventive agents play a pivotal role to pro-
tect and improve the wound healing process specially 
DWs. Besides, emerging smart mats can also promote 
DWs healing and real-time monitoring. The assessment 
of the wound healing process indicates that electrospun 
NF mats provide better features compared to common 
mats in respect of cost, healing time process, and effec-
tive and sustainable drug delivery. In addition, NF-based 
systems typically act as non-invasive, biodegradable, bio-
compatible systems without notable side effects, which 
have been more considered in wound healing promotion 
while compared to the other systems. It is also believed 
that obtained mats can pave the route of preclinical and 
clinical studies in TE and regenerative medicine, exclu-
sively wound healing process.

Blending various polymers using more effective cross-
linking methods to produce enhanced scaffolds that sup-
port an optimal wound healing process was developed 
in recent years. As alluded to above, natural polymers, 
including cellulose and its derivatives, CS,  hyaluronic 
acid, collagen, SF, and synthetic polymers including PVP, 
PVA, PLGA, PLA, PCL, PEG, PVP, PU were merged 
together with or without cross-linkers to apply for wound 
dressing applications. Besides, therapeutic wound dress-
ings were inspected to powerfully deliver therapeutic 
and preventive agents that had earlier been revealed to 
promote the wound healing process, specifically DWs. A 
clear approach for the reduction of infection is applying 
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electrospun NFs loaded with antidiabetics/antimicrobial 
compounds, platelet-derived ingredients, MSCs, GFs, 
and peptides to control up-regulation of GFs and ECM 
secretion from fibroblast, and down-regulation of inflam-
matory cytokines and inflammatory-related gene expres-
sion in DWs to accelerate the healing process. Moreover, 
re-epithelialization, angiogenesis, wound closure, epi-
dermal regeneration, and collagen formation have been 
promoted in most cases. Regarding the encapsulation of 
natural extracts, several studies displayed notable poten-
tial in the considerable healing of DWs; however, these 
outcomes do not recommend a fruitful choice since the 
efficiency of herbal extract, adjustment of their impact 
has remained as key challenges. Hence, relevant research 
studies will definitely focus on developing more potent 
and less costly biocompatible and biodegradable thera-
peutic mats that provide great healing to DWs to promote 
patient treatment and quality of life. We hope that thera-
peutic and preventive electrospun NF mats have opened 
a door for exploring novel wound healing processes to be 
applied in DWs, as well as many other expectations.
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