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ABSTRACT
Immunotherapeutic drugs including immune checkpoint 
blockade antibodies have been approved to treat 
patients in many types of cancers. However, some 
patients have little or no reaction to the immunotherapy 
drugs. The mechanisms underlying resistance to tumor 
immunotherapy are complicated and involve multiple 
aspects, including tumor-intrinsic factors, formation of 
immunosuppressive microenvironment, and alteration 
of tumor and stromal cell metabolism in the tumor 
microenvironment. T cell is critical and participates in 
every aspect of antitumor response, and T cell dysfunction 
is a severe barrier for effective immunotherapy for cancer. 
Emerging evidence indicates that extracellular vesicles 
(EVs) secreted by tumor is one of the major factors 
that can induce T cell dysfunction. Tumor-derived EVs 
are widely distributed in serum, tissues, and the tumor 
microenvironment of patients with cancer, which serve 
as important communication vehicles for cancer cells. 
In addition, tumor-derived EVs can carry a variety of 
immune suppressive signals driving T cell dysfunction for 
tumor immunity. In this review, we explore the potential 
mechanisms employed by tumor-derived EVs to control 
T cell development and effector function within the 
tumor microenvironment. Especially, we focus on current 
understanding of how tumor-derived EVs molecularly 
and metabolically reprogram T cell fates and functions 
for tumor immunity. In addition, we discuss potential 
translations of targeting tumor-derived EVs to reconstitute 
suppressive tumor microenvironment or to develop 
antigen-based vaccines and drug delivery systems for 
cancer immunotherapy.

INTRODUCTION
Communications between cancerous and 
healthy cells play important roles in affecting 
the progress of oncologic diseases. Cells can 
communicate with each other via a variety of 
mechanisms, such as using the soluble factors, 
directly contacting through adhesion molecules, 
transferring surface molecules and cytoplasmic 
components through nanotubules,1 and the 
usage of extracellular vesicles (EVs).2 According 
to the guidelines from the International Society 
for Extracellular Vesicles, EVs refer to a variety 

of cell-released, circular membrane enclosures 
that meet the minimal criteria in terms of their 
methods of isolation and characterization.3 EVs 
vary in size and have different modes of biogen-
esis. Among them, exosomes are of endosomal 
origin with very small size, ranging from 30 to 
150 nm in diameter.4 Both in vitro studies using 
cancer cell lines and in vivo analyses of plasma, 
urine, and pleural effusions of patients with 
cancer have revealed the enhanced release of 
exosomes by tumor cells,5 6 and tumor-derived 
exosomes are involved in many key aspects of 
cancer biology such as tumorigenesis,7 drug 
resistance,8 and metastasis.9 It is important to 
point out that due to the lack of consensus in 
the scientific community on both the optimal 
method for the purification of exosomes and 
the specific markers for distinguishing different 
types of EVs, the term exosome used in the 
literature may or may not accurately describe 
the specific EVs being studied. In fact, the 
2018 minimal information for studies of EVs 
(MISEV) guidelines have suggested to use the 
term ‘EVs’ instead of subtype terms.

A major obstacle for immunotherapy is 
tumor cell escape from immune surveillance, 
through inhibition of T cell function via either 
direct contact between tumor cells and T cells 
or suppressive soluble factors secreted by tumor 
cells. Tumor cells can use programmed death 
ligand-1 (PD-L1) and CD80 to directly interact 
with inhibitory molecules programmed death-1 
(PD-1) and cytotoxic T lymphocyte antigen-4 
(CTLA-4) expressed in T cells, which leads to 
an inhibition of T cell activation and function.10 
Increasing studies suggest that accumulation 
of metabolic products and metabolites such 
as lactate produced from tumor cells can also 
suppress the function and survival of T cells 
within the tumor microenvironment (TME).11 12

Emerging evidence indicates that tumor-
derived EVs also play a pivotal role in facili-
tating tumor to escape immune surveillance.13 
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Tumor-derived EVs can modulate functions of different 
immune components in the TME to achieve immune 
suppression. For example, they can drive differentiation 
of monocytes towards myeloid-derived suppressor cells 
(MDSCs),14 suppress effector T cell function, generate 
anergic-like state in natural killer T cells (NKT),15 promote 
M2-like macrophage polarization,16 17 and stimulate regu-
latory T cell (Treg) expansion.18 Both MDSCs and Treg 
cells are well known for their abilities to suppress T cell 
activation, while polarization of the M2-like macrophage 
can promote tumor progression.19 In contrast to immu-
nosuppression, tumor-derived EVs also exhibit immune 
stimulatory properties under some circumstances. For 
example, tumor-derived EVs can transfer major histocom-
patibility complexes (MHCs) to dendritic cells (DCs), 
which results in the activation of T cells, leading to the 
inhibition of tumor progression.20 In addition, the immu-
nostimulatory function of tumor-derived EVs was mainly 
achieved either when the tumor cells were exposed to 
stress conditions or the components of the EVs have been 
modified. For example, heat-stressed tumor cells have 
been shown to secret EVs that help inducing the produc-
tion of interleukin (IL)-6 by DCs and macrophages, 
leading to a switch of Treg to Th17 cells in the TME.21 
Silencing transforming growth factor beta (TGF-β) in 
leukemia cell-derived EVs promotes maturation and 
function of DCs and enhances the antigen-specific cyto-
toxic T lymphocyte responses.22 Modified tumor-secreted 
EVs with miR-424 knocked down was also reported to 
increase T cell–mediated antitumor immune response 
and enhance the immune checkpoint blockade immuno-
therapy in colorectal cancer tumor models.23 Therefore, 
the interplay between tumor cells and T cells as mediated 
by tumor-derived EVs is an emerging and exciting area. 
However, the molecular mechanisms responsible for the 
effects on T cell function and differentiation mediated 
by tumor-derived EVs within the TME have not been 
well summarized. In this review, we explore the different 
roles that tumor-derived EVs play in affecting T cell func-
tion and the underlying molecular mechanisms. We also 
discuss how immunostimulatory function of EVs can be 
utilized to boost the immune therapy efficacy and develop 
novel strategies for cancer immunotherapy.

Biogenesis of EVs and their cargo molecules
There are two major pathways for the biogenesis of EVs: 
vesicles are formed by outward budding from the plasma 
membrane, or/and vesicle formation involves the fusion 
of endosomal-derived multivesicular bodies (MVB) with 
plasma membrane and the subsequent release of intra-
lumenal vesicle (ILVs) into the extracellular space. The 
relatively large-sized EVs such as microvesicles are formed 
by the first pathway, and exosomes are generated by the 
second pathway.24 Key players for the biogenesis of EVs 
include the endosomal sorting complex required for 
transport (ESCRT) machinery and neutral sphingomye-
linase (nSMAse). The ESCRT machinery is responsible 
for the sorting of ubiquitinated proteins into ILVs.24 In 

addition, both the ESCRT machinery and the ceramide 
generated by the nSMAse also promote vesicle formation 
both at the plasma membrane and inside MVBs.25 Besides 
vesicles formation machinery, members of the Rab family 
of small GTPases, which play well-established roles in 
transferring vesicles between intracellular compartments, 
have also been implicated in regulating the trafficking 
of MVB to the plasma membrane for exosome release.26 
Among the various Rab family members, Rab-27 is the 
best characterized. Impairing Rab27a or Rab27b can lead 
to an altered MVB morphology and docking to the plasma 
membrane.26 Furthermore, there is evidence that the 
SNARE proteins such as SNAP-23 and SYX-5 are specif-
ically required for exosome release.27 28 Interestingly, 
exosome biogenesis can be enhanced by a variety of stress 
conditions such as hypoxia, irradiation, ethanol, or star-
vation.29 30 Among these different stressors, hypoxia is of 
particular interest as it is a hallmark of the TME. Studies 
have shown that hypoxia can both enhance the produc-
tion of EVs by tumor cells and alter their components.31 
As important mediators for near and long-distance inter-
cellular communications, EVs contain a variety of cargo 
molecules that include lipids, proteins, nucleic acids and 
metabolites. All EVs share a common group of molecules 
that pertain to their structure and function.32 EVs derived 
from different cell types have distinct components, and a 
certain set of proteins and RNAs are unique to each EV 
depending on the origins of parent cells (table 1).

The nucleic acids in the cargo of EVs, including DNAs 
and RNAs, have been implicated in regulating immune 
responses. Among different subtypes of EVs, exosomes 
and the effects of their components on immune cells 
are the most widely studied. DNAs presented in the 
exosomes derived from breast cancer cell E0771 have 
been shown to drive the activation of cGAS-STING 
signaling and antitumor response in mice.33 DNAs of 
EVs from the oncogenic genomic DNA sequences trans-
forming protein p21 (HRAS)-driven cancer cells can 
enhance the ability of circulating neutrophils to activate 
tissue factor procoagulant activity and IL-8, which are 
important factors in promoting tumor inflammation and 
paraneoplastic events.34 T cells can also use its EV mito-
chondrial DNA as a mediator to prime DCs and enhance 
their responses.35 Interestingly, DNAs present in the 
tumor-derived exosomes often contain a variety of clini-
cally relevant information about tumor-specific mutations 
representing multiple genes such as epidermal growth 
factor receptor (EGFR), proto-oncogene B-Raf, RAS, isoc-
itrate dehydrogenase 1, and human epidermal growth 
factor receptor 2 (HER2), which can be used in diag-
nosis as a promising ‘liquid biopsy’ material for therapy 
recommendations.36 Multiple types of RNAs have been 
identified in EVs, including messenger RNAs (mRNAs), 
microRNAs (miRNAs), and other non-coding RNAs.37 
Notably, the majority of exosomal RNAs are degraded 
fragments with the length of less than 200 nucleotides, 
while some full-length RNA molecules were also found. 
The tumor exosomal miRNAs can regulate the immune 
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Table 1  Tumor-derived EVs induce alterations of immune-related molecules in T cells

Tumor types/EV 
sources EV cargoes

Targeted T 
cell types

Changes of cytokines 
and immune-related 
molecules in T cells T cell functional changes References

Colorectal cancer
DLD-1, WiDr cells

TGF-β1 Jurkat cell; 
CD4+ cells

FoxP3, LAG3, IL-10, 
PRF1, and GZMB ↑

EVs containing TGF-β1 inhibit T 
cell growth and promote Treg cell 
development.

183

Plasma of patients FasL, TRAIL Activated 
CD8+ T cells

NA FasL and TRAIL in EVs induce T cell 
apoptosis.

78

Prostate cancer
DU145 and PC3

PGE2 CD4+ T cells; IL-2 and TNF-α ↓
Adenosine ↑

Exosomal PGE2 contributes to CD73 
induction in DCs; suppress T cell 
response and function.

65 73 82

Melanoma
MEL624; B16-F10; 
WM9 cells

PD-L1 CD8+ T cells IFN-γ, IL-2, and TNF-α ↓ Exosomal PD-L1 inhibit T cell 
proliferation and cytotoxicity.

74

Glioma
UPN933 cells; blood 
of patients

NA Jurkat cell; 
PBMC; T cells

IL-2, IFN-γ, IL-4, IL-5, IL-
17, TNF-α, GM-CSF ↓
IL-6, IL-1, G-CSF ↑

Decrease T cell activation and affect 
cytokine output.

184

Head and neck 
cancer
Tu167 CGM; HN60; 
SCC0209

Galectin-1 CD8+ T cells IFN-γ, CD27, CD28 ↓ Loss of CD27 and CD28 expression; 
suppress T cell proliferation and induce 
suppressor T cell phenotype.

185

PCI-13 NA Activated 
CD4+ 
and CD8+ T 
cells; Treg 
cells

PD-L1, CTLA-4, IL-10, 
COX2, FOXP3, FasL ↑

Regulate expression of immune 
function-related genes in T cell subsets.

186

Plasma of patients NA CD8+ T cells  � NA CD45– exosomes induce CD39+ 
Treg differentiation and CD8+ T cell 
apoptosis.

85

Plasma of patients CD39, CD73 CD4 + CD39+ 
Treg cells

5′‐AMP and purines ↑ CD3– exosomes promote production of 
adenosine in Treg cells.

126

Oral squamous cell 
carcinoma
Cal-27; SCC-9

HSP70 γδ T cells IFN-γ, TNF-α, GZMB, 
perforin ↑

Induce γδ T cell cytotoxicity, expansion 
and proliferation.

100

Sera of patient FasL Jurkat cells 
and activated 
T cells

TCR chain ↓ Exosomal FasL induces T cell 
apoptosis.

77

Breast cancer
MCF7

CD73, CD39 CD4+ T cells IL-2, TNF-α ↓
Adenosine ↑

Exosomal CD73 and CD39 suppress T 
cell response.

65

Nasopharyngeal 
carcinoma
TW03; C666; CNE2

miR-24–3 p; CD4+ 
and CD8+ T 
cells

IL-1β, IL-6, IL-10 ↑
IFN-γ, IL-2, IL-17, 
FGF11 ↓

Exosomal miRNAs inhibit T cell 
proliferation and Th1 and Th17 
differentiation; induce development of 
FOXP3+ Treg cells.

63 61

Plasma of patients, 
C15 and C17 cells

CCL20,
Galectin-9

CD4+, CD8+, 
and Treg cells

TNFRSF4, SELL, 
ICAM1, CCR6, TNF, 
GZMB, TGFβ1, IL10, 
IL2, IL15 ↑

Exosomal CCL20 promotes Treg cell 
recruitment; exosomal galectin-9 
induces T cell apoptosis.

81 96

Pancreatic cancer
BxPC‐3 cell

NA CD8+ T cells PERK, ATF4 and P-
eIF2α ↑

Induce ER-stress and p38 dependent T 
cell apoptosis and cytotoxicity.

79

Ovarian cancer
Ascites of patient

TGF-β1, 
IL-10

CD3 + CD4+ T 
cells

FasL, IL-10, TGF-β1, 
CTLA-4, GZMB and 
perforin ↑

Promote proliferation of Treg and 
convert CD4+ T cells to CD4+CD25+ 
Treg cells; up-regulate Treg suppressor 
functions.

93

Skov-3 cell line, 
ascites of patient

Arginase-1 CD4+ 
and CD8+ T 
cells

CD3ζ ↓ Increased arginase in EVs suppresses 
proliferation and immune response of 
CD4+ and CD8+ T cells.

64

Continued
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responses by influencing gene expression and signaling 
pathways in recipient immune cells via the transfer of 
miRNAs. For example, exosomal miR-222–3 p was found 
to downregulate suppressor of cytokine signaling 3 in 
monocytes and promote STAT3-mediated M2 polariza-
tion of macrophages.38 Moreover, exosomal miRNAs can 
promote cancer progression by stimulating the secretion 
of angiogenic cytokines, including vascular endothelial 
growth factor, matrix metallopeptidase 2, MMP9, basic 
fibroblast growth factor and TGF-β.39 Studies have also 
shown that tumor exosomal miRNAs, such as adenocar-
cinoma (PDAC)-specific miR-181–5 p, miR-30a-3p, and 
squamous cell carcinoma (SCC)-specific miR-10b-5p may 
serve as diagnostic biomarkers for patients with early 
non-small cell lung cancer (NSCLC).40 Besides miRNA, 
exosomal circular RNA-PDE8A was associated with 
progression and prognosis in patients with pancreatic 
ductal adenocarcinoma.41

Lipids are extremely prevalent in EVs. Exosomal 
lipids often mirror that of intraluminal vesicles with 
more cholesterol, sphingolipids, phosphatidylinositol-
3-phosphate, and bis(monoacylglycerol)phosphate.42 
These lipids form lipid rafts on the exosomal membrane 
and mainly sustain the structure of exosomes.43 There is 
an asymmetry of lipid types between the outer and inner 
leaflets of the membrane.44 Specifically, sphingolipids 
and phosphatidylcholine are more prevalent on the 
outer leaflet than on the inner leaflet, while all other lipid 
classes are mainly on the inner leaflet.44 It is important to 
note that high levels of cholesteryl ester, triacylglycerol, 
and cardiolipin in exosomal preparations may indicate 
the co-existence of lipid droplets, lipoproteins, or mito-
chondria within exosomes.42 Recent studies showed that 
exosomes are capable of directly transporting lipids such 

as cholesterol, fatty acids, and eicosanoids, from parent 
cells to recipient cells, which may cause the inflamma-
tion, immune or metabolic changes in certain microen-
vironments.45 46 Adipocytes release lipid-filled exosomes 
that become a source of lipid for local macrophages and 
these vesicles were sufficient to induce in vitro differen-
tiation of bone marrow precursors into adipose tissue 
macrophage-like cells.45 Healthy donor serum circulating 
exosomes can take up free fatty acid (FFA) directly from 
serum via CD36 and then deliver FFA into cardiac cells.47

A plethora of membrane proteins have been found in 
EVs, including tetraspanins, flotillin, PGRL, stomatin, 
adhesion proteins such as L1CAM, lysosomal associated 
membrane proteins like LAMP2, integrins, and surface 
glycoproteins such as fibronectin.48 The most found 
proteins are membrane transporters and proteins that 
mediate membrane fusions such as GTPases, annexins, 
and flotillin, heat shock proteins like HSP70, tetrasp-
anins such as CD9, CD63, and CD81, multivesicular body 
biogenesis proteins like Alix and TSG101, and phos-
pholipases.49 Tumor-derived EVs often contain proteins 
that are important for the progression of tumors, 
which include immunosuppressive proteins (such as 
death receptor ligands FasL or TRAIL), check point 
receptor ligands PD-L1, and ectoenzymes engaged in the 
adenosine pathway (CD39 and D73).50 51 Furthermore, 
enzymes that control metabolism are among the most 
frequently identified proteins in proteomics analysis of 
EVs.52 The dynamic change of enzymes such as ATPase 
in tumor exosome appears to help generating an envi-
ronment that benefits tumor progression.53 In addition, 
tumor-derived EVs carry a unique set of tumor-associated 
antigens (TAAs), co-stimulatory molecules and the MHC 
components that could stimulate immune cells and 

Tumor types/EV 
sources EV cargoes

Targeted T 
cell types

Changes of cytokines 
and immune-related 
molecules in T cells T cell functional changes References

Hepatocellular 
carcinoma
Serum of patients

14-3-3ζ CD8+ T cells PD-1, TIM-3, LAG3, 
CTLA-4 ↑

Exosomal 14-3-3ζ induces exhausted 
phenotype of T cells; impaires the 
functions, proliferation and activation of 
T cells.

95

Hepa1-6, H22, H7402 
cells and HepG2 cells

SALL4/miR-
146a-5p

CD3+ T cells IL-2, IFN-γ, TNF-α ↓
PD-1, TIGIT, CTLA-4 ↑

Exosomal SALL4 and miRNA promote 
T cell exhaustion and inhibit T cell 
immune response.

108

Lung cancer
Plasma of patients, 
A549, PC9, and 95D 
cells

circRNA- 
002178

CD8+ T cells PD-1 ↑ circRNA in exosomes induces T cell 
exhaustion.

67

ATF4, activating transcription factor 4; CCR6, C-C motif chemokine receptor 6; circRNA, circular RNA; COX2, cyclooxygenase-2; 
CTLA-4, cytotoxic T-lymphocyte-associated protein 4; DCs, dendritic cells; EVs, extracellular vesicles; FGF11, fibroblast growth factor 
11; FOXP3, forkhead box P3; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating 
factor; GZMB, granzyme B; ICAM1, intercellular adhesion molecule 1; IFN-γ, interferon gamma; IL, Interleukin; LAG3, lymphocyte-
activation gene 3; miRNA, microRNA; NA, not available; PD-1, programmed death-1; PD-L1, programmed cell death ligand 1; P-eIF2α, 
phosphorylation of eukaryotic initiation factor-2α; PERK, PKR-like ER kinase; PRF1, perforin 1; SCC, squamous cell carcinoma; SELL, 
selectin L; TGF-β, transforming growth factor beta; TIM3, T-cell immunoglobulin and mucin-domain containing-3; TNF-α, tumor necrosis 
factor; TNFRSF4, TNF receptor superfamily member 4; Treg, regulatory T cell.

Table 1  Continued
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promote antitumor immune responses.54 Thus, proteins 
carried in tumor-derived EVs could mediate either an 
immuno-suppressive response or immuno-stimulatory 
response depending on the specific contexts.

Many types of recipient cells use EV internalization as 
a mechanism to receive the cargos carried by the EVs. 
Once internalized, EVs can fuse their membranes with 
those of endosomes in the recipient cells, leading to the 
horizontal transfer of their content into the target cells.55 
The precise mechanisms targeting EV to immune cells 
and triggering its internalization remain largely unclear, 
though interactions between EV proteins and membrane 
receptors in the recipient cells have emerged to play 
important roles. For example, targeting of EVs to DCs 
are mediated via the interaction between EV proteins 
MFG-E8 and the tetraspanins CD9 and CD81 with DC 
proteins αvβ3 integrin and CD11a/CD54, and blocking 
the binding sites of CD11a using antibodies can reduce 
uptake of EVs into DCs.56 Some studies claimed that 
since T lymphocytes are not phagocytic as macrophages, 
they receive information from tumor-derived EVs mainly 
by the interaction between their surface receptors with 
components in EVs.57 One study has shown that although 
rat pancreatic adenocarcinoma-derived exosomes are 
taken up by all leukocyte subpopulations, the amount 
taken up by CD11b+ and CD11c+ leukocytes greatly exceed 
that taken up by T cells.58 Similarly, it has been demon-
strated that the ability of CD8+ T cells to internalize is not 
as good as that of other types of immune cells.59 These 
studies strongly indicate that exosome internalization 
may not be a critical way for EVs to affect T cell responses. 
In support of this notion, a recent study has shown that T 
lymphocytes and its subsets primarily use specific surface 
receptors to receive information from tumor-derived 
EVs.57 Specifically, dye-labeled tumor-derived exosomes 
were incubated with human T cells or NKT cell and B 
cells respectively, and it was found that T lymphocytes, 
unlike other mononuclear cells, do not uptake exosomes 
but rather respond to exosome signals delivered to the 
cell surface by Ca2+ influx.57 It has shown that naïve CD8+ 
T cells can uptake EVs shed from antigen-presenting cells 
via the interactions between T cell antigen receptor, MHC 
class I/peptide and the intercellular adhesion molecule 1 
(CD54) present on the EVs.60 Given the important roles 
of EVs in regulating immune cell functions, development 
of more advanced and accurate methods to isolate, char-
acterize, and manipulate EVs to elucidate the mecha-
nisms that govern the specificity between EVs and their 
recipient immune cells is urgently needed for tumor 
immunity.

Potential mechanisms responsible for tumor-derived EVs-
mediated T cell suppression
Tumor-derived EVs can suppress T cell antitumor immu-
nity through multiple ways, including inhibiting T cell 
proliferation and responses, promoting Treg expansion, 
and inducing T cell apoptosis and exhaustion (figure 1). 
The molecular effects of tumor-derived EVs are achieved 

via different components and/or molecular processes, 
including delivery of DNA,34 miRNAs,61–63 metabolites, 
and amino acid degrading enzymes to T cells,50 64 65 or 
direct binding with immune suppressive protein ligands 
on T cells66–68 (table 1). In addition to their direct effects 
on T cells, tumor-derived EVs can cause T cell suppres-
sion by affecting DCs and MDSCs.

Tumor-derived EVs can suppress T cell proliferation. 
Exosomes derived from breast cancer cell lines have been 
shown to suppress T cell proliferation, and the effect was 
mediated via suppressive molecule TGF-β.69 Interestingly, 
the production of exosomes by breast cancer cell lines 
can be greatly enhanced by hypoxic condition, which 
may contribute to therapy resistance of breast cancer.70 
Furthermore, recent evidence suggests that microRNAs 
from tumor-derived exosomes can also alter T cell prolif-
eration. In a study examining the serum of patient with 
nasopharyngeal carcinoma (NPC), five commonly over-
expressed miRNAs were found to alter T cell proliferation 
and differentiation via downregulation of the MAPK1 
signaling pathway.63 In addition, a high miR-24–3 p level 
was found in the exosomes isolated from patient with NPC 
sera and those miR-24–3 p-containing exosomes inhibit T 
cell proliferation via repressing fibroblast growth factor 
11 (FGF11).61 Cytokines as central important mediators 
in the homeostasis of lymphoid cells could promote cell 
survival, proliferation, and differentiation.71 72 Studies 
find that mesothelioma cell exosomes strongly impair 
proliferative responses to IL-2 in CD4+ and CD8+ T cells 
in vitro, but not in Treg cells.73 Besides these, exosomal 
PD-L1 secreted by mouse melanoma cells inhibits the 
proliferation and cytotoxicity of CD8+ T cells by inhib-
iting IL-2, interferon gamma (IFN-γ), tumor necrosis 
factor (TNF-α), and granzyme B in T cells in mice.74 
Additionally, PD-L1 from tumor-derived EVs suppresses T 
cell activation in the draining lymph node in TRAMP-C2 
mice, and removal of PD-L1 from the EVs inhibits tumor 
growth.75

Tumor-derived EVs can also induce T cell apoptosis, 
which has been reported in EVs isolated from melanoma, 
colorectal cancer, pancreatic cancer, kidney adenocar-
cinoma tumor cells, as well as sera from patients with 
oral squamous cell carcinoma and NPC.76–81 Generally, 
these pro-apoptotic EVs are Fas ligand positive, and they 
trigger apoptosis of activated T cells at least partially in a 
Fas ligand-dependent manner. A recent RNA sequencing 
study demonstrated that many of the genes linked to 
apoptosis and endoplasmic reticulum (ER) stress are 
upregulated in T cells by EVs derived from pancreatic 
cancer cells, meanwhile, those EVs taken up by T lympho-
cytes can activate p38 MAP kinase signaling, and then 
induce ER stress‐mediated apoptosis in T cells.79 In addi-
tion, EVs from NPC patient plasma contain galectin-9, a 
ligand of the membrane receptor Tim-3, and can induce 
apoptosis in mature Th1 lymphocytes and CD4+ T cells.81

Immunosuppressive effects on T cells by tumor-derived 
EVs can also be indirectly mediated by their effects on 
dendritic cells. For example, EVs from irradiated prostate 
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cancer impair DC antigen presentation, promoting an 
adenosine-mediated suppression of CD8+ T cell activa-
tion.82 Injection of EVs derived from the Lewis lung carci-
noma into mice can block the maturation and migration 
of DCs to lymph nodes, resulting in immune suppression 
on T lymphocyte via a PD-L1 dependent mechanism.83 
Similar mechanisms of immunosuppression involving 
DCs and EVs were also observed in melanoma.84 EVs 
produced by melanoma cells and accessory cells of the 
TME provoke immune suppression and consequently 
defective DC functions, which contribute to expansion of 
Treg cells and MDSCs as well as limitation of the cytotox-
icity of T cells.84

These different function arrests caused by tumor-
derived EVs are not mutually exclusive in the TME. In 
fact, they can happen simultaneously. For example, 
CD45– plasma-derived exosomes isolated from head and 
neck SCC (HNSCC) patients carry inhibitory factors that 
induce high levels of CD8+ T cell apoptosis in advanced 
stage patients, producing high amounts of adenosine 
and promoting stage-dependent Treg differentiation.85 
Likewise, exosomes derived from multiple myeloma simi-
larly mediate T cell suppression through both promoting 
proliferation of Treg cells and decreasing viability of CD4+ 
T cells.86

T cell suppression mediated by tumor-derived exosomes 
is clearly linked to the pathogenesis and disease progression 
of cancers. Recent study has explored the effects of PD-L1+ 
tumor-derived exosomes isolated from HNSCCs on immune 
suppression and disease progression. They identified that 
PD-L1+ exosomes were positively associated with disease 
progression in patients with HNSCC and can downregulate 
CD69 expression of effector T cells.87 Similarly, exosomes 
derived from highly metastatic murine breast cancer cells 
have been evaluated for their potential roles in immune 
suppression and promotion of metastases. Interestingly, 
these exosomes were taken up by CD45+ bone marrow-
derived cells in areas that they accumulated, leading to an 
accumulation of MDSCs that suppress T cells.88 89 Addition-
ally, tumor-derived EVs can indirectly induce T cell suppres-
sion through increasing the level of extracellular adenosine 
via binding adenosine A2A receptor in T cells.65 The tumor-
derived exosomes could inhibit NK cell cytotoxicity in addi-
tion to directly suppressing T cell proliferation, leading to a 
dampened anticancer immune response and promotion of 
cancer metastases.88

Figure 1  Mechanisms for tumor-derived EV-mediated suppression on T cells. Tumors are surrounded by different types of 
stromal cells within a microenvironment that the tumor closely interacts with. Within this microenvironment, there are blood 
vessels, fibroblasts, and T lymphocytes, as well as environmental secreted factors including exosomes derived from the tumor. 
These EVs further induce dysfunction of T cells in the suppressive tumor microenvironment mainly through several ways, 
including (1) inhibition of T cell proliferation, effector immune responses and cytotoxicity through EV components TGF-β, 
miRNA, arginase, PD-L1, Gal-1, CD73, CD39, SALL4 and PGE2; (2) suppression of T helper cell differentiation through EV 
components miRNA, TGF-β, and 14-3-3ζ; (3) expansion and recruitment of Treg cells via EV cargoes CD39, C73, PD-L1, 
CCL20, TGF-β, 14-3-3ζ and miRNA; (4) induction of T cell apoptosis and/or exhaustion through FasL, TRAIL, Gal-9, 14-3-3ζ, 
SALL4, circRNA and miRNA; (5) reprogramming of T cell metabolism through EV cargos PGE2, CD39, CD73 and arginase 
to increase cellular adenosine and cAMP levels, or decrease amino acid; and (6) indirect suppression of T cell function via 
impairing DC maturation, migration, and antigen presentation through components PD-L1, TGF-β and PGE2. DC function 
impairment also contributes to MDSC and Treg cells expansion, which further lead to T cell suppression. CCL20, C-C motif 
chemokine ligand 20; circRNAs, circular RNA; DC, dendritic cell; EV, extracellular vesicle; FasL, Fas ligand; Gal, galectin; MDSC, 
myeloid-derived suppressor cells; miRNAs, microRNAs; PD-L1, programmed death-ligand 1; PGE2, prostaglandin E2; SALL4, 
spalt like transcription factor 4; TGF-β, transforming growth factor beta; Treg, regulatory T cell.
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Tumor-derived EVs promote Treg but demote effector T cell 
differentiation
Upon activation, naïve T cells can differentiate into 
effector T helper cells (Th), including T-helper 1 (Th1), 
T-helper 2 (Th2), and T-helper 17 (Th17).90 Naive CD4+ 
T cells can also differentiate into Treg cells.91 The pres-
ence of abnormal quantities of Treg cells in the periph-
eral blood of patients with cancer is a clear indication 
of immune suppression.92 In the circulation of patients 
with ovarian cancer, the number and activity of CD4+C-
D25highFoxP3+ Treg cells is higher than that in healthy 
donors, and a higher level of secreted exosomes was 
also found in the plasma of these patients.93 EVs derived 
from NPC and patients with melanoma could impede the 
differentiation of immune-active Th1 and Th17 lympho-
cytes and induce differentiation of immunosuppressive 
Treg cells.63 94 This conversion of conventional T cells to 
CD4+CD25highFoxP3+ Treg cells occurs in a TGF-β1 and 
IL-10 dependent manner, as the ability of tumor-derived 
EVs to expand Treg cells is impaired by the neutralizing 
antibodies specific for TGF-β1 and/or IL-10.93 Further-
more, 14-3-3ζ, a protein that promotes the prolifera-
tion of tumor cells, is highly expressed in hepatocellular 
carcinoma (HCC) tissue, leading to a decrease in the 
percentages of effector T cells and an increase of Treg 
cells mediated through exosome.95 Likewise, exosomes 
derived from NPC tumor cells also contain Treg-attracting 
chemokine C-C motif ligand 20 (CCL20), which helps to 
recruit conventional CD4+CD25– T cells, mediate their 
conversion into inhibitory CD4+CD25high Treg cells, and 
promote Treg cell expansion.96 In addition to chemok-
ines, the mutant K-RAS gene is involved in the NSCLC 
exosome-induced switch of naïve CD4+ T cells into a 
FoxP3+ phenotype in a cytokine-independent manner in 
a NSCLC xenograft mouse model.97 Notably, on incuba-
tion with ovarian cancer-derived EVs, the conversed Treg 
showed an increased expression of FasL, IL-10, TGF-β1, 
CTLA-4, granzyme B and perforin, which mediate more 
potent suppression of responder cell proliferation.93

MicroRNAs present in tumor-derived EVs can act as a 
barrier for effective tumor immunity through initiating 
the differentiation of Th cells. For example, exosomes 
derived from the sera of patients with NPC have a high 
level of miR-24–3 p, which can inhibit differentiation of 
Th1 and Th17 cells via repression of FGF11.61 Further-
more, miR-29a-3p and miR-21–5 p in exosomes derived 
from epithelial ovarian-associated macrophages syner-
gistically induce the Treg/Th17 cell imbalance through 
directly targeting STAT3 signaling in CD4+ T cells in 
tumor-bearing mice.62 Interestingly, heat-stress treatment 
and the production of heat shock proteins in tumor-
derived EVs eliminate the imbalance of Treg/Th17 
cells.21 Exosomes derived from heat-stressed colon cancer 
cells contain high quantities of Hsp70, which strongly 
stimulates IL-6 secretion from DCs to block Treg cell 
development but promote differentiation of Th17 cells.21 
Blocking TGF-β1 in MC38 colon carcinoma cell-secreted 

EVs could significantly increase the proportion of Th1 
cells and Th1-mediated responses.98

In addition, γδ T cells as a subtype of lymphocyte 
has been shown to support pancreatic oncogenesis by 
restraining effector T-cell activation in the TME.99 EVs 
from oral SCC cells can stimulate γδ T cell expansion and 
function in a DC-independent manner, while hypoxic 
condition will attenuate this equilibrium.100

Tumor-derived EVs induce T cell exhaustion
T cell exhaustion is a state of T cell dysfunction with a 
reduced capacity to secrete cytokines and an increased 
expression of a panel of inhibitory molecules, including 
PD1, T cell immunoglobulin and mucin domain-
containing protein 3 (TIM3), lymphocyte activation gene 
3 protein (LAG3), CTLA-4 and T cell immunoreceptor 
with Ig and ITIM domains (TIGIT).101 Exhausted T cell 
responses have been documented following infections 
by many types of virus, such as HIV, hepatitis B virus and 
hepatitis C virus, and have also been observed in patients 
with malignancies.102 The exhausted T cells in the TME 
lose their effector functions to control tumor growth 
and display a decreased ability to produce cytokines 
such as IL-2, IFN-γ, and TNF-α.103 104 Recent research has 
shown that tumor-infiltrating CD8+ T cells isolated from 
melanoma-engrafted mice have accumulated dysfunc-
tional mitochondria, which dictate exhaustion in CD8+ 
T cells.105 Furthermore, studies also focus on the rela-
tionship of lipid metabolism and exhaustion. PD-1hiCD8+ 
TILs from people with non-small-cell lung carcinoma 
contain greater lipid content than PD-1loCD8+ TILs, thus 
suggesting that lipid metabolism may contribute to T 
cell exhaustion.106 In addition, cholesterol can induce 
CD8+ T cell exhaustion through an ER stress-dependent 
pathway in the TME.107 Although the phenotypic and 
functional portraits of T cell exhaustion in the TME are 
well studied, the role of tumor-derived EVs in inducing 
T cell exhaustion has not been studied until recently. 
Studies have shown that miR-146a-5p in HCC-derived 
exosomes induces T cell exhaustion by activating anti-
inflammatory M2-macrophages, while this could be 
stopped by blocking transcription factor SALL4.108 In 
addition, it has been documented that a high expression 
of 14-3-3ζ in HCC-derived exosomes is correlated signifi-
cantly well with an exhausted phenotype of T cells.95 
Exosomes from patient serum of lung adenocarcinoma 
containing circRNA-002178 could enhance PD-L1 expres-
sion via sponging miR-34 in cancer cells to induce CD8+ T 
cell exhaustion in vitro.67

Tumor-derived EVs reprogram metabolism in T cells
Naïve T cells with a quiescent state predominantly use 
oxidative phosphorylation to generate ATP to support 
immune surveillance.109 When activated by antigen 
and professional antigen presenting cells, T cells must 
undergo rapid metabolic reprogramming and switch to 
aerobic glycolysis to exit quiescence and support anabolic 
metabolism required for proliferation and effector 
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function.109 110 Specifically, activated T cells increase the 
expression of nutrient transporters, especially glucose 
transporters 1 and 3 (GLUT1 and 3),110 and use glucose 
to generate ATP even in the presence of sufficient oxygen. 
Glycolysis provides fast energy and essential intermediates 
that are required for cell division and effector function.109 
Furthermore, tumor cells also increase the expression 
level of GLUT1 and uptake more glucose for glycolysis.111 
The enhanced utilization of glycolysis by tumor cells leads 
to an increased consumption of glucose and an accumu-
lation of immunosuppressive metabolites such as lactic 
acid.112 The sustained consumption of glucose by tumor 
cells eventually leads to a decrease of glucose levels in the 
TME and creates an environment with low glucose, low 
amino acids, and low oxygen. Effector T cells exposed to 
restricted glucose levels have significantly reduced anti-
tumor activity.113 In addition, elevated mechanistic target 
of rapamycin kinase activity and PD-1 signaling during 
the development of T cell exhaustion contributed to 
metabolic alterations including suppressed respiration, 
reduced glucose uptake, glycolysis and dysregulated mito-
chondrial energetics.114 T cells receiving PD-1 signal were 
unable to engage in glycolysis but displayed an increased 
fatty acid oxidation (FAO) by increasing carnitine palmi-
toyl transferase and inducing lipolysis.115 Notably, CTLA-4 
could inhibit glycolysis in T cells without augmenting 
their FAO.115 A recent study has also shown that high 
cholesterol content in the TME promotes CD8+ T-cell 
exhaustion in tumor-bearing mice.107 Interestingly, NAD 
precursor nicotinamide ribose could enhance the anti-
tumor responses of T cells within the TME by producing 
effector cytokines, reducing the accumulation of depolar-
ized mitochondria, and attenuating mitochondrial ROS 
(mtROS) levels in CD8+ T cells.105

Increasing evidence suggests that tumor microenvi-
ronmental EVs could potentially rewrite metabolism 
in T cells in the TME116 (figure  1). Tumor-derived EVs 
help creating an immunosuppressive TME by inducing 
apoptosis and impairing the function of effector T cells 
and other immune cells.16 68 74 The effects of the tumor-
derived exosomes on impacting the metabolic pathways in 
the recipient cells contribute significantly to a TME that 
is suitable for tumor cells to survive. For example, mutant 
K-RAS colonic cells and hepatic stellate cells release EVs 
containing GLUT1, which enhances glycolysis in other 
cells in the TME.117 118 EVs secreted by breast cancer cell 
line suppress glucose uptake by lung fibroblasts and astro-
cytes through the downregulation of the expression level 
and activity of pyruvate kinase isoenzyme (PKM2) and 
GLUT1.119 Low glucose availability in the TME has been 
shown to decrease the level of glycolytic metabolites such 
as phosphoenolpyruvate in T cells, weaken effector func-
tion, and render CD8+ T cells less capable of preventing 
tumor growth.113 120 Furthermore, limiting glucose avail-
ability or inhibiting glycolytic enzymes impairs prolifera-
tion of effector T cells and their cytokine production.121 122

Tumors lead to a microenvironment deficient in many 
nutrients, which are also required for T cell proliferation 

and differentiation processes. To offset the deficiency, 
following their activation, T cells upregulate the uptake 
of amino acids such as methionine and glutamine as well 
as enzymes for their metabolism.123 In addition, in some 
T cell types, cell differentiation and development has 
been influenced by amino acid deficiency. An amino acid-
deprived microenvironment promotes a shift in CD4+ T 
cells toward Treg differentiation and impairs effector 
T cell development.123 124 Known mechanisms that 
contribute to amino acid depletion include sequestration 
of cysteine and the production of arginase-1 (ARG1), an 
enzyme that speeds up the breakdown of arginine in the 
urea cycle. Interestingly, EVs isolated from the plasma and 
ascites of patients with ovarian cancer were reported to 
have increased arginase activity, and these ARG1+ cancer 
EVs are able to inhibit the proliferation of CD4+ and CD8+ 
T cells, presumably by depleting arginine.64 In addition, 
the increased arginase content in EVs is correlated with 
the decreased CD3ζ-chain levels, which is a T cell co-re-
ceptor involved in activating both the CD8+ cytotoxic T 
cells and Th cells.64

One important immunosuppressive factor is adenosine, 
which exerts T cell immune suppressive function by 
binding to their receptors A1, A2A, A2B, and A3.

125 Adenosine 
is produced by the action of CD39 and CD73, which cata-
lyze the conversion of ATP to AMP and the hydrolysis of 
AMP to adenosine, respectively. Studies have shown that 
tumor-derived EVs can impact adenosine production and 
signaling by several different ways. CD39/CD73 present 
on the surface of exosomes can generate extracellular 
adenosine through the degradation of extracellular ATP.65 
Furthermore, CD39/CD73-containing exosomes purified 
from diverse types of cancers display hydrolytic activity 
that leads to the production of adenosine from ATP in T 
cells, thus to inhibit T cell activation.65 126 Furthermore, 
prostate cancer exosomal prostaglandin E2 induces CD73 
expression in DCs thus suppressing T cell function in an 
adenosine-dependent manner.82 Adenosine generated 
by tumor-derived EVs can directly regulate intracellular 
signaling in T cells. For instance, adenosine from meso-
thelioma exosome has been shown to elevate cAMP level 
in T cells through the adenosine A2A receptor.65 Inter-
estingly, extracellular adenosine can also promote the 
development of Treg cells, which in turn produce more 
extracellular adenosine and thus form a potential posi-
tive feedback mechanism that enhances immunosuppres-
sion.127 In addition, hydrolytic activity of exosomes leads 
to the production of other purine nucleosides, including 
inosine and hypoxanthine in Treg cells.57 126 In support 
of this notion, exosomes derived from patients with 
HNSCC’s plasma have shown to contain purine metab-
olites, including adenosine, inosine, hypoxanthine and 
xanthine, and immunosuppressive adenosine being the 
most prominent purine.128 Although many progresses 
have been made in this field, the effects of tumor-derived 
EVs on T cell metabolism and their importance in anti-
tumor immunity are still largely unknown. A thorough 
understanding of the effects of tumor-derived EVs on T 
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cell metabolism and function has the potential to provide 
new insights for improved immunotherapy for cancer.

Tumor-derived EVs and epigenetic reprogramming in T cells
In order to adapt the shifting environment, T cells 
dynamically modulate their transcriptional programs, 
which subsequently influence their differentiation and 
alter their function and metabolic setup.129 The patterns 
of heritability of gene expression is mediated by epigen-
etic mechanisms that involve DNA methylation, histone 
post-translational modifications and non-coding RNA 
expression. Abnormal epigenetic patterns correlate with 
malfunction of effector T cells in tumors.130 131 The epigen-
etic programming of T cells could be induced by changes 
of nutrient levels, metabolic status, and external stimuli 
like growth hormones and cytokines in T cells.132 In addi-
tion, tumor-derived EVs may also epigenetically reshape 
the fate of T cells and contribute to T cell dysfunction in 
antitumor activity.

Histone acetylation is one the most extensively studied 
post-translational modifications and is regulated by 
the opposing actions of histone acetyltransferases and 
histone deacetylases (HDACs).133 Studies have shown 
that HDACs are dysregulated in many cancers, making 
them a therapeutic target for the treatment of cancer.133 
Interestingly, histone deacetylase 3 (HDAC3) is required 
for T cell maturation,134 135 and histone deacetylase 1 
and 2 (HDAC1/2) also participate in the proper thymic 
development of T cells.136 In addition, the HDAC inhibi-
tors vorinostat, romidepsin and panobinostat have been 
approved for the clinical treatment of cutaneous T cell 
lymphoma, and belinostat is currently used for treating 
peripheral T cell lymphoma.137 Besides acetylation, 
histone methylation also contributes to T cell dysfunc-
tion. Melanoma cells have been reported to disrupt 
methionine metabolism in CD8+ T cells by expressing 
high levels of the methionine transporter solute carrier 
family 43 member 2 (SLC43A2).138 Enhanced uptake of 
methionine by melanoma cells led to a lowering intracel-
lular level of methionine and the methyl donor S-adenos-
ylmethionine in T cells, resulting in loss of dimethylation 
at lysine 79 of histone H3 (H3K79me2) in T cells and 
an impaired T cell immunity.138 In recent years, whole-
genome methylation profiling has identified a distinct 
methylome pattern of colorectal cancer-reactive CD8+ 
T cells, in which tumor-reactive markers CD39 and 
CD103 are specifically demethylated.139 Latest studies 
demonstrated that exhausted CD8+ T cells have exhib-
ited distinct epigenetic landscapes, including chromatin 
accessibility and DNA methylation patterns, from effector 
CD8+ T cells.130 131

Epigenetic changes play important roles in developing 
T cell dysfunctional states including exhaustion. Indeed, 
de novo DNA methylation by the enzyme DNMT3A 
could promote T cell exhaustion; interestingly, PD-1 
blockade treatment can prevent the reprogramming and 
enhance T cell rejuvenation.140 In addition, interrupting 
the mitochondrial fitness of CD8+ T cells was able to 

orchestrate epigenetic reprogramming associated with 
exhaustion.105 DNA-binding protein TOX and transcrip-
tion factor NR4a have recently been identified as critical 
molecules that drive T cell exhaustion by orchestrating 
exhaustion-linked epigenetic and transcriptomic changes 
in CD8+ TILs.141 Notably, epigenetic modification was 
also involved in cytokine release from T cells. Blockade of 
leukemia inhibitory factor led to release of the epigenetic 
silencing of C-X-C motif chemokine ligand 9 (CXCL9), 
which in turn triggers CD8+ T cell tumor infiltration and 
enhances tumor immunotherapy.142

Studies indicated that many mRNAs and proteins 
contained in EVs are involved in epigenetic regulation of 
immune cell functions in the suppressive TME, including 
DNA methylation, histone modification, and miRNA 
regulation.143–145 Plasma exosomes containing dual meth-
ylated DNAs of CDKN2A and CDKN2B, or CDKN1B 
transcript contribute to diffuse large B-cell lymphoma 
pathogenesis.146 As to the aspect on other immune cells, 
study found that irradiation of glioblastoma cell line cells 
promotes the tet methylcytosine dioxygenase 2-mediated 
demethylation of exosomal-miR-378a-3p thus inducing 
the decrease of granzyme B secretion by NK cells.147 
However, molecular mechanisms responsible for tumor 
EVs-mediated epigenetic regulation on T cells and other 
immune cells are still under investigation.

Targeting tumor-derived EVs is a novel strategy for tumor 
immunotherapy and diagnosis
Immune checkpoint blockade therapy has emerged as a 
promising anticancer strategy for different tumor types. 
Many anticancer drugs have been developed based on 
the immune checkpoint molecules.148 Nevertheless, a 
majority of patients with cancer fail to respond to current 
checkpoint blockade immunotherapies. The immune 
suppressive function of tumor-derived EVs drives 
researchers to rethink the failure of current immune 
checkpoint blockade therapies. It has been shown that 
the presence of PD-L1 in tumor-derived exosomes is posi-
tively correlated with tumor activity and progression, and 
blocking exosome signaling in T cells with anti-PD-1 anti-
body effectively attenuates immune suppression medi-
ated by the PD-L1+ exosomes.74 75 87 Recent studies have 
demonstrated that directly targeting β-catenin could be 
an effective strategy to enhance anti-PD-1 based therapy 
in hepatocellular carcinoma.149 EVs derived from ovarian 
tumor ascites contain phosphatidylserine (PS) which 
suppresses T cell activation and the signaling arrest in T 
cells could be stopped by a blockade of PS.150 EVs from 
estrogen receptor-binding fragment-associated antigen 
9 (EBAG9)-overexpressing prostate cancer cells can 
facilitate immune escape of tumors by inhibiting T cell 
cytotoxicity and regulating immune-related gene expres-
sion. This specific immune suppression could also be 
rescued by EBAG9 neutralizing antibody treatment.151 
In addition, other immune checkpoint molecules Tim-3 
and Galectin-9 have been found to be present in large 
quantity in the exosomes isolated from the plasma of 
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the patients with non-small cell lung cancer.152 Interest-
ingly, the exosome-based immune checkpoint blockade 
strategies have now been explored to develop for cancer 
therapy. Exosomes engineered to contain signal regu-
latory protein α (SIRPα) variant can block the interac-
tion between SIRPα and CD47, which limits the ability of 
macrophages, thus makes macrophages to engulf tumor 
cells again and promotes an intensive T cell infiltration 
in vivo.153 CD47 is abundantly expressed in many tumor 
cells, and its interaction with SIRPα on the macrophages 
confers a ‘don’t eat me’ signal to allow the tumor cells 
to evade the attack by macrophages. Interestingly, CD47 
is also present in many EVs, which likewise protects 
EVs from phagocytosis by monocytes.154 A new type of 
exosomes that capsule two distinct types of antibodies 
could simultaneously activate T cell surface CD3 and 
cancer cell-associated EGFR thus displaying excellent 
antitumor activities.155

In addition to enhancement of immune checkpoint 
blockade therapy, tumor-derived EVs could be utilized 
as a source of cellular antigens for development of novel 
tumor therapeutic vaccines.20 156 Many molecules present 
in tumor-derived EVs can trigger antitumor immunity, 
and these include TAAs, damage-associated molecular 
patterns, and MHC-peptide complexes.157–159 Immuniza-
tion of mice with those tumor EVs containing TAAs and 
MHC-peptide complexes can enhance antigen presen-
tation, leading to tumor-specific T cell stimulation and 
enhanced T cell infiltration.157 158 It has been suggested 
that use of EVs as tumor antigens for the development 
of cancer vaccines is superior to the use of irradiated 
tumor cells or tumor cell lysates, which can express more 
concentrated antigens and lead to a better recovery in 
T cell proportion and is easier to store.160 161 Further-
more, antigen-loaded exosomes can induce specific T 
cell responses with a Th1-type shift.162 Exosomes loaded 
with immune cell ligand α-galactosylceramide (αGC) and 
antigen ovalbumin (OVA) can not only induce potent NK 
and γδ T cell innate immune responses, but also lead to 
synergistically amplified T cell and B cell responses.163 
In addition, treatment of tumor-bearing mice with 
αGC/OVA-loaded exosomes decreased tumor growth, 
increased antigen-specific CD8+ T cell tumor infiltration 
and prolonged the survival of tumor-bearing mice.163 In 
fact, EV-based vaccines have recently been developed 
for cancer immune therapy. A heterologous human/
rat HER2-specific exosome-targeted T cell vaccine has 
been demonstrated to stimulate CD4+ T cell responses, 
leading to increased induction of HER2-specific antibody 
and a remarkable eradication of 90% of HER2-expressed 
target breast cancer cells.164 Additionally, a method for 
increasing the yield of EVs by cyclophosphamide treat-
ment has been reported, which may be used to produce 
antigens for future design of cancer vaccines.161 Exosome 
engineering approaches, such as decorating tumor 
peptides on the exosome surface and microfluidic tech-
nique, have also been utilized to enhance the ability of 
harvested exosomes in antigen presentation and T cell 

activation in future vaccine design.165 166 One attractive 
approach is engineering EVs to allow their specific uptake 
by DCs and induce antigen-specific T cell responses. This 
can be achieved by modifying the EV glycan surface so 
it can bind CD209, a DC-specific receptor that mediates 
antigen uptake and induction of CD4+ and CD8+ T cell 
activation. This approach has been successfully applied 
to EVs from glioblastoma and melanoma, which repre-
sent an enriched cell-free source of TAA to pulse DCs 
for efficient antigen delivery and initiation of antitumor 
immune responses.167 168

Tumor-derived EVs also hold great promise in cancer 
diagnosis, and there are some ongoing clinical trials 
that explore biomarkers present in these EVs for cancer 
diagnosis (latest information can be tracked in https://​
clinicaltrials.​gov). EVs derived from tumors that are 
in pre-metastatic niches often contain pro-metastatic 
factors, which can be used to determine the metastatic 
organotropism of tumors. EVs from liquid fluids such 
as plasma, ascites and urine are potential reservoirs of 
tumor biomarkers that could be clinically useful, which 
enable liquid biopsies in cancer diagnosis and prog-
nosis. In recent years, several studies have highlighted 
different markers contained specifically in EVs derived 
from different cancer subtypes. For example, EVs from 
pancreatic cancer contain a very promising clinical prog-
nostic marker, macrophage migration inhibitory factor.169 
EVs from the plasma of patients with breast cancer are 
enriched with miR-21 and miR-1246, which can be used 
for the diagnosis of breast cancer or for monitoring 
the effectiveness of treatment.170 In addition, ongoing 
clinical trials are evaluating the diagnosis marker for 
EVs from plasma of lung cancer (NCT04529915), and 
tumor-derived EVs for thyroid cancer (NCT04742608), 
and early prognosis marker for colorectal cancer 
(NCT04523389). Tumor-derived EVs may also be used to 
monitor the response of a patient to cancer treatment. 
The level of PD-L1 in the circulating EVs from patients 
with melanoma correlated well with the tumor response 
to checkpoint blockade therapy.171 A lower level of TGF-β 
in EVs corresponded to an increased immune activity 
after chemotherapy.159 A very recent study found a signif-
icant correlation between high levels of urokinase-type 
plasminogen activator receptor (uPAR) in EVs and poor 
clinical outcomes of immunotherapy in patients with 
melanoma.172 Thus, the level of exosomal uPAR can be 
potentially used as a biomarker of resistance to check-
point inhibitor immunotherapy in melanoma.

Conclusions and perspectives
Tumor-derived EVs have emerged as important media-
tors between malignant tumors and tumor-infiltrating 
immune components. It is well established that T cell 
function is dramatically impaired by the suppressive 
TME in patients with cancer. In addition, a large propor-
tion of patients does not respond to or does not achieve 
durable responses to the current immunotherapies 
because of the dysfunction of effector T cells caused by 

https://clinicaltrials.gov
https://clinicaltrials.gov
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T cell exhaustion, anergy, and senescence.173 Increasing 
evidence suggests that tumor-derived EVs are the critical 
factors to promote immune suppression and maintain 
a suppressive TME. They can suppress the function of 
T lymphocytes via a variety of mechanisms that include 
regulating T cell metabolism, affecting the differentia-
tion of T cell subsets, and delivering immune suppressive 
molecular signals from the parent tumor cell to distantly 
situated T cells (table 1). Tumor-derived EVs have been 
reported to affect T cell exhaustion, however, whether 
they also induce other states anergy, senescence, and 
stemness of T cells remains largely unknown. Improved 
understanding of these molecular regulations will be crit-
ical for the development of effective therapeutic strate-
gies for cancer treatment.

Although great progress has been made in under-
standing the effects of tumor-derived EVs on immune 
cells, however, one important concern in the field of 
tumor-derived EVs is the heterogeneous nature of these 
vesicles, especially those isolated from the patients. 
Although new assays for distinguishing cancerous from 
non-cancerous plasma samples have been reported,174 175 
the method for separating tumor-derived EVs and non-
malignant cell-derived EVs from body fluids are not 
generally available. As a consequence, the total EV frac-
tions isolated from the plasma or body fluid of patients 
with cancer are often referred as tumor-derived EVs. In 
reality, these EVs are a mix of both tumor cell-derived and 
non-malignant cell-derived EVs, which may not recapit-
ulate the content, phenotypic and functional spectrum 
of tumor EVs in patients with cancer. These may explain 
the conundrum that the same tumor EVs appear to carry 
both suppressive and stimulatory cargoes, as these tumor 
EVs being investigated could be heterogeneous and 
stemmed from both malignant and non-malignant cells. 
This notion was supported by a study on EVs from the 
plasma of patients with melanoma.175 Using a three-step 
strategy that involves immune-based capture, researchers 
were able to separate malignant cell-derived EVs (MTEX) 
and non-malignant cell-derived EVs (non-MTEX) and 
found that MTEX has an enrichment in immunosup-
pressive proteins and a paucity of immunostimulatory 
proteins. On the other hand, the non-MTEX has a higher 
ratio of stimulatory/inhibitory proteins, and this ratio 
varies widely in patients and negatively correlates with 
disease progressions.

In addition, several other challenging issues are still 
unknown in the field. First, the effects of individual 
component present in tumor-derived EVs on immune 
cells are unclear and worth to be studied in great details. 
Majority of previous studies have focused on the effects of 
DNA, miRNAs and immune suppressive proteins present 
in tumor-derived EVs on T cells, but little is known about 
the carbohydrates on the surface of EV, such as poly-
saccharides and oligosaccharides on immune cells.176 
In addition, tumor-derived EVs contain some immune 
suppressive metabolites, such as purines, lactic acid, fatty 
acids, and eicosanoids,11 45 46 128 as well as increased levels 

of metabolic proteins and enzymes, such as GLUT1, 
PKM2, aldolase A and aldehyde dehydrogenase 3.118 177 178 
However, the precise roles of these metabolites and mole-
cules from tumor-derived EVs in controlling T cell fate and 
function are still under investigation. Second, whether 
and how the tumor-derived EVs metabolically and epige-
netically rewrite T cell differentiation and functions in 
tumor immunity is also not fully understood. Increasing 
evidence suggests that the metabolic barrier imposed on 
T cells by the TME is an important factor that triggers T 
cell suppression.179 Furthermore, different subsets of T 
cells may utilize different metabolic regulation for their 
survival and effector function.180 Precisely dissecting 
the metabolic changes in T cells induced by individual 
component in the tumor-derived EVs will provide crit-
ical insights for a better understanding of the failures of 
current immunotherapies and development of effective 
tumor treatments.115 In addition to metabolic regulation 
in T cells, very limited information is known about how 
tumor EVs epigenetically regulate the factions in T cells in 
tumor immunity, which should be put to more efforts in 
the future studies. Third, novel technologies and combi-
nation strategies should be utilized to develop effective 
EV-based immunotherapies for future tumor treatments. 
Given the specific characters of EVs, nanomedicine could 
be as a promising form to efficiently deliver endogenous 
and exogenous therapeutics.181 In addition, the appli-
cations of exosomes for combination therapy in tumors 
have been reported in the preclinical models. Specifi-
cally, chemotherapy drug doxorubicin and cholesterol-
modified miRNA21 inhibitor are co-embedded into the 
lipid bilayer of healthy mice blood exosomes can be 
delivered to tumor cell for enhanced tumor therapy.182 
Furthermore, tumor EVs as a reliable source of tumor 
antigens may constitute a better immunological strategy 
for the development of novel tumor immunotherapeutic 
vaccines.
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