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Abstract
Conventional lateral flow assay (LFA) is typically performed by observing the color changes in the test lines by naked eyes, 
which achieves considerable commercial success and has a significant impact on the fields of food safety, environment 
monitoring, disease diagnosis, and other applications. However, this qualitative detection method is not  very suitable for 
low levels of disease biomarkers’ detection. Although many nanomaterials are used as new labels for LFA, additional read-
ers limit their application to some extent. Fortunately, a lot of work has been done for improving the sensitivity of LFA. In 
this review, currently reported LFA sensitivity enhancement methods with an objective evaluation are summarized, such as 
sample pretreatment, the change of flow rate, and label evolution, and future development direction and challenges of LFAs 
are discussed.
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Introduction

The rapid, portable, sensitive, and inexpensive detection of 
analytes from complex samples is essential for in vitro diag-
nostics [1, 2]. It is estimated that improving the technique of 
diagnostic tests for infectious diseases in developing coun-
tries can annually save at least 1.2 million deaths [3]. Espe-
cially when facing the outbreak of severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), a rapid and facile 
screening strategy, which is employed in airports, customs, 
and community, shows the great significance to prevent epi-
demic and resume shipping and economic development.

Lateral flow assay (LFA) deployed as point-of-care test-
ing (POCT), owing to its rapidity, simplicity, stability, and 
visual characteristics [4], has been vital in enabling faster 
diagnosis, directing medical interventions, and mitigating 
the transmission of infectious diseases [2].

Conventionally, the results of LFA are read out by naked 
eyes, by measuring the color change due to the accumu-
lation of gold nanoparticles (AuNPs). This detection strat-
egy is simple and rapid, and the early pregnancy test is the 

outstanding representative. However, these results are quali-
tative and lack of sensitivity and may function only for cer-
tain applications. As for the detection of critical biochemical 
markers present in extremely small amounts in a sample, 
such as myocardial infarction and cancer, these methods do 
not afford sufficient sensitivity, which restrict their applica-
tions. In recent years, the development of new nanomateri-
als has broadened the type of labels available for LFA to 
enhance sensitivity. These nanomaterials can be roughly 
divided into three categories according to the type of read-
out [5], that is, naked-eye detection, fluorescence detection, 
and non-optical readout detection. Carbon nanoparticles [6, 
7], carbon nanotubes [8, 9], and dye-loaded latex beads [10, 
11] can provide an alternative to AuNPs for naked-eye detec-
tion. Fluorescent labels are generally recommended for low 
concentrations of targets and quantitative detection. Suitable 
fluorescent nanoparticles include fluorescent microspheres 
(FMs) [12], quantum dots (QDs) [11], upconverting nano-
particles (UCNPs) [13], and liposomes with fluorescent dyes 
[14]. LFA with non-optical readout can be comparable with 
that of LFA with fluorescent labels, such as magnetic nano-
particles [15–17] and nanoparticles for electrochemical read-
ings[18–20]. However, they either cannot provide a strong 
signal as AuNPs for naked-eye detection or comes with a 
higher cost and the need for an external reader.

In order to enhance the signal–noise ratio, a lot of signal 
amplification methods have been employed in POCT, such 
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as gas-propelled [21, 22], enzyme-mimicking accelerated 
signal enhancement [23, 24], and cascade amplification 
[25, 26]. As for AuNP-based LFA, significant efforts have 
been focused on highly sensitive detection, such as sample 
pretreatment, changes in structure, materials, and labels. In 
this review, currently reported LFA sensitivity enhancement 
methods with an objective evaluation are summarized, and 
future development direction and challenges of LFAs are 
also discussed.

Sensitivity enhancement based on sample 
pretreatment

Serum and saliva are the common sample matrix for dis-
ease diagnosis. AuNPs may aggregate together caused by 
the mixture of proteins, nucleic acids, and other substances 
in the matrix of serum and saliva [27], which interferes with 
the sensitivity and specificity for detection. To get rid of 
interfering components, a lot of sample pretreatment meth-
ods are introduced in LFA, such as isothermal amplification 
for nucleic acid detection [28] or sample enrichment for pro-
teins detection [29]. The following sections will highlight 
such sample pretreatment integrated with LFA.

Sensitivity enhancement based on isothermal 
nucleic acid amplification

Comparing with other biomarkers, nucleic acids are more 
stable under harsh environments and are gradually classified 
as biomarkers for disease diagnosis [30], microbial detection 
[31], and environmental monitoring [32]. With an increas-
ing demand for diagnosis under resource-limited conditions, 
LFA for nucleic acid detection has gained greater attention 
owing to the lower cost and user-friendly [33]. However, 
one major drawback of the current LFA for nucleic acid 
detection is a low sensitivity, limiting its practical applica-
tions. Different from protein biomarkers present at the level 
of nanomolar or picomolar, the amounts of pathogenic bac-
teria that cause disease can be as low as a few CFU/mL 
[34]. In order to enhance the sensitivity of LFA for nucleic 
acid detection, various isothermal amplification methods 
are used, including rolling circle amplification (RCA) [35], 
loop-mediated isothermal amplification (LAMP) [36], 
recombinase polymerase amplification (RPA) [37], nucleic 
acid sequence–based amplification (NASBA) [38], helicase-
dependent isothermal DNA amplification (HDA) [39], and 
hybridization chain reaction (HCR) [40].

Sensitivity enhancement based on RCA​

RCA is an isothermal enzymatic process where a short DNA 
or RNA primer is amplified to form a long single-stranded 

DNA or RNA under the function of a circular DNA tem-
plate and special DNA or RNA polymerases [41, 42]. The 
RCA product is a concatemer containing tens to hundreds of 
tandem repeats that are complementary to the circular tem-
plate [43], which gives a huge amount of capturing sites or 
signal generating sites. Yao et al. [35] combined RCA with 
AuNP-based LFA for simultaneous detection of miRNA 21 
and miRNA let-7a. The limit of detection (LOD) was as 
low as 40 pM and 20 pM, respectively (Fig. 1A). Compared 
with the results obtained by Kor et al. [44], the sensitivity 
of miRNA21 was enhanced 7.5 times. Moreover, RCA inte-
grated with LFA were designed for the detection of Karenia 
mikimotoi (hyperbranched RCA, HRCA [45]) and Karlodin-
ium veneficum (exponential RCA, E-RCA [46]), respectively. 
Inspiringly, the sensitivity of HRCA-LFA was 100 times that 
of polymerase chain reaction (PCR) [45], and E-RCA-LFA 
was more sensitive than that of the conventional PCR and 
reached a LOD of 0.01 cell/mL [46]. In addition, RCA-based 
LFA has also been used in the detection of metal ions [47], 
small molecules [48], enzymes [49], and antibodies [50].

Sensitivity enhancement based on RPA

RPA is regarded as an isothermal PCR method. Recombi-
nase and single-stranded binding protein are used to replace 
the programmed temperature changing of PCR [53]. The 
recombinase is used to complete the dissociation of the tem-
plate and the combination of primers and templates, while 
single-stranded binding protein is used for maintaining the 
single chain so that the DNA polymerase completes the 
primer extension process. Most importantly, it is an effective 
approach in terms of sensitivity, specificity, and multiplex-
ing [54, 55].

Zhang’s group [56] established a clustered regularly 
interspaced short palindromic repeats (CRISPR)–based 
diagnostic platform, which combined RPA and LFA with 
CRISPR–Cas enzymology for specific recognition of desired 
DNA or RNA sequences, called specific high-sensitivity 
enzymatic reporter unlocking (SHERLOCK). The template 
underwent the isothermal amplification reaction of RPA to 
amplify the signal. At the same time, a T7 promoter was 
added for in vitro transcription by RPA, which was used 
for converting the target from DNA to RNA for detection. 
After recognizing the target site of RNA, Cas13a would non-
specifically cleave molecular beacons to generate signals. 
For RNA target, reverse transcription was necessary.

To date, RPA integrated with LFA has been widely used 
in the detection of pathogenic bacteria and viruses in food 
safety [57–59], environmental monitoring [37], and other 
biomedical fields [60, 61].
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Sensitivity enhancement based on LAMP

The core principle of LAMP is to design 2 or 3 pairs 
of primers for 6 regions of the target gene fragment to 
achieve rapid and efficient amplification [62]. Similar to 
nested PCR, multiple primers of LAMP strictly and effi-
ciently ensured specificity. And, it is not affected by non-
target DNA and PCR inhibitors with high similarity to the 
target DNA [63, 64].

Dou and co-workers [51] integrated polydimethylsilox-
ane (PDMS)/paper hybrid microfluidic chip with LAMP 
for Neisseria meningitidis detection (Fig. 1B). Compared 
with the results of previous studies [65], the introduction 
of paper into the microfluidic device for LAMP enabled 
more stable results than that of a paper-free microfluidic 
system. The LOD was about 3 copies of DNA, which was 
lower than that of other studies [66, 67].

Facing the COVID-19, Zhang’s group [52] developed 
an upgraded version of the new coronavirus detection pro-
cess based on SHERLOCK, called STOPCovid (Fig. 1C). 
The RNA in the sample was enriched by adding magnetic 
beads during the sample preparation process, thereby 
increasing the amount of initial RNA in LMAP and 
further improving the detection sensitivity. In addition, 

STOPCovid version 2.0 streamlined the operating steps 
of RNA enrichment with magnetic beads, removed the 
ethanol washing and eluting process, and shortened the 
whole time of the entire RNA enrichment process to less 
than 15 min.

Furthermore, LAMP integrated with LFA has also been 
used in the detection of E. coli [68], plasmodium [64], P. 
aeruginosa [69], and SARS-CoV-2[70].

Sensitivity enhancement based on sample 
enrichment

Unlike nucleic acid, protein can not achieve quantity increas-
ing by amplification. Fortunately, enrichment strategies, such 
as isoelectric electrophoresis, dialysis, and magnetic enrich-
ment, can be integrated with protein detection to increase the 
concentration and enhance the detection sensitivity.

Sensitivity enhancement based on electrophoresis

Paper-based ion concentration polarization (ICP) pre-
concentrators were integrated with LFA by Kim et al. [71] 
to enhance the detecting sensitivity of β-human chorionic 

Fig. 1   Sensitivity enhancement based on isothermal nucleic acid 
amplification. A Schematic illustration of RCA integrated with LFA 
for miRNA detection [35]. B Layout of the PDMS/paper hybrid 

microfluidic device integrated with on-chip LAMP system [51]. C 
The whole process for STOPCovid, Version 2 (STOPCovid.v2) Test 
[52]

Page 3 of 15    379Microchim Acta (2021) 188: 379



1 3

gonadotropin (β-hCG) (Fig. 2A). Through a simple 9 V bat-
tery and low power consumption (about 81 μW), a precon-
centration factor of 25-folds was obtained, and the detection 
sensitivity was enhanced by 2.69 times compared with that 
of the commercial LFA for β-hCG.

Isotachophoresis (ITP) was used by Moghadam et al. 
[72] to focus target analytes into a thin band and then was 
transported to the test line of LFA, resulting in a dramatic 
increase in the surface reaction rate and equilibrium binding 
(Fig. 2B). This strategy can improve the sensitivity of LFA 
by 400-fold compared with that of the commercial LFAs 
for β-hCG.

Sensitivity enhancement based on extraction

Kamei’s group [53] firstly developed an aqueous two-
phase system (ATPS) to concentrate a target biomarker into 
a smaller volume before loading it onto LFA. Using this 
method, a tenfold improvement in the overall detection sen-
sitivity of LFA was achieved for bacteriophage M13 [75] 
and transferrin (Tf) [76]. In addition, this newly discovered 

concentrating phenomenon suggested that the paper mem-
brane sped up the macroscopic phase separation of ATPS.

Chiu et al. [73] expanded the paper device vertically, 
thereby increasing the cross-sectional area of flow and 
exploiting the effects of gravity on macroscopic separation 
(Fig. 2C). In addition to accelerating phase separation, this 
3-D component also enhanced the ability to process larger 
and more diluted volumes of sample. The novel integration 
of ATPS and LFA within a 3-D paper well successfully 
yielded a tenfold improvement in the detection of transferrin.

Sensitivity enhancement based on dialysis

Tang et al. [74] integrated the semi-permeable membrane, 
glass fiber, and PEG buffer with LFA for samples enrich-
ment (Fig. 2D). PEG-loaded glass fiber was used as the 
dialysate for sample concentrating. Compared with that of 
the conventional LFA, tenfold signal enhancement in HIV 
detection and fourfold signal enhancement in myoglobin 
detection have been achieved, respectively.

Fig. 2   Sensitivity enhancement based on sample enrichment. A 
Paper-based ICP pre-concentrators integrated with LFA for β-hCG 
detection [71]. B Experimental setup for (a) ITP-enhanced LFA and 
(b) conventional LFA. (c) Experimental snapshots were taken at 5 dif-
ferent time points [72]. C The 3-D paper is well combined with ATPS 
and LFA for transferrin detection [73]. (a) The 3-D paper well device 

was combined with a transferrin competition assay on nitrocellulose 
paper. Samples containing no transferrin were correctly diagnosed 
when using the (b) 1:1 or (c) 9:1 volume ratio of ATPS solutions. D 
Schematic of the integrated device of the semi-permeable membrane, 
glass fiber, and PEG buffer into with LFA [74]
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Sensitivity enhancement based on magnetic enrichment

Taking advantage of supermagnetism, magnetic bead-based 
separation is used as a convenient way to perform sample 
pretreatment and eliminate the interference of food matrices 
in LFA. Generally, aptamers [77, 78] or antibodies [79, 80] 
are labeled with magnetic beads for target capturing.

Besides the capability of fast separation in the magnetic 
field, magnetic nanoparticles or magnetic beads possess 
the color of brown and can provide low background noise, 
which make them ideal label materials of LFA [6]. Zhang 
et al. [81] developed a multiple immunoassay test strip based 
on Fe3O4 superparamagnetic nanosphere (SPMN) probes, 
which was used to enrich samples and quench the fluores-
cence of multiple fluorescer on the test line (Fig. 3). Simul-
taneous detection of carcinoembryonic antigen (CEA) and 
carbohydrate antigen (CA153) was realized with LOD of 
0.06 ng/mL and 0.6 U/mL, respectively.

Sensitivity enhancement based 
on the change of flow rate

Another critical factor affecting the sensitivity of LFA is 
the time for the immunoreaction between the analyte and 
the capture antibody pre-deposited on the test line, which 
depends on the migration time of the sample over the test 
line [82]. The decrease in the reaction time causes insuf-
ficient time for the antibody-antigen reaction [83], so a test 
should be long enough for a sufficient antibody-antigen 

reaction. An increase in the distance from the conjunc-
tion pad to the test line can increase the reaction time [84]. 
An increase in the pore size of a nitrocellulose membrane 
can decrease the amount of bound protein and increase the 
flow rate. And, the rapid migration times caused a high sig-
nal–noise ratio [85]. More importantly, some engineering 
methods, such as flow block and NC membrane size change, 
have been developed for LFA sensitivity enhancement.

Sensitivity enhancement based on flow block

Rivas et al. [86] developed delay hydrophobic barriers fabri-
cated by wax printing to improve LFA sensitivity (Fig. 4A). 
When running buffer flows through the wax barrier, micro-
fluidics delay and pseudo-turbulent flow were generated 
in the columnar region, which improved the sensitivity of 
almost 3-folds in comparison to a commercial barrier-free 
LFA.

However, the wax barrier on the NC membrane of LFA 
might melt during the process of heating [89]. A piece of 
paper-based shunt and a polydimethylsiloxane (PDMS) bar-
rier were integrated with LFA by Choi et al.[87] to achieve 
optimal fluidic delays, and tenfold signal enhancement was 
obtained for detecting hepatitis B virus (HBV) nucleic acid 
(Fig. 4B). In further studies, Choi et al. [88] used agarose as 
the barrier due to its strong permeability, excellent mechan-
ical properties, easier fluid control, and tunable pore size 
and porosity (Fig. 4C). Remarkably, this detecting strategy 
enhanced the sensitivity nearly 10-folds with a detection 

Fig. 3   Mechanism of mag-
netic fluorescence-based LFA 
platform for CEA and CA153 
detection [81]
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limit of 100 copies of dengue viral RNA, which yielded 
comparable or more sensitive result than that of the pub-
lished techniques of enzyme enhancement [90], temperature 
and humidity control [91], and fluidic control by hydropho-
bic barriers [86].

Sensitivity enhancement based on NC membrane 
size change

Katis et al. [92] used spatial constrictions in the flow path 
as a route to increase the sensitivity and lower the LOD 
of LFA, due to the slower flow rate and the smaller test 
zone area (Fig. 5A). The liquid photopolymer was locally 
deposited onto the paper substrate with a deposition nozzle. 
A laser beam subsequently followed the deposition head, 

illuminated the deposited patterns, and induced the photo-
polymerization of the polymer (Fig. 5B). The polymerized 
patterns defined the fluidic walls, which served as demar-
cation barriers to confine and transport the liquids within 
the paper device. The LOD of C-reactive protein (CRP) 
was 5 ng/mL with a 1-mm-wide constriction, which was 
a 30-fold enhancement compared with that of the standard 
LFA with the width of 5 mm.

Fig. 4   Sensitivity enhancement based on flow block. A (a)SEM 
image for the transversal cut of wax pillars area on LFA. (b) Sur-
face profile roughness of LFA modified with wax pillars. (c) Sche-
matic of a transversal cut of pillars zone on nitrocellulose membrane 

[86]. B Sensitivity enhancement in LFA by creating a PDMS barrier. 
(a) Effects of PDMS droplets numbers on LOD. (b) Results of flow 
velocity simulation of LFA [87]. C Schematic diagram of fluidic con-
trol in a paper–agarose hybrid material–based LFA [88]

Fig. 5   Sensitivity enhancement based on NC membrane size change [92]. A Schematic of the flow path constriction device (a) and a standard 
lateral flow device (b). B Schematic of the modified laser-based direct-write procedure
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Sensitivity enhancement based on label 
evolution

Sensitivity enhancement based on colorimetric 
methods

Sensitivity enhancement based on dual AuNPs

With an increase in the particle size of AuNPs, the molar 
extinction coefficient is significantly enhanced [93, 94]. 
Therefore, a larger particle size of AuNPs as the labeling 
nanomaterial is more conducive to improve the sensitivity 
[95].

Choi et al. [96] used two different sizes of AuNPs to 
realize the sensitive detection of cardiac troponin I (cTnI) 
by LFA (Fig. 6A). The first conjugate was AuNPs (10 nm) 
coated with anti-troponin I antibody and blocked with 
bovine serum albumin (BSA), and the second conjugate 
was AuNPs (40 nm) coated with anti-BSA antibody and 
blocked with human serum albumin. Double AuNP-based 
LFA can detect as low as 0.01 ng/mL of cTnI within 10 min, 
which was enhanced about 100 times compared with that of 
Posthuma-Trumpie’ research [97]. This dual-labeling strat-
egy was subsequently optimized for the on-site and sensi-
tive detection of melamine in milk, offering a 10- to 25-fold 
improvement [98]. Later, this method was used in detect-
ing bisphenol A (BPA) [99], Hg2+ [100], and procalcitonin 
(PCT) [101].

Sensitivity enhancement based on silver staining

Inspired by GNSs, the method of silver staining was devel-
oped to change the shape of AuNPs.

Silver staining is another method for signal amplification 
via the color change at the test line based on chemical reac-
tions [106]. These reactions involve the catalytic reduction 
of silver ions on gold nanoparticles, which produces larger 
absorbance values for gold nanoparticles and darker colors 
at the test lines of LFA [107].

Yang et al. [108] used silver staining in LFA for the first 
time. When a visible red color appeared on the detection 
area, the NC membrane was covered with an AgNO3 pad, 
and on which the reducer pad was placed. The produced 
larger size of silver particles was used to change the color 
of the detection line from red to black which made the 
contrast more obvious. A 100-fold improvement in sensi-
tivity with a detection limit of 0.1 ng/mL for abrin-a was 
obtained. Kim et al. [102] used core–shell hybrid nanofib-
ers and silver staining technique to detect cTnI. AgNO3 and 
silver-reducing reagent of hydroquinone solutions were 
separately encapsulated by electrospinning (Fig. 6C). The 
silver ions were reduced to metallic silver around AuNPs 
and the color of the test line was darkened. The obtained 
detection limit for cTnI was 0.24 ng/mL, and the sensitivity 
was enhanced by up to 10 times compared with that of the 
commercial LFA. Anfossi et al. [103] used this method to 
realize the detection of ochratoxin A (OTA) by competi-
tive LFA (Fig. 6D), and the sensitivity was enhanced by 10 

Fig. 6   Sensitivity enhancement based on colorimetric methods. A 
Dual AuNPs LFA was used for cTnI detection; the sizes of AuNPs 
were 10 nm and 40 nm, respectively [96]. B Schematic of a hybrid 
nanofiber-deposited LFA kit and the time-dependent changes of the 
conjugate pad (P), electrospun nanofibers E, test line (T), and con-
trol line C during the signal-enhanced assay [102]. C Expected effects 
of silver staining on LFA sensitivity enhancement [103]. D (Left) 

Results of LFA for different concentrations of human IgG and the dif-
ferent substrates. (Right) Results were obtained with the strip reader 
[90]. E Schematic of AuNP-assisted signal amplification on LFA for 
pathogen detection [104]. F (a) Schematic of EASE. (b) The relation-
ship between dopamine accumulation and time in the presence of 
HRP [105]
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times compared with that of the traditional LFA for OTA 
detection [109].

Sensitivity enhancement based on enzymatic amplification

Inspired by the wide use of enzymes as labels in bioassays, 
the nano-carrier-enzyme probes have been used in LFA to 
improve the detecting performance of various optical and 
electronic biosensing systems [110–113].

In the study of Parolo et al. [90], AuNPs were used not 
only as labels for antibodies, but also as carriers for enzymes 
(Fig. 6E). When acting as direct labels, AuNPs turned red 
at the test line and the control line of LFA. However, after 
AuNPs conjugating with antibody and blocking with horse-
radish peroxidase (HRP), the produced insoluble chromo-
gens cannot move by the flow and then darken the color of 
the lines. By comparing three substrates (TMB for blue-
violet, AEC for red [114], and DAB for gray-black [115]), 
it was found that TMB is optimal for signal enhancement 
maintaining at an order of magnitude.

Cho et al. [104] used the abovementioned signal ampli-
fication technique for E. coli O157:H7 detection (Fig. 6F). 
The obtained detection limit was 100 CFU/mL, which was 
about 1000 times lower than that of the traditional AuNP-
based LFA.

Li et al. [105] developed a universal “add-on” technique 
called enzyme-accelerated signal enhancement (EASE) 
(Fig. 6G). EASE depended on the ultrafast and localized 
deposition of polydopamine (PDA) at the test line [94], per-
mitting a large number of signal molecules to be captured 
and leading to sensitivity enhancement over three orders of 
magnitude. Under the normal conditions of using DAB as 
the substrate, p24 at the concentration of 10 ng/mL can be 
detected by LFA, while by EASE, the detection limit can be 
obtained at the level of 10 pg/mL, allowing the ultrasensitive 
detection of HIV antigens with naked eyes.

Sensitivity enhancement based 
on surface‑enhanced Raman scattering (SERS)

In the excitation region of some specially prepared metal 
conductor surfaces or solutions, a stronger Raman signal 
caused by surface roughness can be observed, which is 
called surface-enhanced Raman scattering (SERS). Com-
pared with traditional Raman scattering, SERS can realize 
6 orders of magnitude or more [116].

Covian et al. [117] developed SERS-based LFA to detect 
pneumolysin by using gold-core-silver-shell nanoparticles 
as the plasmonic platform and rhodamine B isothiocyanate 
as Raman tag. Compared with the results of the electro-
chemical immunosensor with the detection limit of 0.6 ng/
mL [118] and the chemiluminescence immunoassay with 
the detection limit of 5.5 pg/mL [119], the sensitivity of 

SERS-based LFA was enhanced with the detection limit of 
1 pg/mL.

It has been proved that SERS nanotags have the coding 
capacity by absorbing different Raman dyes on the surface 
of the metal [120], which made it possible to realize multiple 
detections. Zhang et al. [121] encapsulated Raman dye Nile 
Blue A (NBA) in the interface of the core–shell structure 
(Fig. 7A), and based on the core–shell SERS nanotags, a 
novel LFA was developed to realize rapid quantification of 
creatine kinase isoenzyme (CK-MB), cTnI, and myoglo-
bin (Myo) on three test lines with a detection limit of 0.55, 
0.44, and 3.2 pg/mL, respectively, which decreased the LOD 
nearly three orders of magnitude than that of the colorimet-
ric detection[122, 123]. In the follow-up study, Zhang et al. 
[124] encapsulated Raman dyes methylene blue (MB), Nile 
blue A (NBA), and rhodamine 6G (R6G) in the core–shell 
interface to achieve rapid quantification of three cardiac bio-
markers on a single test line with the similar detection limit 
(Fig. 7B).

The stability of Raman dye plays a pivotal role in sensi-
tive and accurate detection. Gao et al. [126] developed Au 
nanostar @ Raman dye @ silica sandwich nanoparticles for 
the detection of neuron-specific enolase (NSE), a marker 
of traumatic brain injury (TBI), with the LOD of 0.86 ng/
mL. By wrapped between AuNPs and thin silica, Raman 
dyes malachite green isothiocyanate (MGITC) can be effec-
tively stabilized. Compared with the traditional colorimetric 
method, the SERS-based method exhibited excellent per-
formance especially in the matrix of plasma [127]. Hwang 
et al. [125] combined hollow gold nanospheres (HGN) with 
Raman dye MGTTC to achieve the detection of staphylo-
coccal enterotoxin B (SEB) (Fig. 7C). With the advantage 
of HGN enhancing SERS signal, high-sensitivity detection 
with a LOD of 1 pg/mL was realized, and more than 30 
times enhancement was obtained compared with that of the 
traditional ELISA.

Sensitivity enhancement based on photothermal 
methods

Li et  al. [128] developed a quantitative photothermal-
sensing LFA for enrofloxacin detection with the detection 
limit of 0.023 ng/mL (Fig. 8A). Black phosphorus (BP)-
Au nanosheets showed good photothermal properties at the 
wavelength of 808 nm, and the photothermal conversion effi-
ciency was enhanced by 12.9% compared with that of the 
black phosphorus nanosheets alone. Qin et al. [129] devel-
oped a thermal contrast-based technique to improve the sen-
sitivity of LFA (Fig. 8B). The sensitivity can be enhanced 
by 32 times compared with that of the FDA-approved LFA 
for cryptococcal antigen (CrAg) detection.

Wang et al. [131] developed a thermal contrast magnifica-
tion (TCA) reader, which was composed of an emitter for 
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lasers of multiple wavelengths emitting, an infrared camera 
for the generated heat reading, and software for data reading 
and analysis. The reader can significantly increase the accu-
racy of antigen quantification by LFA. Compared with naked 
eyes or colorimetric readers (such as BD VeritorTM system 

readers), the TCA reader possessed a higher sensitivity of 
8 times for detection of malaria and C. difficile [97, 132].

Laser speckle is the high-contrast random granular pat-
tern, which is extremely sensitive to the refractive index 
and physical displacement of the medium [133, 134]. NC 

Fig. 7   Sensitivity enhancement based on SERS. A Schematic illustra-
tion of the core–shell SERS nanotag–based multiplex LFA for three 
cardiac biomarkers detection [121]. B Schematic illustration of quan-
titative LFA for three cardiac biomarkers detection on a single T line 
with different roman dyes encoded core–shell SERS nanotags [124]. 

C Schematic illustration of the principle of SERS paper-based lateral 
flow strip (PLFS) based on HGN [125]. (a) Top and side views; (b) 
side view before and after detection of protein biomarker; (c) optical 
results of PLFS assembled in cassettes in the presence (upper) and 
absence (bottom) of the target protein

Fig. 8   Sensitivity enhancement based on the photothermal method. 
A Schematic of PT-ICSs [128]. (a) Preparation of BP-Au-Ab photo-
thermal-sensing probe. (b) Structure and procedures of PT-ICSs. (c) 
Comparison of colorimetric results with photothermal results. B Prin-
ciple of thermal contrast for LFA [129]. C Schematic of the PT-LSI 

sensor [130]. (a) A 780-nm light illuminated the NC membrane of 
LFA. (b) The absorbed light energy was converted into heat, and the 
resultant temperature increase altered the speckle pattern. (c) Exem-
plary speckle images before (green) and after (blue) photothermal 
illumination
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membrane is composed of randomly oriented nanofibers, 
so it can be used as a diffusion medium to generate high-
contrast speckle patterns. Song et al. [130] developed a 
photothermal laser speckle imaging (PT-LSI)–based 
LFA (Fig. 8c). The sensitivity can be enhanced by 68 
times compared with that of the FDA-approved LFA for 
CrAg detection. The detecting ability of the developed 
PT-LSILFA was verified for CrAg detection by US FDA-
approved LFA, and it was found that the detection sensitiv-
ity of PT-LSI was enhanced by 68 times.

All the parameters of the abovementioned LFA for rapid 
detection are compared and summarized in Table 1.

Conclusions and future perspectives

LFA has been proven to be a rapid, sensitive, and cost-
effective method for point-of-care and in-field diagnosis 
in resource-limited areas such as developing countries and 
rural areas. However, there are long-standing criticisms of 
LFA as POCT, such as limited sensitivity, limited ability 

for quantification, inability for multistep performing, and 
inability to multiplexing.

In this paper, recent development and breakthroughs of 
the sensitivity enhancement for LFA are reviewed, such as 
sample pretreatment, changes in structure, materials, and 
labels, with an objective evaluation. For sample pretreat-
ment, various isothermal nucleic acid amplification tech-
niques, such as RCA, LAMP, and RPA, have been used in 
LFA, which makes the detection more sensitive. However, 
there are still challenges associated with the integration of 
amplification and detection into a single device. In addition, 
the reproducibility of complex enzymatic reactions should 
be considered. Changing the flow rate to enhance sensitivity 
through the flow barrier extends the time for antibody-anti-
gen reaction; however, structural changes increase the diffi-
culty of engineering and undoubtedly limit the application of 
LFA to some extent. AuNPs are the most popular labels for 
LFA. AuNPs integrated with other materials such as silver, 
gold, enzymes, or catalytic metals can further enhance the 
sensitivity of LFA, but this strategy has limitations regarding 
the preparation, purification, storage, and detection steps.

Table 1   Comparison of sensitivity enhancing effect of LFA based on different principles

Method Labels LOD Promotion degree Advantages Disadvantages References

Isothermal nucleic 
acid amplification 
based

AuNPs Single copy or 
lower 10 copies

/ Sensitivity Enzyme inactiva-
tion

[38, 135]

Electrophoresis 
based

AuNPs ng or pg/mL level One or two order of 
magnitude

Without substances 
interference

Equipment depend-
ent

[71, 72]

Extraction based AuNPs ng or pg/mL An order of mag-
nitude

Without substances 
interference

Non-portable [73, 75, 76]

Dialysis based AuNPs ng or pg/mL level An order of mag-
nitude

Without substances 
interference

Equipment depend-
ent

[74]

Magnetic enrich-
ment based

AuNPs ng or pg/mL level An order of mag-
nitude

Without substances 
interference and 
easy to separate

Expensive for func-
tional magnet 
based

[136, 137]

Dual AuNPs based AuNPs ng or pg/mL level An order of mag-
nitude

Low cost, rapid-
ness, easy to 
operation, and 
naked-eye 
readout

Disability to quan-
tification, low 
sensitivity

[96, 98–101]

Silver staining 
based

AuNPs, AgNPs ng or pg/mL level An order of mag-
nitude

Low cost, rapid-
ness, and naked-
eye readout

Multiple steps, low 
sensitivity

[102, 103, 108]

Enzymatic amplifi-
cation based

AuNPs ng or pg/mL level An order of mag-
nitude

Low cost, rapid-
ness, and naked-
eye readout

Multiple steps, 
enzyme inactiva-
tion

[90, 104, 105]

SERS based MGITC, rhoda-
mine B, rhoda-
mine 6 G Nile 
blue A, methyl-
ene blue

Close to fg/mL 
level

3–4 orders of mag-
nitude

Sensitivity, rapid-
ness, and quanti-
fication

Equipment depend-
ent

[125, 138, 139]

Photothermal illu-
mination based

AuNPs Close to fg/mL 
level

3–4 orders of mag-
nitude

Sensitivity, rapid-
ness, and quanti-
fication

Equipment depend-
ent

[128–131]
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Accordingly, the latest research indicates that there is still 
a large development space for LFA with smaller demand 
volume, shorter analysis time and the absence of hook effect, 
and higher accuracy and sensitivity. Here, several possible 
directions for sensitivity enhancement of LFA are summa-
rized as follows.

Firstly, the development of new materials, including new 
labels, probes, and paper-based materials. The super-strong 
signal characteristics of aggregation-induced emission (AIE) 
molecules in the solid phase are promising to become an 
excellent label for LFA. Novel capturing/detecting probes, 
such as nanobodies, short peptides, and aptamers, are also 
being developed to enhance stability, to increase detection 
sensitivity, and to minimize the cross reaction. In addition, 
with the smaller molecular weight, they can be used to target 
small molecules or epitopes that are inaccessible for conven-
tional antibodies.

Secondly, for the detection of nucleic acid, a certain 
nucleic acid amplification method is currently used for 
sample pretreatment. However, a single nucleic acid ampli-
fication method may not satisfy the detecting requirements. 
Therefore, a cascade amplification detection method that 
uses two or even multiple nucleic acid amplification meth-
ods integrated with LFA will be great development potential.

Finally, miniaturization and optimization of LFA devices 
are another vital goal for the sensitivity enhancement of 
LFA. It must be noted that among LFA detection methods, 
optical methods based on AuNPs and their derivatives are 
most likely to be one of the most viable POCT devices, 
given their simplicity and easy integration in conventional 
LFA. Therefore, significant engineering efforts should be 
focused on miniaturizing the whole process to be used in 
portable devices, which will be affordable and portable in 
field conditions and resource-limited settings.
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