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How do we attend to relevant auditory information in complex naturalistic scenes? Much research has focused on detecting
which information is attended, without regarding underlying top-down control mechanisms. Studies investigating attentional
control generally manipulate and cue specific features in simple stimuli. However, in naturalistic scenes it is impossible to
dissociate relevant from irrelevant information based on low-level features. Instead, the brain has to parse and select auditory
objects of interest. The neural underpinnings of object-based auditory attention remain not well understood. Here we
recorded MEG while 15 healthy human subjects (9 female) prepared for the repetition of an auditory object presented in one
of two overlapping naturalistic auditory streams. The stream containing the repetition was prospectively cued with 70% valid-
ity. Crucially, this task could not be solved by attending low-level features, but only by processing the objects fully. We
trained a linear classifier on the cortical distribution of source-reconstructed oscillatory activity to distinguish which auditory
stream was attended. We could successfully classify the attended stream from alpha (8–14Hz) activity in anticipation of repe-
tition onset. Importantly, attention could only be classified from trials in which subjects subsequently detected the repetition,
but not from miss trials. Behavioral relevance was further supported by a correlation between classification accuracy and
detection performance. Decodability was not sustained throughout stimulus presentation, but peaked shortly before repetition
onset, suggesting that attention acted transiently according to temporal expectations. We thus demonstrate anticipatory alpha
oscillations to underlie top-down control of object-based auditory attention in complex naturalistic scenes.
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Significance Statement

In everyday life, we often find ourselves bombarded with auditory information, from which we need to select what is relevant
to our current goals. Previous research has highlighted how we attend to specific highly controlled aspects of the auditory
input. Although invaluable, it is still unclear how this relates to attentional control in naturalistic auditory scenes. Here we
used the high precision of magnetoencephalography in space and time to investigate the brain mechanisms underlying top-
down control of object-based attention in ecologically valid sound scenes. We show that rhythmic activity in auditory associa-
tion cortex at a frequency of;10Hz (alpha waves) controls attention to currently relevant segments within the auditory scene
and predicts whether these segments are subsequently detected.

Introduction
How do we select relevant auditory information when faced with
distraction in a noisy environment? This question has been com-
monly referred to as the “cocktail party problem” (Cherry, 1953)
and pertains not only to how we attend to one person’s speech
among others (e.g., at a cocktail party), but, more generally, to

selective auditory attention in ecological environments (Shinn-
Cunningham, 2008; Ding and Simon, 2012). Ample research has
demonstrated the large effect selective attention has on sensory
processing of auditory input. Generally, delta-to-theta (i.e.,
2–8Hz) oscillations in auditory cortex track slow acoustic fluctu-
ations (i.e., the temporal envelope) of speech (i.e., entrainment
or phase-locking; Giraud and Poeppel, 2012; Ding and Simon,
2014). Importantly, this tracking improves for attended speech
(Zion Golumbic et al., 2013; Haegens and Zion Golumbic, 2018),
consequently aligning the high-excitability phase of neural oscilla-
tions to relevant events in the attended auditory input (Lakatos et
al., 2013). While improved tracking unambiguously demonstrates
that attention enhances auditory processing, it likely reflects a con-
sequence of attentional selection, rather than top-down control.
The neural mechanisms controlling which cortical representation is
selected for enhanced processing are far from understood.
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One candidate mechanism is oscillatory cortical activity in
the alpha frequency range (8–14Hz). The power and phase of
cortical alpha oscillations modulate the firing of underlying neu-
ronal populations and predict subsequent sensory discrimination
(Haegens et al., 2011b, 2015). Important here, alpha activity is
functionally modulated in anticipation of auditory selection
(Weisz et al., 2011). For example, prospective cues indicating lat-
eralized auditory targets result in alpha lateralization in auditory
and parietal cortices (Banerjee et al., 2011; Müller and Weisz,
2012; Ahveninen et al., 2013; Frey et al., 2014), paralleling a well
described effect in visual attention (Sauseng et al., 2005; Thut et
al., 2006; Bagherzadeh et al., 2020). These effects are not merely
epiphenomenal but have a functional role in controlling atten-
tion and perception. For instance, alpha modulations predict
attentional gain of the cortical representation (Kerlin et al.,
2010) and subsequent behavioral performance on auditory
tasks (Obleser and Weisz, 2012; Leske et al., 2015; Herrmann et
al., 2016; Wöstmann et al., 2019a,b). Additionally, alpha trans-
cranial alternating current stimulation modulates target recall
(Wöstmann et al., 2018), and phantom sounds (i.e., tinnitus)
can be reduced by alpha repetitive transcranial magnetic stimu-
lation (Müller et al., 2013) or neurofeedback (Hartmann et al.,
2014). Interestingly, alpha modulations seem to have a dual
role, such that alpha suppression facilitates processing of rele-
vant stimuli (Leske et al., 2015; Griffiths et al., 2019), whereas
alpha enhancement attenuates the processing of distracting
stimuli (Strauß et al., 2014; Wöstmann et al., 2017). Careful in-
dependent manipulation of the spatial characteristics of targets
and distractors has revealed these processes to act simultane-
ously (Wöstmann et al., 2019a). Similarly, much research on
auditory attention has involved manipulating and cueing single
features in relatively simple stimuli (Hill and Miller, 2010;
Ahveninen et al., 2013; Ding and Simon, 2013). However, natu-
ralistic auditory scenes usually comprise a complex mixture of
auditory signals that overlap in their feature content, and that
originate from hard-to-distinguish spatial sources. Rather than
using crude differences in feature information, we depend on
object-based auditory attention (Griffiths and Warren, 2004). It
remains unclear how the brain prepares for an anticipated audi-
tory object of interest within an ecologically valid auditory
scene.

Here we investigated how anticipatory alpha oscillations are
functionally involved in object-based auditory attention. We
cued subjects in which of two spatially and temporally overlap-
ping naturalistic auditory streams a repetition of an auditory
object was most likely to appear. Using traditional univariate
methods, it is difficult to distinguish neural mechanisms of tar-
get selection and distractor suppression in such a complex nat-
uralistic sound scene. We therefore adopted a multivariate
approach and trained a linear classifier on MEG source-recon-
structed oscillatory activity to dissociate which stream was
attended in anticipation of the repetition. We hypothesized an-
ticipatory alpha oscillations, indexing top-down attentional
control, to be timely related to the subsequent identification of
the repeated auditory object.

Materials and Methods
Subjects
Fifteen healthy volunteers (mean age, 286 3 years; 9 females) partici-
pated in the experiment for monetary compensation. All subjects had
normal or correct-to-normal vision and were tested for a balanced left–
right hearing perception using a sample of the stimuli from the main
experiment. Subjects were naive with respect to the purpose of the study.

All experimental procedures were performed in accordance with the
Declaration of Helsinki and were positively reviewed by the Ethical
Committee of the University of Trento. Written informed consent was
obtained. The entire session including preparation lasted;2 h, of which
1.2 h were spent in the MEG scanner.

Experimental design
The experiment was created using the Psychophysics Toolbox (version
3.72; RRID:SCR_002881) in MATLAB (version 2012b; MathWorks;
RRID:SCR_001622). Subjects performed an auditory attentional cueing
paradigm (Fig. 1A; same design and stimuli as experiment 1 in the study
by Marinato and Baldauf (2019), but adapted for MEG). For clarity and
completeness, the full experimental design and parameters are described
here. Each trial started with a fixation cross (1–2 s, randomly jittered),
consecutively followed by a visual cue (0.5 s) and a delay period (0.5–
0.75 s, randomly jittered), with the auditory scene consisting of two over-
lapping auditory signals (i.e., a “speech” and an “environment” signal;
5 s), and an additional fixation cross (1.5 s) to allow response times
(RTs) to extend beyond the auditory stimulation. The visual cue indi-
cated in which of the two overlapping auditory signals a to-be-detected
repetition would occur. It consisted of the capital letter “S” if the repeti-
tion would occur in the speech signal, the capital letter “E” if it would
occur in the environment signal, or both letters in case the repetition
could occur in either of the two signals (i.e., the neutral cue condition).
The cue was valid in 70% of trials, was invalid in 20% of trials, and was
neutral in the remaining 10% of trials. Subjects were instructed to pay
attention to the cued stream and to respond with the right index finger
on a button press when they heard a repetition in one of the auditory sig-
nals. Speed and accuracy were equally emphasized.

Subjects performed one practice block consisting of 100 trials.
During the practice block, we presented only one of the two auditory sig-
nals, such that subjects could more easily understand what a repetition
sounded like. This practice phase lasted for;17min. Next, subjects per-
formed three experimental blocks consisting of 100 trials each, during
which we always presented the auditory scenes consisting of overlapping
speech and environmental signals. The factors of cue validity and posi-
tion of the repetition (i.e., the speech or the environmental signal) were
randomly mixed within blocks.

Auditory stimuli
The auditory scenes (Fig. 1B) consisted of the following two overlapping
signals: a conversation (i.e., Speech) and an environmental sound (i.e.,
Environment). Speech signals comprised 5 s segments extracted from
newscast recordings of various foreign languages. Importantly, subjects
were unfamiliar with these languages. The environmental sounds con-
sisted of field recordings of public places such as airports, streets and res-
taurants. We dynamically modulated the envelope of the environmental
sounds using envelopes randomly extracted from the speech signals to
make the two streams as comparable as possible in terms of low-level
features (i.e., the envelop). Furthermore, to control for spatial confounds
we converted the two streams in mono by averaging the stereo channels
together and presenting the single resulting signal diotically (i.e., simul-
taneously to both ears). The repetition consisted of a randomly sampled
0.75 s segment extracted from the auditory stimuli, which were inserted
twice in sequence into the corresponding signal. The length of the repeti-
tion was chosen to approximately correspond to a functional unit (i.e.,
an auditory object) like a typical acoustic event in environmental sounds
or a couple of syllables/words in normal speech. Crucially, given the
complexity of the stimuli and the difficulty of the task, this task was very
difficult to solve by attending low-level features, but was readily solvable
by processing the objects fully using object-based attention. Specifically,
in both streams the individual auditory features were short lived and
variable over the time course of a 750-ms-long “repetition segment”
(possibly containing several auditory objects, such as different words in
the speech signal and cars, coffee machines, footsteps, glasses clinking to-
gether while a waiter cleans up a table, doors opening/closing, chairs
being pushed in the environment signal). Some auditory objects or single
acoustic features would naturally reoccur almost identically or very simi-
larly, outside of the context of the repetition segment. Therefore,

8604 • J. Neurosci., October 13, 2021 • 41(41):8603–8617 de Vries et al. · Decoding Object-Based Auditory Attention

https://scicrunch.org/resolver/SCR_002881
https://scicrunch.org/resolver/SCR_001622


participants needed to recognize and categorize these objects, put them
in context, and ultimately have a full representation of the repeated seg-
ment within the sound scene to recognize the repetition. Linear ramping
and cross-fading algorithms were applied to avoid cutting artifacts and
to render the transition between segments unnoticeable.

MEG recording and preprocessing
Whole-head MEG recordings were obtained at a sampling rate of
1000Hz using a 306-channel (204 first-order planar gradiometers, 102
magnetometers) VectorView MEG system (Neuromag, Elekta) in a two-
layer magnetically shielded room (AK3B, Vacuum Schmelze). A low-
pass antialiasing filter at 330Hz and a high-pass filter at 0.1Hz were
applied online. Before the MEG recording, we digitized the individual
head shape with an electromagnetic position and orientation monitoring
system (FASTRAK, Polhemus) using the positions of three anatomic
landmarks (nasion and left and right preauricular points), five head posi-
tion indicator coils, and ;300 additional points evenly spread on the
subject’s head. Landmarks and head-position induction coils were digi-
tized twice to ensure a localization error of ,1 mm. To coregister the
head position in the MEG helmet with anatomic scans for source recon-
struction, we acquired the head positions at the start of each run by pass-
ing small currents through the coils. Upon detection of the target
repetition, subjects responded by pressing with their right index finger
on an MEG-compatible button press, which was together with all other
hardware connected to a DataPixx input/output hub to deliver visual

cues and sound stimuli and to collect button presses in a critical real-
time manner (VPixx Technologies; RRID:SCR_009648).

MEG data were preprocessed offline using a combination of the
Brainstorm (Tadel et al., 2011; RRID:SCR_001761) and Fieldtrip
(Oostenveld et al., 2011; RRID:SCR_004849) toolboxes inMATLAB, as well
as custom-written MATLAB scripts, following general standards for MEG
preprocessing (Tadel et al., 2019). Continuous data from each run were vis-
ually inspected for noisy sensors and system-related artifacts (e.g., SQUID
jumps), and a maximum of 12 noisy sensors were removed from further
analyses. Next, we applied the Neuromag MaxFilter implementation of
Signal Source Separation (SSS; Taulu and Simola, 2006) for removing exter-
nal noise to each individual run, and an extended Infomax independent
component analysis (ICA; Lee et al., 1999) for removing components cap-
turing blinks and eye movements. Note that the maximum number of ICA
components to be extracted was determined by the residual degrees of free-
dom after SSS rank reduction. We removed an average of 2.26 0.6 ICA
components. Continuous data were then segmented in epochs from �2 to
7 s locked to the onset of the auditory stimulus. Each epoch was visually
inspected, and those containing artifacts not cleaned by previous prepro-
cessing steps were discarded from further analyses. All data cleaning steps
combined resulted in an average of 19% of all trials rejected per subject.

Source reconstruction
For the construction of 3D forward models for MEG source reconstruc-
tion, we first acquired previously recorded anatomic 3D images, if

Figure 1. Task design. A, Trial sequence. Subjects were presented with an auditory scene consisting of two overlapping streams. They were instructed to detect and respond to a repetition
in one of the two streams. A cue indicated whether the repetition would appear in the speech stream (S), the environmental sound stream (E), or either stream (S or E). B, Example auditory
scene (bottom), consisting of a speech signal (top) and an environmental signal (middle). Time–frequency plots represent the spectral content of the streams; time series represent the normal-
ized amplitude. Full and dashed green outlines indicate the first and second instance of an example repetition, respectively. Note that the temporal location of the repetition within the sound
scene was randomized across trials.
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available (nine subjects), and used the standard brain from FreeSurfer
(RRID:SCR_001847) for the remaining subjects. Individual anatomic
images were obtained using a 4 T magnetic resonance imaging (MRI)
scanner (Bruker Biospin), with an eight-channel birdcage head coil
(magnetization-prepared rapid gradient echo, 1� 1 � 1 mm). The ana-
tomic scans were then 3D reconstructed using FreeSurfer default settings
(Dale et al., 1999; Fischl et al., 1999). For the six subjects without individ-
ual anatomy, the standard FreeSurfer anatomy was warped to the sub-
ject’s head volume as estimated from the digitized head shape. Next,
head models were computed by coregistering the subjects head shape with
the reconstructed MRI brain volumes using FreeSurfer default settings
and using overlapping spheres. We then performed source reconstruction
using minimum-norm estimates for a source space of 15,000 vertices
(Hämäläinen and Ilmoniemi, 1994), as implemented in Brainstorm. To
allow for intersubject comparisons, the averaged source maps were nor-
malized with respect to a 200 ms baseline window (z-scores). Source activ-
ity was estimated for each run separately, after which we combined data
from different runs. Last, each individual source space was projected to a
standard FreeSurfer brain and parcellated according to the recently devel-
oped cortical atlas from the Human Connectome Project (HCP), which
provides the most precise insights into the structural and functional orga-
nization of the human cortex to date (Glasser et al., 2016). This parcella-
tion is based on a multimodal atlas of the human brain obtained by
combining structural, diffusion, functional, and resting-state MRI data
from 210 healthy young individuals and identifies 180 regions of interest
(ROIs) per hemisphere. We averaged the signals from all vertices within
an ROI to obtain a total of 360 time series of estimated cortical activity.

Morlet wavelet convolution
The 360 ROI time series were decomposed into time frequency represen-
tations with Morlet wavelet convolution using a custom-written
MATLAB script, for frequencies ranging from 1 to 40Hz in 25 logarith-
mically spaced steps. A Gaussian (e�t2=2s2 , where s is the width of the
Gaussian) was multiplied with 25 sine waves (ei2p ft, where i is the com-
plex operator, f is frequency, and t is time) to create complex Morlet wave-
lets. The width was set as s ¼ d =ð2p f Þ, where d represents the number
of cycles of each wavelet, logarithmically spaced between 3 and 12 to have
a good trade-off between temporal and frequency precision (Cohen,
2014). We applied frequency domain convolution by multiplying the ROI
signals with the Morlet wavelets after applying the fast Fourier transform
(FFT) to each. This step was followed by a conversion back to the time do-
main using the inverse FFT. The squared magnitude of these complex sig-
nals was taken at each time point and each frequency to acquire power (i.
e., [real(Zt)

2 1 imag(Zt)
2]), after which power was downsampled to 50Hz

to reduce computation time. Last, before multivariate pattern classifica-
tion, the power at each time point, frequency, and ROI was z-normalized
across trials (Newman and Norman, 2010; Jafarpour et al., 2013).

Multivariate pattern classification
Our main analysis involved a backward-decoding classification algo-
rithm (linear discriminant analysis) on the time-frequency-decomposed
power, with all 360 ROIs as features and the “attend speech” and “attend
environment” labels as classes. This analysis tests whether a linear classi-
fier can learn to dissociate between attending to either the speech signal
or the environmental signal from cortical patterns of oscillatory power
modulations. The complete classification analysis was performed sepa-
rately on the data of each individual subject. We used a linear classifier
as implemented in the Amsterdam Decoding and Modeling toolbox
(ADAM; Fahrenfort et al., 2018), an open source, script-based toolbox
in MATLAB for backward-decoding and forward-encoding modeling of
EEG/MEG data. Note that we replaced the standard time-frequency
decomposition in the toolbox with the custom-written Morlet wavelet
convolution described above (de Vries et al., 2019; van Driel et al., 2019),
and based on Cohen (2014), as this arguably provides a better trade-off
between temporal and spectral precision. We applied the following 10-
fold cross-validation procedure: first, the trial order was randomized,
and trials were partitioned in 10 equal-sized folds; next, a leave-one-out
procedure was used in which the classifier was trained on 9 folds and
tested on the remaining fold. This procedure was repeated 10 times until

each fold was used exactly once for testing, after which classifier per-
formance was averaged over folds. We applied between-class balancing
using oversampling to ensure that the classifier would not develop a bias
for the overrepresented class during training. Because the design was bal-
anced in terms of trial counts for attention conditions (attend speech vs
attend environment), between-class balancing was only necessary to elim-
inate small imbalances because of trials rejected during data cleaning.
Crucially, by combining all trials in which different speech exemplars
were cued in the attend speech class, and all trials in which the different
environment exemplars were cued in the Attend Environment class, our
classification analysis is oblivious to the exact auditory signals themselves.
This is in contrast to speech-tracking approaches, in which the exact au-
ditory signals (or their temporal envelope) are tracked. This analysis
therefore better captures high-level attentional control mechanisms, and
it is an elegant solution to decode the auditory attentional state without
the need for information from the input audio signal.

We adopted the area under the curve (AUC) as a measure of classi-
fier performance, with the curve being the receiver-operating curve of
the cumulative probabilities that the classifier assigns to trials coming
from the same class (true positives) against the cumulative probabilities
that the classifier assigns to trials that come from the other class (false
positives). An AUC value of 0.5 means chance-level classification per-
formance. Instead of averaging across binary decisions about class mem-
bership of individual trials (as with standard classification accuracy), the
AUC incorporates the level of confidence (i.e., the distance from the deci-
sion boundary) that the classifier has about class membership of individual
trials. The AUC is considered a sensitive, nonparametric, and criterion-free
measure of classification performance (Hand and Till, 2001).

Next, to investigate the cortical distribution of neural activity under-
lying significant classification, we computed cortical maps by multiply-
ing classifier weights of all ROIs with the covariance matrix of the data
across ROIs (Haufe et al., 2014), as implemented in ADAM (Fahrenfort
et al., 2018). Note that this is the covariance matrix of the 360 source-
reconstructed ROI signals, not the covariance matrix of the initial sensor
data used for MNE source reconstruction. An important caveat when
looking at classifier weights is that a certain ROI might have a high clas-
sifier weight because it helped remove noise that was not task related
and therefore helped the classifier to perform better (Haufe et al., 2014;
Fahrenfort et al., 2018). In contrast, the transformation procedure used
here generates activation patterns that return the mass-univariate differ-
ence between the compared conditions, which, unlike classifier weights,
can be interpreted as neural sources. To make activation values compa-
rable between subjects and to allow for averaging, the individual subject
activation patterns were spatially normalized by subtracting the mean
across ROIs and dividing by the SD across ROIs (i.e., z-scored; Haufe et al.,
2014; Fahrenfort et al., 2017, 2018). Next, since the directionality of these
activity maps is arbitrary depending on condition order, we took the abso-
lute for plotting only to highlight the magnitude of involvement of different
ROIs. We plotted these cortical maps on the FreeSurfer standard brain, by
coloring the cortical areas as defined by the 360 ROIs from the HCP atlas
that formed the features for our classifier in Brainstorm (Figs. 3D, 4E).
Note that we did not perform any statistical test on these activation pat-
terns, because the strength of multivariate pattern analysis (MVPA) is the
fact that a classifier can use any bit of information contained in any of the
ROIs to separate classes. This does not mean that all of the individual ROI
weights are significant or that they have to be. Highlighting significant
ROIs might give the impression that no other ROI contained task-relevant
information, which would be misleading.

Feature, trial, and time selection
In an initial analysis, we used the 360 ROIs as features and performed
the classification analysis on each frequency and each time point sepa-
rately, thus yielding classification performance over time and frequency
(Figs. 3A, 4A). Next, because we hypothesized an active role of alpha
oscillations in auditory attention, we a priori selected the alpha band for
a more sensitive classification analysis. Here, instead of using 360 ROIs
as features and performing the classification analysis on each frequency
separately, we used the individual frequencies within the alpha band as
an additional feature dimension for the classifier (Fuentemilla et al.,
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2010; Jafarpour et al., 2013). That is, our alpha band (8–14Hz) contained
four frequencies, which, combined with 360 ROIs, resulted in 1440 fea-
tures that were fed into the classifier. This approach has a very important
advantage. The alpha peak frequency varies highly both between sub-
jects, within subjects in different brain regions, and within subjects dur-
ing different brain states (e.g., rest vs passive viewing vs demanding task;
Haegens et al., 2014). Feeding all frequencies within a wide alpha band
(i.e., 8–14Hz; de Vries et al., 2020) as features into the classifier allows
the classification algorithm to find the most information within the
alpha band during our cognitive process of interest in a data-driven
manner, and on an individual subject basis, thus obviating the need for
the selection of peak frequency. It thus allows for individual differences
in peak frequency regarding information content for the classifier.
Furthermore, it is even sensitive to this peak frequency of information
content being different in different regions within the same subject (e.g.,
8Hz in frontal cortex can be independently weighted from 12Hz in au-
ditory cortex). Additionally, in the repetition onset-locked analysis, we
observed significant classification in the delta to low-theta band (i.e., 2–
5Hz; Fig. 4A). Therefore, as an exploratory analysis, we performed the
same above-mentioned more sensitive analysis that uses all the frequen-
cies within this band as features for the classifier.

For the auditory stimulus onset-locked analysis, we trained and
tested a classifier for each time point from�0.5 to 3 s surrounding stim-
ulus onset. Importantly, at each time point we selected only those trials
in which the repetition was not presented yet (Table 1, complete over-
view of trial counts included in each of our analyses). This was to ensure
that classification was not driven by the perception of the actual repeti-
tion, but rather by endogenous attentional orienting toward one of the
two overlapping auditory streams in anticipation of the repetition. Note
that this trial selection procedure resulted in a gradual decline in trial
numbers being included in the classification analysis the further we
moved in time after stimulus onset. This explains why classifier perform-
ance becomes noisier further in time in the stimulus-locked analyses
(Fig. 3). The end point of t= 3 s post-stimulus onset was selected because
this was the median (and approximately the mean) of all possible repeti-
tion onsets, and trial counts became relatively low for some of our classi-
fication analyses after that time point. Furthermore, because we were
interested in the effect of endogenous attentional orienting driven by the
cue, we excluded neutral cue trials. In a separate analysis, we trained and
tested separate classifiers on correct or error trials only, as an additional
investigation of the relevance of frequency-specific classification for
actual behavioral performance. For this analysis, an error was defined as
no response, a response before repetition onset, or within 300 ms of rep-
etition onset, as this was unlikely to be driven by an actual detection of
the repetition. The trimming of response time data at a cutoff of 300 ms
is a common procedure and is based on the argument that the process-
ing chain from target detection to response execution takes more time
(Ratcliff, 1993; van Moorselaar et al., 2014; de Vries et al., 2017). In the
current experiment in which repetition detection does not rely on
detecting a single feature, but instead on the repetition of a pattern over
an extended period of time (i.e., an auditory object), it is even less likely
that a response faster than 300 ms after repetition onset is driven by an
actual detection of the repetition. In any case, the bulk of error trials (i.e.,
96%) consisted of trials in which no response was given, or trials in
which a response was given before repetition onset, and thus this partic-
ular cutoff selection will have a negligible effect. Because there were
more correct trials than error trials, any difference in classification per-
formance could be driven by a difference in trial count (and thus in
signal-to-noise ratio). Therefore, we also performed the classification
analysis on a randomly selected subset of correct trials that matched the
individual subject’s count of error trials.

For the repetition-locked analyses, trials were realigned in time to the
onset of the repetition, and classification analyses were applied to each
time point from �0.5 to 1.5 s surrounding this onset. For this analysis,
we were interested in the neurocognitive processes underlying the detec-
tion of the repetition, rather than anticipatory attention driven by the
cue. Therefore, for this analysis we did include neutral cue trials.
Furthermore, in this analysis only, for invalid cue trials the speech versus
environment event codes were swapped, such that we classified in which

stream the repetition was actually presented, rather than which stream
was cued.

To address the question of whether the significant stimulus- and rep-
etition-locked alpha classification effects observed here (Figs. 3B,C, 4B,
C) reflect the same or different neurocognitive processes, we adopted a
generalization-across-time (GAT) approach (King and Dehaene, 2014).
That is, a classifier was trained on data in the prerepetition interval
locked to stimulus onset, and tested on data in the postrepetition interval
locked to repetition onset. Because the two intervals are locked to a dif-
ferent event, it is impossible to create a typical GAT matrix in which the
diagonal represents training and testing at the same time points. Instead,
the horizontal and vertical time axes represent nonoverlapping time
points (Fig. 5, top row, GAT plots). The exact same trial selection proce-
dures were performed as in the main stimulus-locked and repetition-
locked analyses. Note that for the stimulus-locked training data, at each
time point only trials were included in which the repetition was not pre-
sented yet, while for the repetition-locked testing data all trials were
included. The repetition-locked testing data were only analyzed from
repetition-onset onward (i.e., t= 0). In other words, there were no over-
lapping time points in the training and testing data, preventing double-
dipping, and eliminating the need for n-fold cross-validation. However,
because of temporal smearing inherent to wavelet convolution, a negligi-
bly small artificial increase in classification accuracy can be observed
around repetition onset (Fig. 5, bottom right corner in GAT plots, begin-
ning of the curve plots). Additionally, to increase sensitivity we averaged
over the stimulus-locked training time within the interval of significant
classification in our main stimulus-locked analysis at p, 0.01 (Figs.
3B,C, significant intervals, 5, bottom row, resulting plots).

Statistical analysis
Behavior was analyzed with two repeated-measures ANOVAs for both
RT and accuracy data using SPSS (version 21.0.0.0; RRID:SCR_002865),
with the within-subject factor cue validity (valid, neutral, and invalid).
We used the Greenhouse–Geisser correction for violations of sphericity,
and pairwise comparisons were Bonferroni corrected for multiple com-
parisons. Effect sizes are reported as partial h squared (h2) for
ANOVAs, and Cohen’s d for pairwise comparisons. Because our statisti-
cal tests of classifier performance over time (and frequency) involved
many comparisons (each time-frequency point), we performed group-
level nonparametric permutation testing with cluster-based correction
for multiple comparisons, which controls for the autocorrelation over
time and frequency (Maris and Oostenveld, 2007). First, for every time
(frequency) point, we computed t values for the AUC deviation from
chance (i.e., 0.5) and set a threshold at a certain p value (�0.05; see
Results), which resulted in clusters of significant time (frequency) points.
Next, for each time (frequency) point, we randomly shuffled the sign of
the AUC deviation from chance across subjects over 2000 iterations, and
in each iteration performed a t test on the shuffled data for the AUC
deviation from chance. In each iteration, we computed the size of the
largest time (frequency) cluster of significant t values, which resulted in
a null distribution of maximum cluster sizes under randomly shuffled
data. The sizes of the significant time (frequency) clusters in the
observed data were compared with this null distribution using a thresh-
old corresponding to the p value used for the t tests (e.g., 99th percentile
for p, 0.01). We constrained the statistical tests from �0.5 to 3 s sur-
rounding auditory stimulus onset for the stimulus-locked analyses, and

Table 1. Trial counts per classification analysis

Stimulus locked Repetition onset locked

All trials 2526 18 (from �0.5 to 1.76 s)
1256 10 (at 3 s)

2806 20

Correct response trials only 1456 18 (from �0.5 to 1.76 s)
686 9 (at 3 s)

1616 20

Error response trials only 1076 19 (from �0.5 to 1.76 s)
566 11 (at 3 s)

1196 22

Numbers indicate subject average 6 SD. Note that neutral cue trials were excluded from the stimulus-
locked analyses, while they were included in the repetition onset-locked analyses.
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from �0.5 to 2 s surrounding repetition onset for the repetition-locked
analyses.

Exploratory correlation AUC–behavior
To further investigate the behavioral relevance of significant classifi-
cation of anticipatory auditory attention from alpha oscillations, we
tested how classification performance related to accuracy and reac-
tion time on the response to the repetition. First, we selected the peak
of alpha power classification performance (i.e., 1660–1880 ms, the
time window in which AUC was significant at p, 0.01) in the analy-
sis of correct trials only (Fig. 3C, green line) and averaged for each
subject the AUC values over that time window. Next, we performed
two across-subject Spearman rank correlation analyses. Between aver-
aged AUC values and trial average reaction times (again for correct
trials only, as error trials were defined by no response, a response
before repetition onset, or a response within 300 ms of repetition
onset). And between averaged AUC values and a subject’s average ac-
curacy (i.e., percentage of trials defined as correct response). Using this
procedure, we thus linked significant classification of auditory attention
from alpha oscillations to subsequent detection performance of the audi-
tory repetition. Note that we did not a priori plan these correlation anal-
yses, and that N= 15 is on the low side for a correlation analysis. These
results should therefore be considered an exploratory addendum to bet-
ter characterize the robust findings that emerge from the classification
analysis and should enrich our understanding of the data. The combina-
tion of this correlation analysis and the separate classification analyses
for correct and error trials provide converging support for the functional
role of alpha oscillations in auditory object-based attention.

Control analyses
Fourier transforming of any signal in which events take place (e.g., our
stimulus and repetition onsets), might lead to by-products in the fre-
quency domain (Cohen, 2014). As such, something that appears as a
peak in the spectral domain can reflect a stimulus-evoked response [as
traditionally captured by the event-related field (ERF)], rather than a
modulation in ongoing oscillatory activity. To ascertain that true oscilla-
tory activity, rather than the stimulus-evoked response, drove the signifi-
cant classification results, we ran two control analyses. First, for our
main findings we performed the exact same analyses as described above,
now performed on the time-resolved signal before applying wavelet con-
volution (i.e., the single-trial broadband signal), but after preprocessing
and source reconstruction (Fig. 6A,B, left column). Next, we reran the
same analysis, but now on non-phase-locked (i.e., induced) power rather
than total power (Fig. 6A,B, middle, right columns). We computed non-
phase-locked power by subtracting the average over trials (i.e., the ERF)
from the raw data on each single trial, before applying wavelet convolu-
tion (Cohen, 2014). This step removes the stimulus-evoked component
from total power and, thus, extracts modulations in ongoing oscillations
that are not locked to the stimulus.

For the main stimulus-locked analysis, at each time point we selected
only those trials in which the repetition had not taken place yet.
However, wavelet convolution inevitably results in temporal smearing.
While a wavelet has a Gaussian shape, thus having the strongest weight-
ing at the center of the wavelet, any effects observed before repetition
onset could potentially be influenced by repetition-induced effects that
are smeared back in time. We performed an additional control analysis
to exclude this possibility. The longest wavelet within our alpha range is
at 8.6Hz with 8.25 cycles (i.e., a wavelet 0.96 s long). This means that at
a certain time point there is smearing over a temporal window of 0.48 s
in either direction. We thus performed the exact same analysis as our
main analyses using all trials or correct trials only (Fig. 3B,C, respec-
tively), but now at each time step we selected only those trials in which
the repetition would not take place within the next 0.48 s (Fig. 6C).

Given that there was a difference in repetition detection performance
between attend speech (65% detection rate) and attend environment
(53% detection rate), one potential confound is that significant classifica-
tion accuracy could be driven by a difference in task difficulty between
the two classes. Therefore, we performed two control analyses on our
main results of significant stimulus-locked alpha classification (Fig. 3B,

C), for which we operationalized task difficulty as behavioral accuracy
(i.e., detection rate). First, we performed the exact same analysis as in
our main analysis using all trials (Fig. 3B), but now after equalizing the
ratio of correct trials to error trials between the two classes (Fig. 6D).
Note that our analyses using only correct trials or only error trials (Fig.
3C) are inherently balanced concerning performance. Second, we corre-
lated across subjects the performance difference between attend speech
and attend environment trials with decoding accuracy averaged over the
interval of significant classification (p, 0.01; Fig. 3B, gray horizontal
bar). If a difference in task difficulty would be the main driver of classifi-
cation accuracy, one would expect a significant positive correlation.

Data availability
All custom-written analysis scripts, other than the functions implemented
in the Brainstorm and ADAM toolboxes, are freely available at https://osf.
io/efv4b/. RawMEG data will be shared on reasonable request.

Results
Behavior
As expected, the attentional cue had the desired behavioral effect
(Fig. 2). That is, performance was best on valid cue trials (accu-
racy, 656 8%; RT, 9016 116 ms), it was reduced on neutral cue
trials (566 10%, 10266 226 ms), and was the worst on invalid
cue trials (316 13%, 14036 320 ms). These differences resulted
in a significant main effect of the cue on both accuracy and
reaction time (accuracy: F(1.5,20.4) = 49.6, p, 0.001, h 2 = 0.78;
reaction time: F(1.5,19.5) = 22.8, p, 0.001, h 2 = 0.62). Post hoc
pairwise comparisons indicated a difference between each of
the cue conditions on accuracy (valid vs neutral: p= 0.002,
d= 1.12; neutral vs invalid: p, 0.001, d= 1.59; valid vs invalid:
p, 0.001, d= 2.16) and on reaction time (valid vs neutral:
p= 0.048, d= 0.71; neutral vs invalid: p, 0.002, d=1.12; valid vs

***
***

* **

***
***

** ***

Figure 2. Behavioral results. Dots represent single-subject data (percentage correct and
trial-averaged correct RT in top and bottom panels, respectively). Horizontal thick lines repre-
sent the group mean. The top thin horizontal line in each panel represents the result of a
repeated-measures ANOVA, and the other thin horizontal lines represent pairwise compari-
sons: *p, 0.05, **p, 0.01, ***p, 0.001.
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invalid: p, 0.001, d=1.41). This replicates previous behavioral
findings from our laboratory using the same paradigm (Marinato
and Baldauf, 2019).

Stimulus-locked multivariate pattern classification
Our main analysis investigated whether we could classify from
the cortical pattern of time-frequency-decomposed oscillatory
activity, which of the two overlapping auditory streams subjects
attended. Specifically, at each time point we trained a linear dis-
criminant classifier to dissociate between the attend environment
and attend speech conditions, using frequency-specific power at
all 360 scouts as features (Fig. 3A). Given that, on the basis of
previous studies, we had an a priori hypothesis about the alpha
frequency band, we performed the same classification analysis,
but now using the different frequencies within the alpha band at
each scout as separate features, thus creating a total of 1440 fea-
tures (Fuentemilla et al., 2010; Jafarpour et al., 2013; Fig. 3B).

In line with our expectations, this analysis revealed auditory
attention-sensitive information in the alpha band of the source-
reconstructed MEG signal (from 1.62 to 2.02 s and from 1.68 to
1.96 s relative to stimulus onset, cluster-corrected at p, 0.05 and
p, 0.01, respectively; Fig. 3B). The initial classification analysis
over the whole frequency range confirmed the peak of classifica-
tion to be located in the alpha frequency range (Fig. 3A).
Interestingly, alpha classification time series show a gradual
increase in classification accuracy with a peak at around the
onset of the first repetition (Fig. 3B), which suggests that over
many trials subjects implicitly learned to anticipate the timing of

repetition onsets and thus knew when to focus their attention on
the correct stream. Before that time, no repetitions were expected
yet. This is in line with research on temporal attention (Nobre
and Van Ede, 2018), in which it has been repeatedly observed
across sensory modalities that preparatory alpha modulations are
transient and that they peak just before the expected target onset,
only to disappear again immediately after (Praamstra et al., 2006;
Rohenkohl and Nobre, 2011; Van Ede et al., 2011; Zanto et al.,
2011; Wöstmann et al., 2021). The transient nature of the peak
suggests that it reflects attentional selection of the relevant audi-
tory input, rather than a steady-state signature of attentional
tracking. Once selected, the diagnostic alpha signature disappears.
Together, these results thus support a role for alpha oscillations in
object-based auditory attention, and suggest that they are flexibly
focused in time according to temporal expectations about the
necessity to pay attention (i.e., at anticipated repetition onset).

To further investigate the functional significance of the
observed attention classification from alpha oscillations, we per-
formed two exploratory follow-up analyses. First, we conducted
the same classification analysis as for Figure 3B, but now sepa-
rately for correct and error trials, which were defined as trials in
which the subject either detected or did not detect the repetition,
respectively (Table 1, number of trials included in each analysis).
Interestingly, we observed significant alpha power classification
for correct trials (from 1.32 to 2.06 s and from 1.66 to 1.88 s rela-
tive to stimulus onset, cluster-corrected at p, 0.05 and p, 0.01,
respectively; Fig. 3C, full green line), but not for error trials (Fig.
3C, orange line). There were more correct trials compared with

Figure 3. Auditory stimulus-locked decoding. A, Time–frequency map of classifier accuracy (AUC). B, Classifier accuracy plotted over time for the alpha band (8–14 Hz). The horizontal bars
on the x-axis indicate significant classification after cluster correction at p, 0.05 (black) or p, 0.01 (gray). C, Alpha power classifier accuracy as in B, but with separate classification analysis
for correct (green) and error (orange) trials. The dotted green line signifies classification using a random selection of correct trials equal to the amount of error trials per individual subject.
Green horizontal bars (full and dotted) denote significant cluster-corrected classification (dark green, p, 0.05; light green, p, 0.01). Thick lines and shaded areas in B and C denote subject
mean and SEM, respectively. D, Cortical map of activation pattern separating classes in the significant (p, 0.01) interval indicated in C by the light green horizontal bar. Maps were z-scored
before averaging, and absolute values were taken to highlight contributing ROIs. Left lateral, right lateral, and ventral views are shown. E, Between-subject correlation between alpha power
classification accuracy (AUC) for correct trials only in the significant (p, 0.01) interval indicated in C by the light green horizontal bar, and reaction time (left) or accuracy (right). Dots represent
single-subject values, whereas diagonal lines represent least-square fits. stim onset, Auditory stimulus onset; first rep, time of first repetition averaged over subjects; avg rep, time of repetition
averaged over subjects and trials.
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error trials, which could potentially contribute to higher classifi-
cation accuracy for correct trials. To exclude this possibility, we
performed the analysis on correct trials again, but now on a ran-
dom selection of correct trials up to the same amount as error
trials per individual subject. This confirmed significant classifica-
tion for correct trials from 1.30 to 1.82 s (p, 0.05, cluster cor-
rected) relative to stimulus onset (Fig. 3C, dotted green line). A
direct comparison between correct and error trials resulted in a
significant difference (p= 0.039) at a single time point within the
interval of significant classification (1.74 s relative to stimulus
onset; i.e., right before the first repetition onset). However, this
single time point did not survive cluster correction for multiple
comparisons and should therefore be interpreted with care. As a
second follow-up analysis, we correlated, across subjects, the
classification accuracy (i.e., AUC) averaged over the significant
interval at p, 0.01, with the reaction time and accuracy data
(Fig. 3E). We found a significant negative correlation with reac-
tion time (Rho = �0.57, p= 0.03), which suggests that subjects
who were better prepared (i.e., attended better to the correct
stream right before the repetition, as indicated by higher alpha
classification accuracy) responded faster to the repetition. We
did not observe such an effect for accuracy (Rho=0.26, p= 0.35).
Albeit speculative, these two results suggest a causal role for os-
cillatory alpha activity in object-based auditory attention since
significant alpha classification earlier during the trial predicted
subsequent behavioral performance.

The cortical patterns of forward-transformed classifier weights
in the time window of significant classification (Fig. 3D) showed a
distributed and complex contribution of multiple cortical areas.
Corroborating earlier research on auditory attention, there was
involvement of higher parts of early auditory cortex and auditory
association cortex (Mesgarani and Chang, 2012; Lee et al., 2013;
Puvvada and Simon, 2017; O’Sullivan et al., 2019), neighboring
areas in insular and opercular cortex and the temporal–parietal–
occipital junction (Bamiou et al., 2003; Vaden et al., 2013; Alho et
al., 2015; Alavash et al., 2019), and several visual cortical areas
(Cate et al., 2009; Vetter et al., 2014), among which are fusiform
face area and parahippocampal place area (PPA; He et al., 2013; Bi
et al., 2016; Bedny, 2017). Last, there was involvement of several
frontal executive-control areas involved in scene navigation (Vann
et al., 2009), the monitoring of expected events (Petrides, 2005),
much like our current task demands. Together, this pattern con-
firms a complex involvement of multiple cortical regions in
object-based auditory attention, with a prominence in areas
involved in higher-level auditory cognition, executive-attention
functions including the monitoring of expected events, and multi-
modal scene perception/navigation.

Repetition-locked multivariate pattern classification
In a second analysis pipeline, we realigned single-trial data to
repetition onset after preprocessing and reran the time–fre-
quency and classification analyses, as above, as this might shed
more light on the neurocognitive processes involved in the detec-
tion of the repetition. Again, we found significant alpha power
classification, but now more sustained from around the time of
the average response (from 0.62 to 2.00 s and from 0.80 to 1.28 s
relative to repetition onset; cluster corrected at p, 0.05 and
p, 0.01, respectively; Fig. 4A,B). The follow-up classification
analyses for correct and error trials separately confirmed the
functional significance of alpha oscillations for auditory attention
(Fig. 4C). That is, we observed an interval of significant alpha
power classification for correct trials before the average response
(from 0.36 to 0.66 s and from 0.38 to 0.64 s relative to repetition

onset; cluster corrected at p, 0.05 and p, 0.01, respectively;
Fig. 4C, full green line). Again, alpha power classification was
not significant for error trials (orange line). A direct comparison
between correct and error trials resulted in a significant differ-
ence from 0.32 to 0.60 s relative to repetition onset (cluster cor-
rected at p, 0.05). Interestingly, the early interval of significant
alpha power classification for correct trials falls within the time
of the repetition presentation (which lasted 750 ms), thus sup-
porting our interpretation of the stimulus-locked analyses for a
functional role of alpha oscillations in successful detection of au-
ditory objects.

After separating correct trials from error trials, we observed a
second interval of significant classification from alpha power, af-
ter the average response (from 1.26 to 2.00 s, from 1.32 to 1.80 s,
and from 1.38 to 1.56 s relative to repetition onset; cluster cor-
rected at p, 0.05, p, 0.01, and p, 0.001, respectively; Fig. 4C,
green line), and an absence thereof in error trials (orange line).
This second interval took place after the average response. Albeit
speculative, it may be that after subjects successfully detected and
responded to the repetition, they paid extra attention to that
stream. Perhaps surprisingly, in the repetition-locked analysis we
did not observe significant alpha decoding right before repetition
onset, although we did observe it in the stimulus-locked analysis
(Fig. 3). Note, however, that repetition onset was randomly jit-
tered across trials, making it impossible for subjects to predict
individual-trial repetition onsets, but only the range of onsets.
To be ready for repetition detection, subjects needed to select the
relevant auditory input just in time, before the first possible repe-
tition, hence the temporal location and specificity of the effect.
Since repetitions took place over such a wide temporal range
(;2.5 s), the transient attentional selection locked to stimulus
onset is inevitably not locked to repetition onset. In other words,
the significant alpha decoding in the stimulus-locked analysis
reflects anticipation of the repetition onset driven by temporal
expectations of the repetition, rather than it being evoked by the
actual repetition itself.

The cortical pattern underlying significant alpha classification
in the early interval in our repetition-locked analysis showed some
resemblance to the pattern observed for the stimulus-locked analy-
sis, with an even more prominent weighting of auditory areas
(compare Fig. 3D with the left maps in Fig. 4E). To investigate
whether the significant stimulus- and repetition-locked alpha clas-
sification effects (Figs. 3B,C, 4B,C) reflect the same or different
neurocognitive processes, we trained the classifier on data in the
prerepetition interval locked to stimulus onset, and tested it on
data in the postrepetition interval locked to repetition onset (i.e.,
GAT; King and Dehaene, 2014). Importantly, we did not observe
any significant across-interval classification (Fig. 5), indicating
nonidentical neurocognitive processes before and after repetition
onset. Note, however, that the repetition-locked classification
results likely reflect a mixture of processes related to attending to
the correct stream, detecting the repetition, and responding to the
repetition. Based on the nonsignificant across-interval classifica-
tion illustrated in Figure 5, we cannot fully exclude the possibility
that at least part of the mixture of processes after repetition onset
overlaps with the process of attending to the cued auditory input
before repetition onset.

In addition to in the alpha band, we also observed high classi-
fier performance in the delta band in between repetition onset
and the average response (from 0.32 to 1.04 s, from 0.34 to 0.98
s, and from 0.40 to 0.92 s relative to repetition onset; cluster cor-
rected at p, 0.05, p, 0.01 and p, 0.001, respectively; Fig. 4B,
gray line). Paralleling the alpha band, classifier performance was
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significant when including only correct trials (from 0.34 to 1.06 s
and from 0.38 to 0.96 s relative to repetition onset; cluster cor-
rected at p, 0.05 and p, 0.01, respectively; Fig. 4D, green line),
but not when including only error trials (Fig. 4D, orange line).
Again, a direct comparison between correct and error trials

resulted in a significant difference from
0.32 to 1.30 s relative to repetition onset
(cluster corrected at p, 0.05). One possi-
bility is that since speech entrainment falls
in the delta-to-theta range, the delta classi-
fication observed here reflects the dissocia-
tion between the presence and absence of
speech tracking when the speech signal is
either cued or uncued, respectively. It is,
however, surprising that speech tracking
would start only after repetition onset, and
not, as our stimulus-locked analysis sug-
gests, in anticipation of the expected repe-
tition onset. An alternative interpretation
is that delta classification here reflects ini-
tiation and execution of the button press
on detection of the repetition. Subjects
responded slightly faster on attend speech
trials compared with attend environment
trials. The classifier may have picked up
subtle differences in the neural processes
underlying these response time differen-
ces. In other words, significant delta classi-
fication here might simply reflect the
response itself, rather than being related to
auditory attention. The cortical patterns of
activity underlying significant classifica-
tion seem to favor the latter explanation.
That is, the pattern underlying significant
classification from delta (Fig. 4E, right)
has strongest weighting in motor-related
areas. Since the repetition-locked classifi-
cation results likely reflect a mixture of
neurocognitive processes related to attend-
ing to the correct stream, detecting the
repetition, and responding to the repeti-
tion, we did not perform exploratory cor-
relation analyses similar to those for our
stimulus-locked analyses between decod-
ing accuracy and behavior, as their mean-
ing would be ambiguous.

Control analyses
To ensure that the significant classification
of time-frequency-specific power reported
here really reflects oscillatory activity, we
performed two sets of control analyses on
the main results of stimulus- and repeti-
tion-locked alpha and delta power clas-
sification. First, we compared our main
results (Figs. 3B, 4B), with classification
based on non-wavelet-convolved data.
That is, we used the single-trial source-
reconstructed neural activity patterns
(time domain) as input to the classifier,
without applying wavelet convolution.
Second, we compared our main results,
which were based on total power, with
classification based on induced (non-

phase-locked) power. Induced power was acquired by sub-
tracting the ERF from each individual trial before perform-
ing wavelet convolution (Cohen, 2014).

Figure 4. Repetition-locked decoding. A, Time–frequency map of classifier accuracy (AUC). Outlines indicate significant
classification at p, 0.05 (black) and p, 0.01 (white), cluster corrected. B, Classifier accuracy plotted over time for the
alpha band (8–14 Hz; black line) and delta band (2–5 Hz; gray line). Horizontal bars on the x-axis indicate significant classifi-
cation after cluster correction for alpha (bottom right duplet) and delta (top left triplet), at p, 0.05 (black), p, 0.01 (dark
gray), or p, 0.001 (light gray). C, Alpha power classifier accuracy as in B, but with separate classification analysis for correct
(green) or error trials (orange). The dotted green line signifies classification using a random selection of correct trials equal to
the number of error trials per individual subject. Green horizontal bars (full and dotted) denote significant cluster-corrected
classification (dark green, p, 0.05; middle-green, p, 0.01; light green, p, 0.001). D, Same as C, but now for delta
power. Thick lines and shaded areas in B, C, and D denote subject mean and SEM, respectively. E, Left, middle, Cortical maps
of activation patterns separating classes for alpha power in the first and second significant (p, 0.01) interval, respectively,
as indicated in C by middle green horizontal bars. Right, Delta power class separation in the significant (p, 0.01) interval
indicated in D by the light green horizontal bar. Maps were z-scored before averaging, and absolute values were taken to
highlight contributing ROIs. Left lateral, right lateral, and ventral views are shown. rep onset, Repetition onset; avg resp, time
of response averaged over subjects and trials.
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Most importantly, the two sets of con-
trol analyses unambiguously confirm
that oscillatory activity underlies the sig-
nificant classification observed here,
rather than it being a mere reflection of
the stimulus-evoked response. First, clas-
sification analyses based on non-wavelet-
convolved broadband activity did not
show any above-chance classification ac-
curacy in either the stimulus-locked (Fig.
6A, left) or the repetition-locked (Fig. 6B,
left) analyses. Second, classification based
on induced alpha power showed a quali-
tatively similar pattern compared with
total alpha power in the stimulus-locked
analyses, with a longer significant inter-
val at the p, 0.05 threshold, and a signif-
icant interval at the p, 0.001 threshold,
which was not present for total power
(significant from 1.32 to 2.04 s, from
1.70 to 1.96 s, and from 1.78 to 1.94 s;
cluster corrected at p, 0.05, p, 0.01,
and p, 0.001, respectively; Fig. 6A,
middle). Similarly, in the repetition-
locked analyses, classification accuracy
showed a very similar pattern between
induced and total alpha power, with an
additional extended significant interval at
the p, 0.01 threshold (significant from
0.74 to 2.00 s at p, 0.05, and from 0.82 to
1.24 and 1.34 to 2.00 s; cluster corrected at
p, 0.01; Fig. 6B, middle). Last, classifica-
tion accuracy based on delta power was
also comparable between induced and
total power (from 0.34 to 1.02 s, from 0.36
to 0.94 s, and from 0.42 to 0.88 s; cluster
corrected at p, 0.05, p, 0.01, and p,
0.001, respectively; Fig. 6B, right). The fact that induced power
resulted in the same pattern as total power indicates that the effect
in alpha observed here reflects a modulation in a brain-inherent
rhythm that is not phase locked to the auditory stimulation.

Wavelet convolution inevitably results in some temporal
smearing of the resulting power estimation. The concern here
with temporal smearing would be that our peak in alpha classifi-
cation in the stimulus-locked analysis does not actually reflect
temporal anticipation of repetition-onset, but rather is induced
by the repetition and temporally smear back in the time to before
repetition onset. However, in that case one would expect to
observe significant alpha classification postrepetition in the repe-
tition-locked analysis, which we did not. Furthermore, note that,
given the Gaussian shape of a wavelet, the weighting is strongest
at its center, and it is only to a limited extent influenced by sur-
rounding time points. Nevertheless, we performed a control
analysis taking the temporal smearing because of wavelet convo-
lution into account (Fig. 6C). Most importantly, the patterns
look qualitatively very similar, and, although it is based on fewer
trials, classification accuracy is still significant.

To test for a potential confound of a difference in task diffi-
culty between attend speech and attend environment trials on
classification accuracy, we performed two control analyses on
our main results of significant stimulus-locked alpha classifica-
tion (Fig. 3B,C), for which we operationalized task difficulty as
behavioral accuracy (i.e., detection rate). First, we performed the

exact same analysis as our main analysis using all trials (Fig. 3B),
but now after equalizing the ratio of correct trials to error trials
between the two classes (Fig. 6D). Alpha classification was still
significant from 1.66 to 2.04 s relative to stimulus onset (cluster
corrected at p, 0.05), which indicates that performance was not
a confounding factor. Note that our analysis using only correct
trials (Fig. 3C, green line) is inherently balanced concerning per-
formance, and thus additionally confirms that performance was
not a confounding factor. Second, we correlated across subjects
the performance difference between attend speech and attend
environment trials with the classification accuracy averaged over
the interval of significant alpha classification (p, 0.01; Fig. 3B,
gray horizontal bar). We did not observe any significant cor-
relation for behavioral accuracy (Rho = 0.22, p = 0.43) or for
response time (Rho = �0.05, p = 0.85). These correlation
coefficients indicate that the difference in behavioral per-
formance can explain only a small portion of the variance in
classification accuracy, suggesting that a difference in task
difficulty between stimuli is not the main driver of the cur-
rent results. In contrast, previous studies suggesting sensitiv-
ity of univariate alpha power modulations to task difficulty
or subjective effort did find such a correlation between the
two measures (Obleser et al., 2012; Wöstmann et al., 2015).
Together, while we cannot fully exclude the possibility that
task difficulty or subjective effort played a minor role, the
control analyses performed here give converging support
that significant classification was not driven by it.

Figure 5. Across-interval decoding. Top row, GAT plots for which the classifier was trained on data in the prerepetition inter-
val locked to stimulus onset and was tested on data in the postrepetition interval locked to repetition onset. Bottom row,
Same, but averaged over the stimulus-locked training time within the interval of significant classification at p, 0.01 in the
main stimulus-locked analysis (Fig. 3B,C). Thick lines and shaded areas denote subject mean and SEM, respectively. Left and
right column are based on all trials or only on trials in which the repetition was detected, respectively. stim onset, Auditory
stimulus onset; first rep, time of first repetition averaged over subjects; avg rep, time of repetition averaged over subjects and
trials; rep onset, repetition onset; avg resp, time of response averaged over subjects and trials.
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Discussion
We investigated the neural mechanisms of object-based audi-
tory attention. We recorded MEG while subjects prepared
for repetition of an auditory object presented in one of two
spatially and temporally overlapping naturalistic auditory
streams (i.e., speech and environmental). Subjects were cued
with 70% validity in which stream the repetition would
appear and were instructed to press a button on detection.
We trained a linear classifier on the cortical distribution of
source-reconstructed oscillatory activity to distinguish which
auditory stream was attended in anticipation of the repeti-
tion. First, we could classify which auditory stream was
attended from alpha oscillations in anticipation of repetition

onset. These anticipatory alpha oscillations played an impor-
tant role in successful detection of the repetition, as indicated
by significant classification from trials in which subjects sub-
sequently detected the repetition, but not from miss trials.
This was further supported by a negative correlation between
classification accuracy and reaction time: subjects showing
higher classification accuracy right before repetition onset
were faster in responding to the repetition. Second, in a repe-
tition-locked analysis we similarly observed significant classifica-
tion from alpha in between repetition onset and response for
correct trials, but not for error trials. Last, we observed classifica-
tion from delta power after repetition onset, again for correct trials
only, with a cortical distribution that underscored motor-related

Figure 6. Control analyses. A, Confirmation of rhythmicity of alpha oscillations in stimulus-locked analysis. Left, Classifier accuracy plotted over time for non-wavelet-convolved neural activ-
ity. Right, Comparison between our original result based on total alpha power (dotted line) and induced (i.e., non-phase locked) alpha power (full line). B, Same control analyses as in A, but
repetition locked, and in both alpha power (black lines, middle) and delta power (light gray lines, right). C, More stringent trial rejection at individual-trial repetition onset, taking the wavelet
length into account (see main text for details). D, Control for potential confounding factor of task difficulty (operationalized as behavioral accuracy), by taking into account between-class differ-
ences in performance (see main text for details). In all plots, thick lines and shaded areas denote subject mean and SEM, respectively. Horizontal (full and dotted) bars on the x-axis indicate sig-
nificant classification after cluster correction at p, 0.05 (black), p, 0.01 (dark gray), or p, 0.001 (light gray). stim onset, Auditory stimulus onset; first rep, time of first repetition averaged
over subjects; avg rep, time of repetition averaged over subjects and trials; rep onset, repetition onset; avg resp, time of response averaged over subjects and trials.
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areas. These delta oscillations presumably reflected the planning,
initiation, and/or execution of the button press.

Object-based auditory attention
The literature on auditory attention has largely focused on
improving the performance of auditory attention decoders
(Miran et al., 2018; Wong et al., 2018; Alickovic et al., 2019;
Etard et al., 2019; Taillez et al., 2020), often for real-world appli-
cations such as hearing aids (O’Sullivan et al., 2017; Han et al.,
2019). While invaluable, these studies do not delineate the
underlying top-down control mechanisms or unveil which com-
ponents of the neural signal contribute to successful classifica-
tion. Most paradigms that investigate top-down control of
auditory attention use highly simplified and controlled stimuli,
usually allowing attention to gear toward a specific manipulated
feature. For example, in the standard dichotic listening paradigm
a lateralized cue indicates the relevance of individual streams
presented to each ear, making it easy to distinguish the two based
on spatial information (Ahveninen et al., 2013). Other successful
paradigms manipulated features such as pitch (Hill and Miller,
2010) or background noise (Ding and Simon, 2013). However,
naturalistic auditory scenes we typically encounter in daily life
are a complex mixture of spatially and temporally overlapping
sounds, making it hard to separate relevant from irrelevant based
on a single feature. Instead, attention has to operate on auditory
objects of interest (Griffiths and Warren, 2004), much akin to
object-based attention, as described in the visual attention litera-
ture (Roelfsema et al., 1998; Baldauf and Desimone, 2014).

Crucially, the current auditory repetition detection task necessi-
tated processing the acoustic streams to a cognitive level that
allowed for the recognition of a temporally extended set of low-
level features as an object and to understand that this object
was repeated (Marinato and Baldauf, 2019). To capture the
neural dynamics of anticipatory object-based auditory atten-
tion, we adopted an MVPA approach. The tuning of neuronal
excitability for target facilitation and distractor suppression
occurs simultaneously in neighboring subregions of higher
auditory cortex, thus resulting in a complex and distributed
activity pattern. For example, alpha suppression in cortical
regions that process relevant auditory input facilitates pro-
cessing thereof (Leske et al., 2015; Griffiths et al., 2019), while
alpha enhancement attenuates processing of distracting stimuli
(Strauß et al., 2014; Wöstmann et al., 2017). While careful in-
dependent manipulation of the spatial or temporal characteris-
tics of targets and distractors verifies both these processes
(Wöstmann et al., 2019a; Deng et al., 2020), this does not reflect
a naturalistic auditory scene. However, since neural signals
reflecting these various processes might cancel each other out
using traditional univariate methods, it is difficult to disentan-
gle facilitating and inhibiting effects with the spatial resolution
of MEG. MVPA instead is sensitive to such subtle differences
in brain states (Stokes et al., 2015; de Vries et al., 2019).
Importantly, with the current approach we were indeed able to
classify object-based auditory attention from oscillatory MEG
activity in the alpha band, in anticipation of the expected au-
ditory object of interest. The observed cortical distribution
of activation patterns verified a complex contribution of multi-
ple higher-level auditory areas (Puvvada and Simon, 2017;
O’Sullivan et al., 2019); several visual areas that have been
shown to activate during auditory attention (Cate et al., 2009;
He et al., 2013; Vetter et al., 2014; Alho et al., 2015; Bi et al.,
2016), such as areas involved in multimodal scene perception
(e.g., PPA; Bedny, 2017); and frontal executive-control areas

involved in scene navigation (Vann et al., 2009) or the monitor-
ing of expected events (Petrides, 2005).

Alpha oscillations in auditory attention
We observed here significant anticipatory attention classification
specifically in the alpha frequency band. Ample work has shown
the importance of prestimulus alpha oscillations in sensory areas
for the top-down control of visual attention (Klimesch et al.,
2007; Bagherzadeh et al., 2020), tactile attention (Haegens et al.,
2011a), the prioritization of information within working mem-
ory (de Vries et al., 2017, 2018, 2020; Weisz et al., 2020), and, im-
portant here, auditory attention (Weisz and Obleser, 2014). In
fact, evidence suggests that alpha modulations directly affect
neural processing of auditory input. For instance, alpha modula-
tions in auditory cortex predict the subsequent stimulus-evoked
response (Wöstmann et al., 2019b), attentional gain of cortical
representations of attended speech (Kerlin et al., 2010), and
speech tracking by delta-to-theta oscillations (Keitel et al., 2017;
but see Hauswald et al., 2020). The fact that here classification
was significant only if subjects subsequently detected the repeti-
tion, and that classification accuracy correlated with performance
on the speeded detection task, further testifies to the functional
relevance of anticipatory alpha oscillations for object-based
auditory attention. Similarly, prestimulus alpha modula-
tions predict subsequent near-threshold auditory percep-
tion (Leske et al., 2015; Herrmann et al., 2016), spatial pitch
discrimination (Wöstmann et al., 2019a), confidence on an
auditory discrimination task (Wöstmann et al., 2019b), and
speech intelligibility (Obleser and Weisz, 2012; Hauswald et
al., 2020). Albeit speculative, these and our current results
suggest a causal role for alpha oscillations in auditory
attention.

We add to this literature by showing that alpha oscillations
are not only important for attention to specific low-level features
in simple stimuli, but also for successful object-based auditory
attention in complex naturalistic auditory scenes. Given that
alpha oscillations are believed to index the excitability of under-
lying neuronal populations in sensory areas (Haegens et al.,
2011b, 2015), we propose that the classification of anticipatory
attention from alpha oscillations observed here reflects a tuning
of the neuronal excitability in the relevant cortical subregions
involved in encoding and processing the to-be-attended stream,
and inhibiting the to-be-ignored stream. This also demonstrates
that the spatial scale at which the speech and environmental sig-
nals used here are processed is large enough to be picked up with
multivariate source-reconstructed MEG analyses. Interestingly,
classification was not sustained throughout stimulus presenta-
tion or throughout the temporal range of possible repetition
onsets. Rather, it peaked right before the first expected repetition
onset, in line with findings on temporal attention (Nobre and
Van Ede, 2018; Wöstmann et al., 2021), which indicates that
object-based auditory attention acts as a transient selection
mechanism according to temporal expectations of its necessity,
rather than a continuous tracking mechanism.

Caveats
Note that alpha oscillations presumably do not carry the auditory
content itself, which is likely carried by delta, theta, gamma, and
theta–gamma coupling (Lakatos et al., 2005; Giraud and
Poeppel, 2012). Rather, alpha oscillations reflect top-down atten-
tional control (Hartmann et al., 2014; Bagherzadeh et al., 2020;
Weisz et al., 2020), which modulates the neuronal excitability of
regions that will process the upcoming auditory information. A
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potential general limitation of time/frequency-resolved MEG/
EEG signals is that oscillations might reflect the time-resolved
stimulus-evoked response (i.e., the ERF), rather than true oscilla-
tory activity. However, in our control analyses we show that it
was not possible to decode auditory attention from the time-
resolved signal, and that classification accuracy did not suffer
from removing the ERF from each single trial before time–fre-
quency analysis (i.e., induced power; Cohen, 2014). The results
of these two control analyses give further support for the specific
importance of oscillatory brain activity in the alpha frequency
range for object-based auditory attention. Last, note that while
the repetition-locked analysis shows a significant cluster-cor-
rected difference in alpha classification between correct and error
trials, in the stimulus-locked analysis we observed only an uncor-
rected difference, which should therefore be interpreted with
care.

Conclusions
To conclude, our results reveal that a complex distributed corti-
cal pattern of alpha oscillations underlies successful object-based
auditory top-down attention and indicate that alpha oscillations
operate in a transient and timely manner depending on temporal
expectations about an anticipated auditory object of interest. On
a more general level, these results are a testament to the use of
multivariate analysis methods on time–frequency-decomposed,
source-reconstructed MEG/EEG data for investigating higher-
level human cognition in general, and object-based attention in
particular.
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