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Abstract

Context plays a key role in impulsive adverse behaviors such as fights, suicide attempts, binge­

drinking, and smoking lapse. Several contexts dissuade such behaviors, but some may trigger 

adverse impulsive behaviors. We define these latter contexts as ‘opportunity’ contexts, as their 

passive detection from sensors can be used to deliver context-sensitive interventions.
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In this paper, we define the general concept of ‘opportunity’ contexts and apply it to the case 

of smoking cessation. We operationalize the smoking ‘opportunity’ context, using self-reported 

smoking allowance and cigarette availability. We show its clinical utility by establishing its 

association with smoking occurrences using Granger causality. Next, we mine several informative 

features from GPS traces, including the novel location context of smoking spots, to develop the 

SmokingOpp model for automatically detecting the smoking ‘opportunity’ context. Finally, we 

train and evaluate the SmokingOpp model using 15 million GPS points and 3,432 self-reports 

from 90 newly abstinent smokers in a smoking cessation study.
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1 INTRODUCTION

‘Impulsivity’ is defined in [15] as ‘a predisposition toward rapid, unplanned reactions to 
internal or external stimuli with diminished regard to the negative consequences of these 
reactions to the impulsive individual or to others. Examples of impulsive behaviors include 

fights (e.g., verbal arguments and road rage), impulsive buying [36, 53], suicide attempts 

[43], overeating [71], binge-drinking [68], gambling [60], and smoking lapse [8]. Decades 

of prior works show that one of the major precipitants of such behaviors is the existence 

of ‘contexts’ or situational factors that may increase the risk of impulsive behaviors and 

in some cases, may lead to the final occurrence of the impulsive behavior. We refer to 

such contexts as ‘opportunity’ contexts, because automated detection of these contexts from 

mobile sensors gives us an opportunity to deliver novel sensor-triggered interventions.

‘Opportunity’ Context:

An ‘opportunity’ context for an impulsive adverse behavior is a Spatio-Behavioro-Temporal 
context that is ‘ripe’ for the occurrence of such behaviors. We call the ‘opportunity’ 

contexts Spatio-Behavioro-Temporal because, in addition to being influenced by the (spatial, 

social, environmental, and economic) characteristics of the current place, the current context 

becomes an ‘opportunity’ context if specific behaviors have been performed at the current 

and prior places.

We use the phenomenon of a forest fire to characterize the ‘opportunity’ contexts because 

it shares several characteristics with impulsive adverse behavior. For instance, forest fire 

escalates quickly if the conditions are conducive (e.g., dry leaves, low moisture, and 

wind.). Using the inhibitor-inducer terminology from the drug development literature, an 

‘opportunity’ context is created when there is an absence of inhibitors and presence of 

inducers. In the case of a forest fire, lack of moisture or precipitation (inhibitors) and 

presence of dry leaves and wind (inducers) create suitable conditions for the spread of 

a forest fire that may be sparked by an unattended camp fire [67]. We provide several 

examples of absence of inhibitors and presence of inducers in Table 1 to demonstrate the 

generalizability of this characterization for different impulsive adverse behaviors.
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The detection of ‘opportunity’ contexts using sensors can be used to deliver sensor-triggered 

mobile interventions that are optimized for the current context. Doing so, however, first 

requires the automated detection of such ‘opportunity’ contexts. We present a computational 

framework that can be used for detecting ‘opportunity’ contexts passively using mobile 

sensors in the field environment.

1.1 Technical Challenges

Automated detection of ‘opportunity’ contexts from mobile sensors involves the following 

three challenges,

Feasibility: Many of the contextual characteristics (absence of inhibitors and the presence 

of inducers) that define the opportunity usually cannot be directly inferred from the currently 

available mobile sensors. Hence, they require non-trivial computational modeling.

Validation: Evaluating the accuracy of ‘opportunity’ context detection is challenging 

because it can usually be ascertained only after the occurrence of impulsive adverse behavior 

or event, which in many cases may be rare (and sometimes tragic) events.

Temporal Precision: There may be multiple inhibitors and inducers involved in an 

‘opportunity’ context. Further, each may be better characterized by its density (e.g., the 

density of dry leaves) or intensity (e.g., moisture level, wind speed) rather than a binary level 

of presence or absence. Therefore, it is non-trivial to decide when to declare the emergence 

of an ‘opportunity’ context.

1.2 Application to Smoking Lapse

To demonstrate the utility of the concept of ‘opportunity’ contexts, we use the case of 

smoking ‘opportunity’ context, which is hypothesized to increase the probability of smoking 

lapse.

There are several reasons for this choice. First, tobacco smoking continues to be a leading 

cause of preventable death in the world, causing more than 7 million deaths per year, and is 

projected to kill 8 million per year by 2030 [1]. On a positive note, the risk of dying from 

smoking-related diseases is reduced by 90% on quitting smoking before the age of 40, and 

approximately 7 out of 10 adult smokers in the U.S. attempt to quit smoking completely. 

However, only 6.2% of quit attempts are successful. The majority of participants relapse in 

the first few days after quitting. Hence, developing technologies for smoking cessation is of 

high societal importance.

Second, there have been several recent advances in the detection of smoking from mobile 

sensors, making it feasible to do real-time-real-life smoking detection [55]. This has resulted 

in substantial real-life mobile sensor data available to pursue this research on the detection 

of ‘opportunity’ contexts. We use data collected from one such recent study. This helps us 

partially address the feasibility challenge.

Third, many smoking cessation studies include self-reports multiple times daily. Some of 

the questions included in these self-reports enquire directly about the smoking restrictions in 
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the current place and the availability of cigarettes. This provides us with labels of inhibitors 
and inducers, together with associated sensor data. We use these labels and the detection of 

smoking to develop a framework on how to address the validation challenge.

Fourth, the labels of smoking allowance at the current place and the availability of cigarettes 

can both be binary decisions. This makes the temporal precision challenge tractable. 

Despite there being one inhibitor and inducer in this case, the temporal precision challenge 

is still non-trivial because the assessment of both the inhibitor and inducer is only via self­

report and does not contain any information regarding the initiation of the state transition. 

In particular, the self-report only indicates whether the current place allows smoking but not 

when the participant entered the current place. The place here can refer to stepping outdoors 

from a building (where smoking may be allowed). Similarly, the self-report may indicate the 

availability of cigarette at the moment, but it contains no information on when the individual 

entered a place where cigarette was available.

In summary, the problem of detecting the smoking ‘opportunity’ context demonstrates the 

challenges of reliably detecting a spatio-behavioro-temporal context using mobile sensors.

1.3 Contributions

Our work makes several new contributions in developing the SmokingOpp model. We 

introduce the concept of smoking ‘opportunity’ context, present its characterization (in 

Section 5) and measurement (in Section 5.2.1), and show that it predicts the smoking 

frequency (in Section 5.3). We introduce a new spatial context called smoking spot (in 

Section 6.3) and perform context mining to discover informative features from GPS data for 

detecting the smoking ‘opportunity’ context (in Section 6). We propose segmentation of the 

sensor time-series into windows that are based on the change in both location and activity 

state (instead of location transitions alone) to obtain higher temporal precision and greater 

coverage in detecting smoking ‘opportunity’ context transitions (in Section 7.5).

1.4 Utilities of Detecting the Smoking ‘Opportunity’ Context

This work has several utilities for the computing and health research communities. First, 

passive detection of the smoking ‘opportunity’ context reduces the burden on participants 

and reduces the recall-bias associated with retrospective self-reports. Second, our framework 

for continuous sensing and detection of ‘opportunity’ contexts offers the opportunity 

to deliver context-sensitive sensor-triggered intervention for smoking cessation. Third, 

researchers can analyze multi-modal contextual data at higher temporal resolution in 

vulnerable contexts along with psychological contexts (e.g., stress [32], craving [16]), and 

assess lapse risk.

2 RELATED WORKS

Our work on the smoking ‘opportunity’ context is related to and builds upon several 

prior works. First, is the analysis of context associated with impulsive adverse behaviors, 

which has mostly been from self-reports. Second, our model for detecting the smoking 

‘opportunity’ context is built upon a more in-depth analysis of mobility patterns obtained 

from GPS traces. We summarize prior works on context detection from GPS traces. Finally, 
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our model can be leveraged for designing and delivering sensor-based interventions to 

support smoking cessation. We describe recent works on geospatial analysis of smoking 

exposure and context-based smoking intervention.

Research on ‘Contexts’ Associated with Impulsive Adverse Behaviors from Self-Report:

The effect of ‘context’ or situational factors on impulsive adverse behavior has been 

extensively studied via self-reports. It has been found that smoking allowance and 

availability of cigarettes are significantly associated with the temptation of smoking during 

smoking cessation and in some cases, may lead to the occurrence of smoking lapse [64]. 

Works on impulsive eating/binge drinking, show that food cues (context associated with 

seeing, smelling food), time-of-day, leads to impulsive eating [35, 58]. Contexts such as 

companion-competition, peer-family influence, social gatherings, are highly conducive to 

binge-drinking [34]. This work [40] presents a detailed review of the contexts that may 

lead to impulsive buying behaviors, including having money on someone, promotional 

incentives, attractive advertisements, and others. These works motivate the formulation 

of ‘opportunity’ contexts. Explicitly, we define the smoking ‘opportunity’ context using 

smoking allowance as the absence of inhibitor and cigarette availability as the presence of 
inducer.

Context Detection from GPS Traces:

The concept of context [20] and context-aware computing [7] has inspired extensive 

research. Recent works have focused on estimating psychological contexts such as stress 

[13, 14, 39] by analyzing human mobility patterns from GPS traces. Other works focus 

on detecting geospatial contexts to infer locations where a user may explore opportunities 

for performing activities such as ‘eating,’ ‘shopping,’ ‘entertainment,’ ‘sports and exercise,’ 

‘fun and amusement,’ using location and activity histories of other users [74]. Detection of 

contexts with a potential for cue exposure utilizes GPS traces of users to quantify exposure 

to food outlets [17, 62]. In addition to GPS data, several other sources of data have been 

used to detect contexts. For example, [54] develops machine learning techniques to mine 

noisy data from social media and learns patterns to inform a descriptive and predictive 

model to infer health status. Although we leverage methods from these prior works on 

cleaning and processing GPS traces to detect dwell places, the development of a geodatabase 

of smoking spots is a novel contribution of our work.

Geo-spatial Exposure and Context-Sensing Intervention During Smoking Cessation:

Prior work [37] has demonstrated the utility of creating a geodatabase of Point-of-Sale 

tobacco outlets by showing their association with craving and smoking lapse during smoking 

cessation. Recent works [48, 51] have investigated the effects of tobacco outlet density and 

proximity to the user’s home on smoking lapse. They quantify exposure to smoking by the 

walking distance to the tobacco outlet within a pre-defined range of 250m and 500m from 

the user’s home. Finally, [41] identifies high-risk locations for smoking using rule-based 

geo-fencing and provides episodic context-triggered smoking interventions that are well 

accepted among users. Our work complements these works by creating a new geodatabase 

of smoking spots, where smoking is highly likely to occur, including micro-locations at 
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personal places such as designated smoking areas outside office buildings or stepping 

outdoors at residences, that are not easily geofenced.

3 DATASET

We use the data collected in a smoking cessation study to develop the SmokingOpp model. 

The Institutional Review Board approved the study (IRB), and all the participants provided 

written consent. Participant demographics, inclusion criteria, study setup, and data collected 

appear below.

3.1 Wearable Sensors and Smartphone

Participants wore a chest-band of sensors (AutoSense [22]) consisting of ECG, respiration, 

and accelerometers and a wristband consisting of a 3-axis accelerometer and 3-axis 

gyroscope on both wrists. The participants wore the sensor-suite only during their waking 

hours (up to 16 hours per day, from wake till bed-time).

Participants carried a study-provided smartphone with the open-source mCerebrum software 

[31] installed. The study smartphone was used to communicate with the on-body 

sensor suite and collect self-reports via Ecological Momentary Assessments (EMA). The 

smartphone’s GPS sensor was utilized to collect GPS traces of participants continuously at a 

rate of 1 GPS point every 1 second. The GPS data was extracted from the phone at the end 

of the study. All the data, including wearable sensors, EMA data, GPS sensor traces, were 

stored in a secure server with the open-source Cerebral-Cortex [28] software installed.

3.2 Participants

Participants were 126 smokers, 55 female, and 71 male, 18+ years of age, with a mean 

age of 49.134 ± 13.137 years. All participants were African-American, smoked at least 3 

cigarettes per day, and were motivated to quit smoking within the next 30 days of the start 

of the study. The participants were residents of a large city in the USA and had a valid home 

address and telephone numbers. All of them agreed to wear the sensor suite.

Participants were excluded if they had a contraindication for the nicotine patch (e.g., 

participants at risk of heart attack, angina, and other related health problems), active 

substance abuse or dependence issues, physically unable to wear equipment, pregnant or 

lactating, or currently using tobacco cessation medications. Moreover, participants who were 

unable to complete the entire study were excluded from the analysis.

3.3 Study Protocol

Interested participants were invited to an in-person information session where they were 

provided with detailed information about the study. Once enrolled at the baseline visit, 

participants picked a smoking quit date. They visited the lab during which they were trained 

in the proper use of the sensor devices and how to respond to questionnaires in the form of 

Ecological Momentary Assessments (EMA) via mobile phones. They wore the sensors for 

4 days during the pre-quit phase. They received nicotine patch therapy, self-help materials, 

and brief quitting advice. On their set quit date, participants returned to the lab. Then they 
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wore the sensors for 10 more days during the post-quit (or smoking cessation) phase. At the 

end of 10 days (14 days from the study start), participants returned to the lab and underwent 

biochemical verification of their smoking status. All the participants were compensated for 

their time and effort.

For uniform coverage of a day by EMA’s, the day was divided into 4 blocks. The first three 

blocks consisted of 4 hours each, with remaining time assigned to the last block). In each 

block, up to 3 EMAs were triggered with a minimum separation of 30 minutes between 

successive prompts. Irrespective of the source (random or triggered by the detection of 

stress or smoking), each EMA included the two items we use for constructing the smoking 

‘opportunity’ context labels. Thus, we are able to use each EMA for ground truth labeling.

3.4 Data Description

A total of 16,562 hours of wearable sensor data (about 900 million data points) and over 

20 million GPS points across 1,519 person-days were collected from 126 participants. 

Participants also provided over 4,000 EMAs, with a compliance rate of 67.241% (4,136 out 

of 6,151 EMA’s prompted, were completed by the participants). Each EMA had 53 items 

that took participants an average of 4.23 minutes to complete.

3.5 Data Screening for Modeling

As we use cross-subject validation, we ensure uniformity and sufficiency of self-reported 

data (that is used for labeling). Therefore, we select only those participants who provided a 

minimum of 2 self-reports on each day of the pre-quit and post-quit period. As a result, 

26 participants were excluded from the analysis. We use GPS sensor data for model 

development. Hence, participants who had no location data for more than 3 consecutive days 

(since this limits us from understanding the prior locations visited for an extended amount 

of time) were excluded from the study. As a result, 10 participants were excluded. Thus, we 

are left with 90 participants. That amounts to 12,696 hours of sensor data (about 700 million 

data points), 15+ million GPS points and 3,432 (out of 4,964, 69.137% completion rate) 

completed EMAs across 1,080 participant days.

4 THE SMOKINGOPP FRAMEWORK

Figure 1 presents an overview of the entire SmokingOpp framework. It starts with the 

data sources (represented by the boxes on the far left), followed by the various stages 

of processing they go through (represented by the boxes in the middle), and how they 

contribute to the final model (represented by the boxes on the far right). In Sections 5, 

6, and 7, we describe further details of each component as follows. First, we define the 

smoking ‘opportunity’ context in terms of smoking allowance (absence of inhibitor) and 

cigarette availability (presence of inducer), (in Section 5.2). Second, we develop a binary 

measure of the smoking ‘opportunity’ context from self-report, to use as ground truth labels 

(in Section 5.2.1). Third, we test the clinical utility of this new measure. We use Granger 

Causality to test how well the smoking ‘opportunity’ context predicts smoking frequency (in 

Section 5.3). Fourth, we mine the noisy mobile sensor data to derive meaningful contexts 

and analyze their significance in detecting the smoking ‘opportunity’ context. We mine 
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the contexts from GPS traces and GIS databases (in Section 6). Fifth, we determine the 

appropriate size of data segmentation (i.e., window length) that can allow efficient detection 

of every transition in the smoking ‘opportunity’ context with high temporal precision (in 

Section 7.1). Sixth, we assign ground truth labels (in Section 7.2) and compute informative 

features from the candidate windows (in Section 7.3) using the insights from the context 

mining analysis. Finally, we train (in Section 7.4) and test (in Section 7.5) the SmokingOpp 

model on real-life data.

5 DEFINING THE SMOKING ‘OPPORTUNITY’ CONTEXT

In the following, we first provide a brief description of smoking cessation and the role 

of context in triggering a smoking lapse. We then present our characterization of the 

smoking ‘opportunity’ context based on the user reported (via EMA) status of availability 

of cigarettes and smoking allowance and propose a binary measure of the smoking 

‘opportunity’ context (for labels). Finally, we demonstrate, via Granger causality analysis, 

that the current state of cigarette availability and smoking allowance Granger-cause (are 

significantly predictive of) the future number of cigarettes smoked.

5.1 Smoking Cessation and the Role of Context in Triggering Smoking Lapse

The process in which smokers attempt to quit smoking and remain abstinent is termed as 

smoking cessation. During abstinence, nicotine deprivation causes withdrawal symptoms 

(such as craving [63]). In this vulnerable period, newly abstinent smokers may lapse if 

they experience acute stress, elation, or restlessness, or are exposed to certain ‘contexts’ 

(or environmental cues) such as alcohol, seeing others smoke, or cigarette butts [63, 64]. 

First lapses usually lead to a full relapse (when the newly abstinent smoker reverts to more 

regular smoking) [64]. Prior works focus on detecting internal states such as stress [32, 

56] and craving [16] as well as points of interest such as tobacco point of sale and bars 

[37], that are highly conducive to smoking [19, 64]. We complement these prior works 

by detecting ‘personalized spatial contexts’ including smoking spots and micro-locations 

at significant dwell places that are highly conducive to smoking for each newly abstinent 

smoker. Individuals who are better able to cope with such at-risk situations are successful in 

maintaining abstinence [27].

5.2 Inhibitor-Inducer Characterization of the Smoking ‘Opportunity’ Context and Its 
Measurement

The smoking ‘opportunity’ context during smoking cessation, is a Spatio-Behavioro­

Temporal context that is ‘ripe’ for the occurrence of smoking lapse. For example, a smoking 

‘opportunity’ may be created due to having purchased cigarettes in the recent past (e.g., on 

the way home) and stepping outdoors in the current place.

We characterize the smoking ‘opportunity’ context using smoking allowance at the current 

location as the absence of inhibitor and cigarette availability as the presence of inducer.

Absence of Inhibitor – Smoking Allowance: Smoking allowance (or restrictions) 

depends on the characteristics of the current place and being indoors vs. outdoors. For 
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example, smoking allowance near a tobacco outlet or bar is more prevalent as compared to 

near hospitals, schools, or places of worship, which have very specific and limited spaces 

of smoking allowance. But, in several cases detecting the allowance state of a place may 

be non-trivial due to GPS inaccuracies and ambiguity in the allowance state in the current 

place. For example, the smoking allowance at personal places (e.g., own home, friend’s 

home) may depend on the owners.

Presence of Inducer – Cigarette Availability: Cigarette Availability refers to the state 

when an individual has direct access to (e.g., on their person) or known pathways to access 

(e.g., borrowing from someone). In the absence of direct observation of purchase, detection 

of the change in cigarette availability is non-trivial.

Association with Impulsive Adverse Behavior – Smoking Lapse: Prior works 

show that during abstinence, high availability of cigarettes, or heightened awareness 

of cigarette availability increases the risk of smoking [47]. Smoking allowance is also 

associated with an increased likelihood of lapse [64].

5.2.1 Constructing a Binary Label of the Smoking ‘Opportunity’ Context.—
We utilize momentary self-reports, to label smoking allowance and cigarette availability at a 

given time in the natural environment of participants. For assessment of smoking allowance, 

the momentary self-report question, i.e., Ecological Momentary Assessment (EMA), ‘Right 
now, Is smoking allowed where you are?’ has 3 response options of ‘Smoking is forbidden,’ 
‘Smoking is discouraged,’ ‘Smoking is allowed.’ For assessment of cigarette availability, 

the question ‘Right now, Cigarettes are available to me?’ has 5 response options of ‘Not 
at All,’ ‘With Extreme Difficulty,’ ‘With Difficulty,’ ‘Fairly Easily,’ ‘Easily.’ Given these 

categorical responses to the two items, we need a partitioning of the 15 (=5 × 3) categorical 

response combinations to obtain a binary label of the smoking ‘opportunity’ context — 

‘high’ or ‘low.’ Using decades of experience in smoking cessation research, we narrow our 

design choices to the following two,

• Easily-Allowed: We consider the smoking ‘opportunity’ context to be ‘high,’ if 
cigarettes are ‘Easily’ available and ‘Smoking is Allowed’ at the current place. 

For the remaining 14 response combinations, the smoking ‘opportunity’ context 

is labeled as ‘low.’

• Easily-Fairly-Allowed: We consider the smoking ‘opportunity’ context to be 

‘high,’ if cigarettes are ‘Easily’ or ‘Fairly Easily’ available and ‘Smoking is 
Allowed’ at the current place. For the remaining 14 response combinations, the 

smoking ‘opportunity’ context is labeled as ‘low.’

We use data analysis to explore this design space and settle on a specific mapping (in 

Section 7.5).

5.3 Granger Causality Analysis Between the Smoking ‘Opportunity’ Context and 
Cigarette Smoking

Prior works show that smoking lapse is associated with the easy availability of cigarettes 

and exposure to pro-smoking environments (high smoking allowance) [64]. The goal of this 
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work is to develop a model for continuous assessment of cigarette availability and smoking 

allowance. To do so, we first show evidence (from our data set) that smoking allowance and 

cigarette availability predict future smoking. As a variable to describe smoking usage, we 

use the number of cigarettes smoked. Several other variables are possible, such as time to 

first lapse or whether there is a lapse, but the number of cigarettes smoked is the easiest to 

model.

More precisely, assume we have three time series xt t ∈ ℕ, zt t ∈ ℕ, yt t ∈ ℕ, where xt is 

cigarette availability, zt is smoking allowance, and yt is the number of cigarettes smoked. 

If we control for yt up to time t, are xt and zt predictive of future values of yt? In 

other words, are current cigarette availability and smoking allowance predictive of future 
cigarettes smoked? If the answer is yes, and more recent values of cigarette availability and 

smoking allowance are more predictive than those further into the past, then this suggests 

that it would be advantageous to determine higher frequency changes in cigarette availability 

and smoking allowance (which we use to characterize the smoking ‘opportunity’ context, as 

described in Section 5.2) via mobile sensor data.

The standard setting for testing this is Granger causality [25]. In this setting, we specify a 

model with k lags

yt = α + a1yt − 1 + ⋯ + akyt − k + b1xt − 1 + ⋯bkxt − k + c1zt − k + ⋯ckzt − k + ϵt (1)

We would like to do the following hypothesis test. The null is

H0:b1 = ⋯ = bk = c1 = ⋯ = ck = 0 (2)

that is, that lags of cigarette availability and smoking allowance have no effect on number of 
cigarettes smoked. The alternative hypothesis is

H1: ∃i, 1 ≤ i ≤ k such that bi ≠ 0 or ci ≠ 0 (3)

that is, some lag of smoking availability or accessibility has an effect on number of 

cigarettes smoked.

However, the standard Granger causality model assumes normality of errors; our yt is 

non-negative count data, while our xt and zt are ordinal levels. Under these conditions, the 

Gaussian error assumption will generally not hold. It won’t be a good approximation unless 

the number of values yt can take is reasonably large, and the skewness of yt|xt is low. Thus, 

using linear regression is often not appropriate. As an alternative, we can fit a generalized 

linear model (GLM), which relaxes the assumption of Gaussian errors. A GLM [42] has 

three parts; first, an exponential family distribution describing the response distribution as a 

function of parameters and features, second, a linear predictor, and third, a link function g.

Given the setting above, the mean of the distribution is related to our features as follows,

E yt = μ (4)
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= g−1 α + a1yt − 1 + ⋯ + akyt − k + b1xt − 1 + ⋯bkxt − k + c1zt − 1 + ⋯ckzt − k (5)

and we want to test the null vs alternative hypothesis as above. The standard model for 

regression with count data is Poisson regression [18]. This assumes that our response, 

conditioned on our features, is Poisson distributed. Also, our link function is the log, with 

inverse link g−1 = exp. Using the Poisson distribution may give rise to several issues. First is 

zero inflation; often count data exhibits more zeros than would be observed under a Poisson 

distribution. Second is over-dispersion; in the Poisson distribution, the variance is equal 

to the mean, when, in practice, the observed variance is often higher. One way to handle 

over-dispersion is to use negative binomial regression, which generalizes Poisson regression 

with an additional parameter that describes the variance.

Hypothesis Tests: We would thus like to test the following hypotheses.

• Test for zero inflation

– H0: True model is Poisson

– H1: True model is zero-inflated Poisson. This is a mixture model where 

one mixture component is a Poisson distribution, and the other mixture 

component takes the value 0 with probability 1.

• Over-dispersion: Poisson vs Negative Binomial

– H0: True model is Poisson

– H1: True model is negative binomial, which allows for more flexible 

variance

• Granger Causality

– H0: Cigarette availability and smoking allowance have no effect on 

future number of cigarettes smoked, controlling for lags of cigarettes 

smoked

– H1: They have an effect

We can test each of these in sequence. Because we have three hypothesis tests, we apply 

the Bonferroni correction. Our goal is to have the family-wise error rate P(reject any true 

H0) ≤ α, where α is chosen and usually set to 0.05. In order to ensure this, the Bonferroni 

correction requires that the p-value for test i, denoted by pi, to be pi < α
n , where n is the 

number of tests. For each Hypothesis test here, since we have three tests, instead of seeking 

a p-value of < 0.05, we seek a p-value of < 0.05/3 = 0.017.

Exploratory Data Analysis: We focus on the post-quit EMA data for analysis; within 

and across participants, this gives us 2, 388 observations. For our exploratory analysis, 

we focus on 400 observations. We will then perform the hypothesis test on the remaining 

observations.
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We start with a partial autocorrelation (PACF) plot to determine how many lags to use in 

our model. The PACF gives the auto-correlation between the value at time t and each lag t 
− k, with linear dependence for lags in between removed. Figure 2 shows the results. Note 

that this is a linear relationship between lag and future, and we are technically using a GLM, 

which posits a non-linear relationship; however, it can still be useful for model selection. 

Therefore, we use three lags.

Primary Data Analysis: First, we test for zero inflation via the countreg package in 

R, which uses the hypothesis test developed in [69]. They derive a score test, which tests 

whether the mixture weight for the zero-only distribution is 0. We obtain a p-value of 0.254 

for this test and fail to reject the null hypothesis of no zero inflation. For the remaining tests, 

we do not use a zero-inflated model. For the second test, we fit both a Poisson regression 

and a negative binomial model. The latter has one additional parameter, which models the 

variance. We can thus do a likelihood ratio test, where the resulting test statistic should have 

a X1
2 distribution. We obtain a p-value of 0.001, which is below our Bonferroni corrected 

target p-value of 0.017. For the third test, for Granger causality, we test two negative 

binomial models, one with the availability and allowance lags, and one without. As these 

are nested models, we can also apply a X6
2 test, since the alternative model has six more 

parameters than the null model. This test gives us a p-value of 5.202e – 05, well below the 

target p-value of 0.017.

Thus, we reject the null hypothesis that the lags of cigarette availability and smoking 

allowance have no effect when including lags of the number of cigarettes smoked. 

This justifies using cigarette availability and smoking allowance to quantify the smoking 

‘opportunity’ context.

6 CONTEXT MINING FROM NOISY MOBILE SENSOR DATA

Prior works on detecting contextual cues for smoking lapse has focused on building a 

database of well-defined geolocations such as cigarette point-of-sale. Detection of exposure 

to such locations can then be done via geofencing. Our goal is to detect visitation to any 

location that may be conducive to a specific smoker. This may include microlocations 

at personal places such as designated smoking areas outside office buildings or stepping 

outdoors at residences, that are not easily geofenced.

Therefore, to detect dynamically changing exposures to smoking ‘opportunity’ contexts, 

we focus on identifying sensor-derived contexts that can detect dynamic changes in the 

presence of inducers and the absence of inhibitors for smoking. We propose a new context 

called smoking spots (i.e., where participants are observed to have smoked before quitting) 

to supplement other informative contexts from the smoking cessation literature (e.g., bars). 

Moreover, we note that changes in the smoking ‘opportunity’ can not only occur when 

transitioning from one spatial context into another but also in the same context (e.g., office 

building) if the participant steps outdoors/indoors. Therefore, in addition to detecting the 

spatial context, we also detect the activity episodes.
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6.1 Deriving Activity Episodes from the Wrist Worn Inertial Sensors

We infer whether a subject is in motion or not from the 3-axis wrist-worn accelerometers 

[21, 45]. Phone accelerometer was not used because on some occasions (e.g., stepping 

outside of the house or a building, where smoking is usually permitted), the phone may not 

be on the person. Hence, a vital context may be missed. The accelerometry data collected 

during vehicular movements is not assessed. We do not consider the ‘in-vehicle’ context to 

be an ‘opportunity’ context, which can be addressed in future works.

6.2 Deriving Dwell Places and Location Transitions from GPS Traces

We employ a spatio-temporal clustering based on time and distance to detect dwell places 
from the noisy GPS traces of a participant. We categorize the dwell places into significant 
and transient places based on the frequency of visitation. We use the dwell places and the 

GPS traces of each participant to construct their location transitions.

A GPS trace is a sequence of time-stamped GPS points, tr = [p1, p2, …, pm]. A GPS point 

pi = (xi, yi, ai, ti), ∀0 ≤ i < m, consists of timestamp ti with (ti < ti+1), latitude and longitude 
(xi, yi), and GPS signal accuracy at that point ai. GPS sensor noise, poor positioning signal, 

and other factors lead to inherent inaccuracies in GPS traces. We de-noise the GPS traces 

via median filtering [75] as the gap between consecutive GPS points is much less than fifty 

meters even at a speed of 100 kilometers per hour due to the sampling rate of 1 Hz in 

our GPS traces. We perform median filtering, by substituting a GPS sample point pi, with 

the median of temporal predecessor points from a window length of 2 minutes (i.e., 120 

predecessor points).

6.2.1 Dwell Places.—We use the de-noised GPS traces to derive dwell places (pl). More 

formally, a dwell place (pl) is a geographical region where a user has been for at least Td 

time within a distance of Dd around it. For example, a user must stay at the gas station for 

some minimum time to be able to buy cigarettes there.

A pl is characterized by a set of consecutive GPS points {pm, pm+1, …, pk}, with 

three conditions: i.) d(pm,pi) ⩽ Dd, ii.) d(pk,pk+1) > Dd, ∀i, where m < i < k, and iii.) 

Interval(pm,pk) ⩾ Td. For computing the distance between two points pm and pi (i>l), 

d(pm,pi), we use the haversine distance [66] 1 and time interval between two points is 

computed as Interval(pm,pk) = |tm – tk|. Finally, we obtain a pl = (x, y, tarr, tdep), where, (x, y) 

is the centroid of pl. User’s arrival and departure times into and out of pl are represented by 

tarr = tm and tdep = tk respectively.

Next, we use 200 meters for Dd based on prior works [75, 76]. But, for Td, there is no set 

threshold, as it depends on the use case scenario. Hence, we use data analysis to find an 

appropriate value of Td that can distinguish transit versus dwell at a pl.

Finding the minimum dwell time (Td):  We are interested in finding the minimum dwell 

time Td, which is a lower bound on the dwell time at a location to declare it as a pl; 

1Haversine distance computes the greater circle distance (shortest distance on the surface of a sphere) between two points on the 
surface of the earth.
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we discard stops with a time of stay less than Td. First, we compute the time spent 

(in minutes) within a distance threshold of 200m. Next, we observe that the distribution 

of time spent clusters around several mean values. Hence, we use a Gaussian Mixture 

Model (a soft clustering method) to cluster the times spent within a distance threshold 

of Dd. We experiment using different numbers of clusters/components for the Gaussian 

mixture model. Finally, we find that 5 components/clusters (see Figure 3) minimizes the 

Bayesian Information Criterion (BIC) score. From Figure 3, we observe that Clusters 0 and 

3 represent those with very low dwell times (ranging from 0.02 - 6.5 minutes). These may 

be from vehicular movement and walking/running. Cluster 4 represents those places where 

participants dwell for a considerable amount of time (ranging from 6.565 - 105.2 minutes). 

Finally, Clusters 1 and 2 represent those places where participants usually dwell for a longer 

duration. These may be places where participants spend most of their time, such as ‘home’ 

and ‘work.’ Based on this analysis, we use 6.565 minutes, which is the lower bound for 

cluster 4, as the minimum dwell time (Td).

6.2.2 Categorization of Dwell Places into Significant and Transient Places.—
We categorize the dwell places into significant places and transient places based on the 

frequency of visitation.

Significant Places:  Dwell places, where a participant frequently visits (e.g., ‘home,’ 

‘work’) are categorized as significant places. We apply a density-based clustering [24, 52] 

on the dwell places to obtain the significant places. A participant i may have L significant 

places, which we denote as SP i = SP1
i , SP2

i , …, SPl
i, …, SPL

i .

Transient Places:  Transient places are the dwell places which are not marked as a 

significant place. For example, a ‘gas station’ or a ‘convenience store’ may be categorized as 

transient places.

6.2.3 Location Transitions.—We use the dwell places to transform the GPS trace of 

a given participant into a set of location transitions, where a transition occurs between the 

departure from one place and the arrival at the next.

We use the location and activity transitions as events to obtain the windows for detecting 

the smoking ‘opportunity’ context (in Section 7.1). Additionally, we use the significant and 
transient places along with other information to derive the smoking spots, which are usually 

associated with the smoking ‘opportunity.’

6.3 The Smoking Spots

We identify a new context called Smoking Spots. These are places where participants are 

observed to have smoked before quitting. In smoking cessation studies, data is usually 

collected from pre-quit days to generate a baseline for analysis. In this work, we leverage the 

pre-quit data to locate the smoking spots. Similar to the geodatabase of tobacco point-of-sale 

[37], the smoking spots can be of independent broader utility. This new geodatabase can be 

used for designing and delivering new interventions. In addition, we use these smoking spots 
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and other informative features to detect smoking ‘opportunity’ contexts that may be used in 

new smoking cessation interventions.

We locate two types of smoking spots. We call the first type, the personal smoking spots, 

which are person-specific (frequently visited and unique to each individual, e.g., ‘home’) 

and are constructed around the significant places where participants usually smoke during 

their regular smoking period. Personal smoking spots provide evidence that smoking is 

usually allowed here. Cigarette availability may also be higher at these spots if another 

smoker shares the significant place or if half-burnt cigarettes may still be lying around. 

The second type is the general smoking spots, which are the transient places where 

smoking events are usually observed (potentially, from multiple participants). These are 

crowd-sourced, i.e., are not person-specific and may be candidates for constructing a new 

geodatabase of smoking spots. Examples of general smoking spots include outside of an 

office building or a movie theater. These spots are important as they provide evidence that 

smoking occurs there. Further, as multiple participants are observed to have smoked there, 

these spots may also provide an opportunity to borrow a cigarette from another smoker, thus 

increasing cigarette availability.

In what follows, we first obtain evidence for smoking allowance (from EMAs) and smoking 

occurrence (via user-reported or automated detection of smoking events, see Section 6.3.1) 

at different dwell places. This helps us categorize the significant and transient places into 

personal and general smoking spots, respectively. We associate the transient places with 

specific semantic types (in Section 6.3.4) to obtain the POI-transient-places. We also use 

the semantic type to select an appropriate level of proximity to determine exposure to the 

general smoking spots. We assess how well our characterization of general smoking spots 

conforms to the widely held beliefs about smoking allowance and smoking occurrence at 

different types of locations (e.g., places of worship vs. bars).

6.3.1 Smoking Event.—We are interested in detecting microlocations where smoking 

occurs. For this purpose, we first use participants’ self-reported smoking events provided 

in EMA questionnaires. The EMA item was worded ‘Since the last assessment, have 
you smoked any cigarettes?,’ with an option to respond ‘Yes,’ if they have smoked after 

responding to the preceding EMA, ‘No’ otherwise. The EMA responses are timestamped. 

Participants may change their location between their last smoking event(s) and when they 

report the smoking event. To avoid this ambiguity, we utilize an EMA reported at a given 

dwell place (pl) only if the previous EMA was reported at the same location. Although this 

rule resolves ambiguity, it results in missing smoking events at transient places.

To increase the chances of capturing these missed smoking events (especially at transient 

places), we utilize puffMarker [55], which is a sensor-based model for detecting smoking 

episodes. PuffMarker uses the breathing patterns captured from a RIP (Respiratory Inductive 

Plethysmography) sensor and hand gestures captured using 6-axis inertial sensors (3-axis 

accelerometers and 3-axis gyroscopes) worn on both wrists. It uses inertial sensor data to 

identify hand-to-mouth gestures and applies a machine learning model on the corresponding 

respiration data to detect deep inhalation and exhalation pattern expected during smoking.
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Although smoking can be detected using hand-to-mouth gesture alone [44, 61, 65]2, using 

both breathing patterns and hand-to-mouth gesture improves the recall from 75% to 87.5% 

and reduces the false positive rate from 0.58 per day to 0.17 per day (see Table 2 in [55]). 

Also, we note that if the wrist sensor is worn on only the dominant wrist, we may miss 

smoking events from 7 (out of 90) participants who switch hands during smoking.

Using puffMarker, we are able to detect 663 additional smoking events not captured by 

self-reports. We note that some of these events can be false positives. However, given a low 

false-positive rate of puffMarker (1 false detection for every 6 days of sensor wearing [55]), 

we assume all the detected smoking events to be true events.

We also note that as is the case with any sensor-detected event, puffMarker can detect 

smoking events only when sensors are properly worn and sensors are active. Hence, some 

smoking events may remain unreported and undetected. As the use of smoking detection 

is only during constructing a geodatabase of smoking spots, but not needed when the 

SmokingOpp model is applied to detect smoking ‘opportunity’ contexts, the impact of any 

missed smoking events on the SmokingOpp model is tolerable.

6.3.2 Characterization of Smoking Spots.—Each dwell place where at least one 

smoking event is detected is a candidate to be designated as a personal or general smoking 

spot, depending on whether the dwell place is significant or transient. As the detection of 

one smoking event can result from misreporting or false detection from sensors, we seek 

additional corroboration to designate a dwell place as a smoking spot. The first criterion 

is evidence that smoking is allowed at the candidate dwell place. The final criterion is the 

existence of a sufficient frequency of smoking events at the candidate dwell place for it to 

be designated as a smoking spot. In the following, we describe our approach to identify 

personal and general smoking spots.

6.3.3 Identifying the Personal Smoking Spots.—We create a sequence of all visits 

to significant places, SPi (see Section 6.2.2) during the pre-quit phase by participant i to 

identify personal smoking spots from among them. We represent this temporal sequence as 

spi = sp1
i , sp2

i , …, spji, …, spni , with spji = SPl
i ∈ SP i for 1 ≤ l ≤ L. We note that as spi is a 

temporal sequence, it is likely that several visits can be to the same place, i.e., spji = spk
i  for j 

≠ k. Each significant place visit, spji, has a corresponding time of arrival, spji . tarr, and a time 

of departure, spji . dep.

We need evidence of smoking allowance and sufficient frequency of smoking occurrence at 

SPl
i for it to be regarded as a personal smoking spot. To assess smoking allowance at SPl

i, 

we use the self-reported smoking allowance in EMAs (see Section 5.2.1) at this place. A 

2We note that in addition to detecting the hand-to-mouth gestures from wrist-worn accelerometers, methods have been developed 
for detecting hand to mouth smoking gestures using other devices. One approach [72] applies a computer vision technique to detect 
smoking by recognizing the gesture of the person’s arms from video data. Another work [57] detects smoking gestures by using an 
RF-based proximity sensor placed on the person’s chest to detect the hand when it is in the vicinity of the mouth. The Personal 
Automatic Cigarette Tracker - PACT [59] embeds a sensor in the cigarette lighter, which records a smoking event whenever the lighter 
is lit.
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‘Smoking is allowed’ response to the EMA item ‘Right now, Is smoking allowed where you 
are?,’ is considered to be positive evidence. For each participant i, we assign an EMA e to a 

spji if spji . tarr ≤ te ≤ spji . tdep, where te is the initiation time of response to that EMA. We then 

compute the probability of smoking allowance at SPl
i as the fraction of EMA responses at 

∀spji = SPl
i that are positive.

Next, for evidence of smoking occurrence, we compute the probability of smoking 

occurrence at SPl
i as 

j = 1

nl
εj

SPl
i
/nl, where ℰl

SPl
i

= 1, if at least 1 smoking episode is detected 

during jth visit to SPl
i, and nl is the total number of visits to SPl

i. We compute the probability 

of smoking occurrence as the fraction of visits to SPl
i when smoking is observed at least 

once.

We use this definition instead of counting each smoking occurrence for two reasons. First, 

both the EMAs as well as the detection of smoking by sensors may miss several smoking 

episodes. Hence, using the numbers may not be fully representative of the actual smoking 

prevalence at different significant places. Second, this definition provides some in-variance 

to the time spent at different significant places.

To determine a threshold for deciding personal smoking spots, we analyze the probability 

of smoking allowance and the probability of smoking occurrence at all candidate SPl
i in our 

data set. We want to cluster the candidate SPl
i, which are closest to each other based on the 

probability of smoking allowance and occurrence. Using Agglomerative clustering [10], we 

observe that any SPl
i with both probabilities of 0.4 or higher are separated. Hence, we use 

the threshold of 0.4 for the probability of smoking allowance and occurrence to designate a 

personal smoking spot (see Figure 4).

6.3.4 Identifying the General Smoking Spots.—We create a list of all transient 

places (TP) visited by any participant during the pre-quit phase to identify general smoking 

spots from among them. In contrast with a small number of significant places (for each 

participant), the number of transient places visited by all the participants is quite large. To 

narrow down our search for general smoking spots, we extract the semantic meaning of 

transient places to assess the smoking allowance at a candidate location to determine if it is 

potentially conducive to smoking.

To obtain this information, we create a customized Point-of-Interest (POI) database, which 

contains a list of POIs in and around the city of residence, including properties of the place, 

GPS location, and type. Following are a list of POIs and the corresponding databases from 

which they have been acquired.

POIs usually conducive to smoking:  We acquire POIs such as a smoke shop, tobacco 

retail outlet, convenience stores, bars, and others, where smoking is usually allowed and/or 

there is an opportunity to purchase cigarettes. We acquire 10,875 licensed alcohol places, 
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including bar and alcohol stores through the state’s alcoholic beverage commission (e.g., 

TABC [2]), 8,768 licensed cigarette point-of-sale (POS) (e.g., tobacco shop (5, 501) 

and gasoline station (3, 267)), retail and convenience stores (16, 518) from the state’s 

comptroller (e.g., [3]).

POIs usually NOT conducive to smoking:  We acquire POIs such as hospitals, churches, 

schools, and other similar places, where smoking is usually prohibited (barring a few 

designated spots), and the opportunity to purchase cigarettes is almost none. We obtain 

1, 396 licensed medical services, including hospitals, clinics, and biomedical-research 
labs from the state’s comptroller. We obtain 1, 543 registered public and private schools, 
colleges, universities, libraries, 60 community centers, and 2, 510 registered places of 

worship, including church, temple, mosque, others from state’s open data portals.

Obtaining the POI database:  Using ESRI ArcMap 10.x, we create three individual 

address locators from the TIGER [6] and STAR Map [5] data sets. Then, we create a 

composite locator in ArcMap to incorporate all three individual locators. First, we examine 

and clean all data, next we geocode them using the composite locator based on address 

matching. The first round of geocoding reaches an average matching of 93%, exceeding a 

commonly accepted geocoding threshold score of 85% (for the first run) [50]. Then, we 

visually inspect the tied addresses and re-match by using the TIGER file, STAR map, and 

Google Maps. We use the re-matching process to enhance the accuracy of the original 

geocode results. Finally, we merge all extracted GIS data to obtain a master POI database, 

which contains all the POIs with their semantic types and corresponding GPS coordinates.

Obtaining the POI-transient-places:  Finally, we use this newly constructed POI database 

to associate semantic meaning to all the transient places from our dataset. As described 

above, we consider 6 POI semantic types — ‘alcohol,’ ‘cigarette point-of-sale (POS),’ 
‘retail,’ ‘medical,’ ‘school,’ and places of ‘worship.’ In order to associate a transient place 
with a POI semantic type, we use the method described in [38]. A transient place associated 

with a POI is termed as POI-transient-place, indexed by i ∈ {‘alcohol,’ ‘cigarette point-of­

sale (POS),’ ‘retail,’ ‘medical,’ ‘worship’}. Note, we do not find any EMA reported at the 

‘school’ POI. Hence, the analysis of the ‘school’ type has not been possible in this work. We 

exclude all the other transient places that are without any POI association.

Next, we create a subset of POI-transient-places based on the proximity from their 

associated POI. The POI-transient-places, which are in a closer proximity to their associated 

POI are termed as proximal-POI-transient-places, (TPp). In particular, ∀TPp
i ∈ TPp reside 

within a distance of 30m from the centroid of their associated POI. The remaining POI­

transient-places are referred to as non-proximal-POI-transient-places TPp . In particular, 

∀TPp
i ∈ TPp reside within the buffer of 30m and 100m from the centroid of their associated 

POI. Depending on the proximity distance of a POI-transient-place to the POI centroid, a 

POI-transient-place type i may be assigned to TPp (as TPp
i ) or TP (as TPp

i ).

Designating POI-transient-places as General Smoking Spots:  From all visits to transient 

places, we extract all distinct visits to POI-transient-places by any participant and represent 
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them as d = [d1, d2, …, dN], with dj = TPp
i  or dj = TPp

i  for some POI-transient-place i. We 

note that it is likely that different visits by same or different participants may be to the 

same POI-transient-place type i, i.e., dj = dk = TPp
i  (or TPp

i ) for j ≠ k. Each visit dj, has a 

corresponding time of arrival, dj.tarr, and a time of departure, dj.tdep.

Similar to personal smoking spot identification, we need evidence of smoking allowance 

and sufficient frequency of smoking occurrence at a POI-transient-place type i for it to be 

regarded as a general smoking spot. To assess smoking allowance at a POI-transient-place 

type i across all participants (since these are crowd-sourced and not person-specific), we 

use the self-reported smoking allowance in EMAs. A ‘Smoking is allowed’ response to the 

EMA item ‘Right now, Is smoking allowed where you are?,’ is considered to be positive 

evidence. For all participants, we assign an EMA e to a dj if dj . tarr ≤ te ≤ dj . tdep, where 

te is the initiation time of response to that EMA. Similar to personal smoking spots, the 

probability of smoking allowance at a general smoking spot candidate TPp
i  (or TPp

i ) as the 

fraction of EMA responses at ∀dj = TPp
i  (or TPp

i ) that are positive.

Next, for the evidence of smoking occurrence, we compute the probability of smoking 

occurrence, at TPp
i  (or TPp

i ) as j = 1
n ℰj/n, where ℰj = 1, if at least 1 smoking episode is 

detected during jth visit to a TPp
i  (or TPp

i ), and n (≤ N) is the total number of visits to TPp
i  (or 

TPp
i )·. We compute the probability of smoking occurrence as the fraction of visits to TPp

i  (or 

TPp
i ) when smoking is observed at least once.

To determine a threshold for general smoking spots, we analyze the probability of smoking 

allowance and the occurrence of all the candidate proximal and non-proximal POI-transient­

places in our data set. Using Agglomerative clustering, we observe that any POI-transient­

place with the probability of smoking occurrence of 0.3 or higher and the probability of 

smoking allowance of 0.4 or higher are separated. Hence, we use these two thresholds to 

designate a general smoking spot (see Figure 5).

Our analysis confirms that smoking allowance and occurrence are high around bars and 

alcohol stores and low at closer proximity to places of worship and hospitals. Interestingly, 

we observe that smoking occurrence is low at non-proximal areas of places of worship. 

However, we find a higher probability of smoking occurrence in non-proximal areas of 

hospitals.

6.4 Indoor/Outdoor Context

Smoking spots usually provide a coarse boundary of geographical region where smoking 

may occur. Detection of indoor vs. outdoor can provide a more fine-grained indication 

of momentary smoking ‘opportunity’ as tobacco control policies in several countries 

prohibit smoking at indoor environments [4]. The indoor environment is usually associated 

with low/no smoking allowance. We build upon prior works [26, 49] to find indicators 

or correlates of indoor/outdoor environment from GPS data. The intuition behind the 

estimation of indoor/outdoor from GPS data is that GPS signal accuracy deteriorates in 
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indoor environments due to signal obstruction and limited satellite visibility [70]. To assess 

the suitability of GPS accuracy as an indicator of indoor vs. outdoor, we label some time 

windows as ‘indoor’ and ‘outdoor’ and then test how well are they separable using GPS 

accuracy.

To estimate indoor/outdoor from GPS signal accuracy, first, we label time windows when 

participants are walking outside versus when indoors. For this purpose, we compute the 

speed (in meter/sec) of participants when transitioning from one dwell place to another. If 

the speed is greater than the maximum comfortable walking speed (1.46 meter/sec [11]) 

and less than minimum transportation in a vehicle (3.33 meter/sec [29]) while transitioning 

from one dwell place to another for a certain amount of time, we label those windows as 

an outdoor environment. Note, we do not use transport ‘inside’ a vehicle as ‘outdoor’ to 

remove any ambiguity. If the speed is lesser than maximum comfortable walking speed and 

participants are dwelling within 10 meters of home location, we label those windows as 

indoor environment.

To find informative features from GPS accuracy, we compute the variance, skewness, and 

kurtosis of GPS accuracy in the windows marked as outdoor (n=1,488) and indoor (n=575). 

Next, we perform one-tailed Mann-Whitney U test on the following samples, first, the 

variance, skewness, and kurtosis of GPS accuracy when indoors, second, the variance, 

skewness, and kurtosis of GPS accuracy when outdoors. We observe that variance (n = 575; 

median = 28.777; mean = 63.093 ± 84.312;p <= 0.0001), skewness (n = 575; median = 

0.874; mean = 1.383 ± 1.847;p <= 0.0001), and kurtosis (n = 575; median = 0.943; mean = 

5.558 ± 12.903;p <= 0.0001) of GPS accuracy when indoors is significantly greater than the 

variance (n = 1,488; median = 1.376; mean = 10.441 ± 30.604;p <= 0.0001), skewness (n = 

1,488; median = 0.219; mean = 0.233 ± 0.945;p <= 0.0001), kurtosis (n = 1,488; median = 

−0.896; mean = −0.22 ± 3.476;p <= 0.0001) when outdoors (see Figure 6).

6.5 Temporal Context

In addition to exploring the role of spatial context in detecting smoking ‘opportunity,’ 

we also investigate the role of temporal context. We analyze the role of time of day and 

temporal patterns of visitation to tobacco outlets.

6.5.1 Contextualized Time of Day.—We explore the impact of the hour of the day on 

the smoking ‘opportunity’ variations. We use the binary labels of the smoking ‘opportunity’ 

from Section 5.2.1 to compute the probability of the smoking ‘opportunity’ being ‘high’ 

during each waking hour of the day (Th, from 7 AM to 10 PM, referred to as T7 and T22, 

respectively), as the fraction of EMA responses at Th that are labeled as ‘high’ smoking 

‘opportunity.’

Role of time of day on the likelihood of smoking or craving [9, 16] has been known. 

However, we notice that the likelihood of the smoking ‘opportunity’ being high differs when 

participants are at ‘home’ (within 100 meters of ’home’ GPS coordinate), and ‘not at home’ 

(see Figure 7).
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Key Observations:  We observe a decreasing trend in the smoking ‘opportunity’ outside 

the home, as time progresses from T8 to T11 (which is most likely because participants 

are usually busy doing their work during these hours). During T12, T13, T14, the smoking 

‘opportunity’ increases gradually (most likely participants may break for lunch during these 

hours). There is a decrease during T15, T16, which is followed by a rising trend during the 

evening hours. Second, barring the morning hours of T8 and T9, we do not observe any 

interesting temporal trend of the smoking ‘opportunity’ when participants are at home.

6.5.2 Temporal Patterns of Visitation to Cigarette Point-of-Sale (POS).—As 

described in Section 5.2, the high availability of cigarettes is usually associated with a ‘high’ 

smoking ‘opportunity.’ We are interested in finding whether the time since the previous visit 

to a POS (where there is an opportunity to purchase cigarettes) is associated with cigarette 

availability. We consider a visit to cigarette POS has occurred if an individual dwells for at 

least 6.565 minutes within the distance of 30m from the centroid of a cigarette POS [37].

As we are interested in determining the role of such visits on cigarette availability, we use 

the two design choices from Section 5.2.1, but only the responses to the EMA questionnaire 

— ‘Right now, Cigarettes are available to me?’ in both categories of Easily-Allowed and 

Easily-Fairly-Allowed to assign EMA responses to the states of ‘high’ or ‘low’ availability.

Subsequently, we analyze the effect of the time since the previous visit to cigarette POS on 

the state of cigarette availability. First, for each participant, we compute the time since the 

previous visit to cigarette POS using the following algorithm. We start from the beginning 

of the study for each participant and set the time_since counter to 0. Once we find a visit 

made to a cigarette POS, we keep incrementing the time_since counter by dwell time at 

intermediate dwell places and transitions until the next visit to POS is recorded. At the 

beginning of the next visit, we reset the time_since to 0 and keep on incrementing it until the 

beginning of the next visit. The process continues until the end of the study. The time_since 
is computed in the unit of hour (hr).

We hypothesize that greater time since the previous visit to cigarette POS indicates a lower 

cigarette availability and conversely lesser time since the previous visit to cigarette POS 

indicates a higher cigarette availability. The intuition is that the availability of cigarettes (by 

purchase) reduces with lesser frequency of visitation to the cigarette POS. To evaluate the 

above hypothesis, we perform the following statistical tests and report several interesting 

insights. For each design choice approach (Easily-Allowed and Easily-Fairly-Allowed) 

and the corresponding phase of the study (pre and post-quit), we perform a one-tailed 

Mann-Whitney U test on the two independent samples. The first samples are time since 
the previous POS visit associated with a lower cigarette availability (TSPV_Low_CA). The 

second samples are time since the previous POS visit associated with a higher cigarette 

availability (TSPV_High_CA). We present the hypothesis test results in Table 2.

Key Observations:  First, during the post-quit, for Easily-Fairly-Allowed, the median 

TSPV_Low_CA (57.288 hr) is significantly higher (p_value = 0.019) than the median 

TSPV_High_CA (44.478 hr). Second, the above finding implies that delaying the visit to a 

cigarette POS lowers the state of cigarette availability, which in turn indicates ‘low’ smoking 
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‘opportunity.’ Third, the median time since previous POS visit is higher during the post-quit 

as compared to the pre-quit phase. This implies that there is a noticeable behavioral change 

in terms of the frequency of visitation to cigarette POS.

7 THE SMOKINGOPP MODEL

For developing the SmokingOpp model, we first develop an approach to segment the 

continuous sensor time series into candidate windows. After locating the windows, we 

assign ground truth labels to it and compute features from sensor data to train the 

SmokingOpp classifier. Finally, we evaluate the impact of various design choices on the 

accuracy of detecting the smoking ‘opportunity’ context.

7.1 Event-Based Windowing for Efficient Detection of the Smoking ‘Opportunity’ Context

Our goal is to identify an appropriate segmentation of the sensor time series (into windows) 

such that every transition in the smoking ‘opportunity’ context concurs with a transition in 

the window. This will provide high computational efficiency and sufficient data within a 

window to compute robust features.

A participant’s smoking ‘opportunity’ context may change with changes in his/her location. 

For example, in Figure 8, we observe that the smoking ‘opportunity’ context changes 

from ‘low’ at the Dwell Place A to ‘high’ at the Dwell Place B. Sometimes, the smoking 

‘opportunity’ context may also change in the same place (see Figure 9). For example, 

if a participant moves (detected as an activity episode) from indoor (‘low’ smoking 

‘opportunity’) to an outdoor designated smoking area (‘high’ smoking ‘opportunity’) at 

his/her workplace.

Using only location to define windows may miss some smoking ‘opportunity’ context 

transitions, while defining windows by using both location and activity transitions may 

significantly increase the number of windows. Therefore, we consider both approaches to 

segment the sensor time series into windows. We refer to the first approach as Win-Loc. We 

observe from a sample in Figure 8 that there are 3 such windows, namely, W1, W2, W3). We 

refer to the second approach as Win-Loc-Act. We observe from a sample in Figure 9 that 

there are 5 such windows created, namely, W1, W2, W3, W4, W5).

7.2 Label Assignment

After determining the candidate windows, our goal is to assign labels (obtained from 

participants’ self-reports) to each window. First, we determine the binary labels for the 

smoking ‘opportunity’ context. We construct two classes of labels based on each design 

choice (i.e., Easily-Allowed, and Easily-Fairly-Allowed) as described in Section 5.2.1. If 

we find a single self-report in a window, we assign the reported label of the smoking 

‘opportunity’ context to that window. If multiple homogeneous self-reports occur in a 

window and all of them have the same label, we assign the reported homogeneous label to 

that window. We exclude all other windows because of ambiguity in labels. We note that 

these excluded windows only constitute 7.991% of total windows.
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7.3 Feature Computation

To detect the smoking ‘opportunity’ context, we compute several features from each window 

of sensor data. We use context mining presented in Section 6 to compute 11 window-level 

features.

Personal Smoking Spots (2 features): To determine the likelihood of the place in 

the current window to be a personal smoking spot (see Section 6.3.3), we use the binary 

indicator is current place a significant place?, and the probability of smoking occurrence at 
the current place as features.

General Smoking Spots (2 features): Similar to personal smoking spots, to determine 

the likelihood of the the place in the current window to be a general smoking spot (see 

Section 6.3.4), we use the binary indicator is current place a TPp
i  or TPp

i ?, and the 

probability of smoking occurrence at the current place as features.

Indoor/Outdoor Context (3 features): As the variance, skewness, and kurtosis of GPS 

accuracy in the current window are indicators of indoor vs. outdoor (see Section 6.4), we use 

these three statistics as features.

Contextualized Time of Day (3 features): We use distance to ‘home’ (in meters) from 

the current place, and we compute two features using the hour of day at the mid point of the 

current window (Th) : Th and Tℎ
2, to assess linear and non-linear impact of time of day (see 

Section 6.5.1).

Temporal Patterns of Visitation to Cigarette POS (1 feature): We use the time 
since the last visit to a cigarette POS to indicate the behavioro-temporal evolution of 

cigarette availability (see Section 6.5.2).

7.4 Model Training and Evaluation

Our goal is to develop a model that can passively detect changes in smoking ‘opportunity’ 

contexts from continuous mobile sensor data in-the-wild. For model training and evaluation, 

we use sensor data and ground truth self-reports (as a label) of the smoking ‘opportunity’ 

context from the post-quit phase.

We consider the widely-used supervised classification models for detecting the smoking 

‘opportunity’ context — Random forest based classifier [12] with 100 (RF_100) and 

1000 (RF_1000) trees, SVM based classifier with RBF kernel (SVM-RBF) [73], Logistic 

regression (LR) classifier [30], and Adaboost classifier [23]. We use grid search for hyper­

parameter optimization in each model.

For evaluation of model accuracy, we use leave-one-participant-out-cross-validation 

(LOPOCV), where we exclude a single participant’s data for testing and use the remaining 

for training purposes, and repeat the experiment for all the participants. We report the 

median values of the model scores, including F1, Recall, and Precision in box-plots (see 

Figures 10 and 11). We also evaluate the impact of windowing choices on temporal precision 
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of the model, i.e., number of smoking ‘opportunity’ transitions detected, and the size of 

windows (as smaller windows may detect smoking ‘opportunity’ transitions sooner).

7.5 Experimental Results

Our goal is to evaluate different combinations of the design choices for windowing (Win­
Loc and Win-Loc-Act) and labeling (Easily-Allowed and Easily-Fairly-Allowed) to observe 

their impact on model performance.

Win-Loc Windowing and Easily-Allowed labels: Out of 666 labeled windows, 290 

(43.54%) are ‘high,’ and 376 (56.46%) are ‘low.’ Recall, precision, and F1 values appear 

in Figure 10 (on the left). All the models produce similar performance scores, with logistic 

regression having the best median F1 score of 51.67%.

Win-Loc-Act Windowing and Easily-Allowed labels: Out of 1, 363 labelled 

windows, 658 (48.28%) are ‘high’ and 705 (51.72%) are ‘low.’ Recall, precision, and 

F1 values appear in Figure 10 (on the right). All the models outperform the Win-Loc 
windowing and Easily-Allowed approach. Adaboost produces the best median precision of 

70.73%, and logistic regression produces the best median F1 of 63.07%.

Win-Loc Windowing and Easily-Fairly-Allowed labels: Out of 666 labeled windows, 

373 (56.0%) are ‘high,’ and 293 (43.99%) are ‘low.’ Recall, precision, and F1 values appear 

in Figure 11 (on the left). The performance of all the models is better than the Win-Loc or 

Win-Loc-Act windowing and Easily-Allowed based approach. Adaboost produces the best 

median precision of 66.67%, and logistic regression produces the best median F1 of 67.98%.

Win-Loc-Act Windowing and Easily-Fairly-Allowed labels: Out of 1, 363 labelled 

windows, 808 (59.28%) are ‘high’ and 555 (40.72%) are ‘low.’ Recall, precision, and 

F1 values appear in Figure 11 (on the right). Overall, the Win-Loc-Act windowing and 

Easily-Fairly-Allowed approach outperforms all the other modeling approaches. Logistic 

regression performs the best overall with a median F1 of 74.3%.

Key Findings: We report several key findings. First, from Table 3, we observe that 

the Easily-Fairly-Allowed labeling approach produces better results than Easily-Allowed 
approach. We observe an improvement of 16.31% and 11.23% in F1 scores for Win-Loc and 

Win-Loc-Act windowing, respectively, via logistic regression-based modeling. This may be 

because in several scenarios of fairly easily availability of cigarettes, even if the participants 

are not carrying cigarettes with them, they can borrow a cigarette (fairly or relatively easily), 

resulting in a ‘high’ smoking ‘opportunity’ context. Hence, labeling some of these contexts 

as ‘low’ smoking ‘opportunity’ context in the Easily-Allowed labeling approach may result 

in false labels. We also observe that despite having a larger number of windows in the 

Win-Loc-Act approach, we obtain a higher F1 as compared to the Win-Loc approach. In 

particular, the Win-Loc-Act approach achieves a 6.32% increase in the F1 as compared to 

the Win-Loc approach (with the Easily-Fairly-Allowed approach for computing the smoking 

‘opportunity’ context).
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Second, we observe that we can capture 37.864% more smoking ‘opportunity’ context 

transitions by using activity episodes in addition to place transitions in defining our window 

of assessment. In particular, we capture 206 transitions using the Win-Loc approach (106 

transitions from ‘low’ to ‘high’ and 100 transitions from ‘high’ to ‘low’). Using Win-Loc­
Act, on the other hand, we capture a total of 284 transitions (145 transitions from ‘low’ to 

‘high’ and 139 transitions from ‘high’ to ‘low’).

Third, we observe that the average window size (in minutes) for Win-Loc-Act approach 

is 48.479 ± 55.302 (median=28.506) versus that of Win-Loc approach (64.545 ± 65.037 

minutes (median=41.583)). Therefore, the Win-Loc-Act approach provides better temporal 

precision.

8 LIMITATIONS AND FUTURE WORKS

In this work, we introduce and define the ‘Opportunity’ context for impulsive adverse 

behaviors. Next, to demonstrate its utility, we develop a framework for detecting 

the smoking ‘opportunity’ context. We design methods to characterize the smoking 

‘opportunity’ context using smoking allowance (as the absence of inhibitor) and cigarette 

availability (as the presence of inducer). Then, using discriminative features from sensor 

data, we develop a model to detect binary measures of ‘high’ or ‘low’ smoking ‘opportunity’ 

context.

Since this work is a first step towards detecting the smoking ‘opportunity’ context, it has 

several limitations that present opportunities for future research in both the UbiComp and 

health research communities. First, we define the concept of an ‘opportunity’ context for 

impulsive behaviors and provide several examples. But, we only present its application to 

the case of smoking cessation. Our framework may motivate ‘opportunity’ context model 

development for other impulsive behaviors such as impulsive eating and binge drinking.

Second, our SmokingOpp model achieves only a moderate F1 score of 74.3%. This 

can partly be attributed to a lack of a direct measure of the transition of the smoking 

‘opportunity’ context from ‘low’ to ‘high’ and ‘high’ to ‘low.’ We use place transitions and 

then activity episodes to capture potential indoor to outdoor transitions at the same place. 

These are proxy measures, neither of which directly identify all candidate transitions of the 

smoking ‘opportunity’ context. More direct measures, e.g., from wearable eyeglasses that 

can potentially detect cigarette purchases or cigarette borrowing, can potentially improve 

the accuracy of detecting the smoking ‘opportunity’ context. They raise exciting research 

opportunities in first-person computer vision modeling.

Third, this is an offline model, computed purely from observational data. To become widely 

useful in the society, the clinical utility of the SmokingOpp model in the management 

of at-risk situations of impulsive behaviors should be established by developing and 

evaluating sensor-triggered just-in-time mobile intervention via randomized clinical trials 

that can be triggered based on the detection of the smoking ‘opportunity’ context. For the 

intervention to be most effective, it should be triggered as soon as there is a change in 

the smoking ‘opportunity’ context from ‘low’ to ‘high.’ Doing so requires the detection 
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of an ‘opportunity’ context as soon as there is a transition of context. This requires the 

development of an online version of the SmokingOpp model.

Fourth, the SmokingOpp model can be improved over time in a real-life deployment by 

using active learning that can personalize the model to each individual’s data over time.

Fifth, in this work, we detect the smoking ‘opportunity’ context for cigarette smoking. 

Recently, there has been a rapid growth in the usage of e-cigarettes [33], and some 

researchers have reported the harmful effects of e-cigarette [46]. We note that the contexts 

or situations in which e-cigarettes are usually used may be different from that of smoking 

cigarettes. This may require an adaption to the Smokingopp model to detect the e-cigarette 

smoking ‘opportunity’ context.

9 CONCLUSIONS

Our work introduced a novel concept of ‘opportunity’ context for impulsive adverse 

behaviors. We characterize these spatio-behavioro-temporal contexts which are conducive 

to impulsive adverse behaviors (e.g., smoking lapse, overeating/binge drinking, etc.) using 

inhibitors, absence of which, and inducers, presence of which, create an at-risk situation 

for impulsive adverse behaviors. It adds a new dimension to the fundamental notion of 

context and provides a new direction for context-aware applications. Impulsive adverse 

behaviors can have a significant negative health impact on individuals and their friends 

and families. Reliable detection of ‘opportunity’ contexts passively using sensors can create 

novel opportunities to intervene before such adverse events occur.

As this work has shown, the behavioral component in the ‘opportunity’ context makes its 

reliable detection challenging. But, our framework for successfully detecting the smoking 

‘opportunity’ context changes the question from ‘whether’ to ‘how well’ can these contexts 

be detected. Consequently, this work opens up exciting research opportunities with a 

potential for high societal impact.
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CCS Concepts:

• Human-centered computing → Ubiquitous and mobile computing design and 

evaluation methods;
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Fig. 1. 
Data processing pipeline for training and evaluating the SmokingOpp model. The dotted 

boundaries around the chestband and respiration data denote that using respiration can 

improve the accuracy of smoking detection, but is optional.
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Fig. 2. 
Partial Auto-correlation Function plot for the number of cigarettes smoked, suggestive of 

three lags for modeling.
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Fig. 3. 
GMM based clustering produces a lower bound of 6.565 minutes (of dwell time) for 

determining a dwell place.
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Fig. 4. 
Significant places, where the probability of smoking allowance and occurrence are both 0.4 

or higher are designated as Personal Smoking Spots (marked in red).
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Fig. 5. 

POI-transient-places of type i (either TPp
i  or TPp

i ), where the probability of smoking 

allowance and occurrence are 0.4 and 0.3 or higher, respectively, are designated as General 

Smoking Spots (marked in red).
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Fig. 6. 
Distributions of variance, skewness, and kurtosis of GPS accuracy can distinguish ‘outdoors’ 

vs. ‘indoors.’
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Fig. 7. 
The Smoking ‘opportunity’ context varies significantly across time when people are not at 

‘home.’
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Fig. 8. 
Defining Smoking ‘opportunity’ context windows based on change in location.
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Fig. 9. 
Defining Smoking ‘opportunity’ context window based on both change in location and 

activity state.
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Fig. 10. 
Model performance for both choices of windowing when using the Easily-Allowed label.
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Fig. 11. 
Model performance for both choices of windowing when using the Easily-Fairly-Allowed 
label.
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Table 1.

Examples of Lack of Inhibitors and Presence of Inducers for different impulsive behaviors

Impulsive Behavior Absence of Inhibitors Presence of Inducers

Fights (e.g., road rage) Absence of Law enforcement or calming 
influencers

Access to Weapons, physical strength, supporting 
personnel

Impulsive Buying (online or 
offline) Having credit/money on hand Promotional incentives on products

Smoking Lapse Smoking Allowance Availability of cigarettes

Suicide Attempts Being alone or away from family/friends Availability of means to commit suicide

Overeating, binge-drinking Not having to pay per use Competitors or companions doing the same thing

Gambling Having credit/funds Winning or losing streaks
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Table 2.

For Easily-Fairly-Allowed, during the post-quit phase, the median time since (in hr) the last POS visit 

associated with lower cigarette availability is significantly greater (p_value = 0.019) than that associated with 

high cigarette availability.

Design 
Choice

Study Session
(# of Low_CA, # of 

High_CA)

median
(TSPV_Low_CA)

median
(TSPV_High_CA)

mean ± sd
(TSPV_Low_CA)

mean ± sd
(TSPV_High_CA) p_value

Easily-
Allowed Pre-quit (229, 328) 6.296 8.772 18.844 ± 23.211 20.456 ± 22.608 0.09

Easily-
Allowed Post-quit (576, 475) 54.501 44.456 76.526 ± 78.411 71.859 ± 84.908 0.084

Easily-Fairly-
Allowed Pre-quit (152, 405) 7.56 7.88 19.436 ± 22.183 19.924 ± 23.314 0.372

Easily-Fairly-
Allowed Post-quit (444, 607) 57.288 44.478 78.845 ± 78.623 67.726 ± 72.964 0.019
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Table 3.

Shows the performance of the Logistic Regression model for various choices of windowing and labeling 

approaches.

# of Windows Logistic Regression

Windowing Labeling Labeled as ‘High’ Labeled as ‘Low’ F1 Precision Recall

Win-Loc Easily-Allowed 290 376 51.67 55.34 51.79

Win-Loc-Act Easily-Allowed 658 705 63.07 62.26 65.19

Win-Loc Easily-Fairly-Allowed 373 293 67.98 63.95 74.31

Win-Loc-Act Easily-Fairly-Allowed 808 555 74.3 70.27 79.82
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