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Abstract.— Six-state amino acid recoding strategies are commonly applied to combat the effects of compositional
heterogeneity and substitution saturation in phylogenetic analyses. While these methods have been endorsed from
a theoretical perspective, their performance has never been extensively tested. Here, we test the effectiveness of six-
state recoding approaches by comparing the performance of analyses on recoded and non-recoded data sets that have
been simulated under gradients of compositional heterogeneity or saturation. In our simulation analyses, non-recoding
approaches consistently outperform six-state recoding approaches. Our results suggest that six-state recoding strategies are
not effective in the face of high saturation. Furthermore, while recoding strategies do buffer the effects of compositional
heterogeneity, the loss of information that accompanies six-state recoding outweighs its benefits. In addition, we evaluate
recoding schemes with 9, 12, 15, and 18 states and show that these consistently outperform six-state recoding. Our analyses of
other recoding schemes suggest that under conditions of very high compositional heterogeneity, it may be advantageous to
apply recoding using more than six states, but we caution that applying any recoding should include sufficient justification.
Our results have important implications for the more than 90 published papers that have incorporated six-state recoding,
many of which have significant bearing on relationships across the tree of life. [Compositional heterogeneity; Dayhoff 6-state
recoding; S&R 6-state recoding; six-state amino acid recoding; substitution saturation.]

Compositional heterogeneity and substitution
saturation are major challenges to phylogenetic
inference. Compositional heterogeneity stems from
the tendency of genes or organisms to have unequal
proportions of amino acids (Collins et al. 1994;
Foster and Hickey 1999). These unequal amino acid
frequencies are caused by mutational and selective
pressures acting at the nucleotide level (Singer and
Hickey 2000; Knight et al. 2001), as well as differences
in translational efficiency (Akashi and Eyre-Walker
1998). The combination of evolutionary and biological
processes results in different amino acid compositions
across taxa on the tree. Consequently, challenges to
phylogenetic analyses arise when distantly related
taxa share sequence similarities due to homoplasy
(convergence), rather than descent from a common
ancestor (Foster and Hickey 1999; Tarrío et al. 2001).

Similarly, phylogenetic reconstruction artifacts
emerge under substitution saturation of amino acids.
Substitution saturation occurs when there have been
multiple amino acid substitutions at the same site
washing out the evolutionary signal (Ho and Jermiin
2004). Like compositional heterogeneity, sequence
saturation can lead to long branch attraction, driving
unrelated taxa to group together in a clade due to
homoplasy (Felsenstein 1978; Lawrence et al. 2019).

There is a large body of research on the conditions for
state aggregation (or lumpability) in modeling character
data such as DNA or amino acids (Kemeny and Snell
1976; Courtois 1977). Based on this foundation, matrix
recoding has been proposed as a solution for both
compositional heterogeneity and substitution saturation
(Blanquart and Lartillot 2006; Susko and Roger 2007).

Under matrix recoding methods, nucleotides or amino
acids are lumped into groups based on function
(Blanquart and Lartillot 2006). For example, under the
RY nucleotide recoding strategy, purines (i.e., A and
G) are coded with the character R and pyrimidines
(i.e., T and C) are coded with the character Y (Woese
et al. 1991; Phillips et al. 2001). In this recoding
scenario, only transversion events are meaningful in a
phylogenetic analysis. A similar recoding strategy has
been implemented for amino acids, the most well-known
being Dayhoff 6-state recoding. In Dayhoff 6-state
recoding, chemically related amino acids that frequently
replace each other are pooled together into six groups
based on similar substitution scores in the Dayhoff (or
PAM250) matrix (Dayhoff et al. 1978): AGPST, DENQ,
HKR, ILMV, FWY, and C (Embley et al. 2003a; Hrdy
et al. 2004). Thus, only amino acid changes between
categories, and not within categories, are considered
substitutions. Since the introduction of Dayhoff 6-state
recoding, several other six-state amino acid recoding
strategies based around other scoring matrices have been
developed. For example, S&R 6-state recoding (Susko
and Roger 2007; Feuda et al. 2017) is based on the JTT
matrix (Jones et al. 1992) and KGB 6-state recoding
(Kosiol et al. 2004; Feuda et al. 2017) is based on the WAG
matrix (Williams et al. 2011).

Authors have increasingly been applying six-state
recoding to phylogenetic analyses. To date, there are at
least 91 phylogenetic studies that have implemented six-
state amino acid recoding strategies, with the highest
number of studies published in 2019 (Table 1). Several
of these studies have proposed controversial topologies
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based on results from recoded matrices with deep
implications across the tree of life (e.g., Rodríguez-
Ezpeleta and Embley 2012; Feuda et al. 2017; Laumer et al.
2018; Puttick et al. 2018; Marlétaz et al. 2019). For example,
the relationships of non-bilaterian animals have a
major influence on how we understand the origin and

evolution of key animal innovations (e.g., true epithelia,
the gut, neural and muscle cell types), and recent
papers using six-state recoding have major implications
on how these relationships are viewed (Feuda et al.
2017; Laumer et al. 2018). While amino acid recoding
has been considered from a theoretical perspective

TABLE 1. Publications that use six-state amino acid recoding

Citation Recoding in main figure Organismal scope or featured taxon

(Benavides et al., 2021) Yes Gonyleptoidea
(Luo et al., 2014) Yes Bivalves
(Neumann et al., 2020) Yes Metazoa
(Pandey et al., 2020) Yes Metazoa
Tikhonenkov et al. (2020) Yes Tunicaraptor unikontum
(Weinheimer et al., 2020) Yes Caudovirales
(Yan et al., 2020) Yes Flesh flies
Cunha and Giribet (2019) Yes Gastropods
Laumer et al. (2019) Yes Animals
Lawrence et al. (2019) Yes* Plastids
Lemer et al. (2019) Yes Bivalves
Lozano-Fernandez et al. (2019) Yes Chelicerates
Marlétaz et al. (2019) Yes Spiralia
Philippe et al. (2019) Yes Bilateria
Ballesteros et al. (2019) No Palpigradi
Benavides et al. (2019) No Pseudoscorpiones
Cheng et al. (2019) No Zygnematophyceae
Klinges et al. (2019) No Candidatus Aquarickettsia
Moore et al. (2019) No Plastids
Narayanan et al. (2019) No Calyptratae
Uribe et al. (2019) No Gastropods
Wolfe et al. (2019) No Decapod crustaceans
Zverkov et al. (2019) No Dicyemida and Orthonectida
Aouad et al. (2018) Yes Archaea
Laumer et al. (2018) Yes Placozoa
Otero-Bravo et al. (2018) Yes Pantoea
Puttick et al. (2018) Yes Land plants
Schwentner et al. (2018) Yes Pancrustacea
Sousa et al. (2018) Yes Land plants
Bennett and Mao (2018) No Fulgoroidea symbionts
Eitel et al. (2018) No Placozoa
Manzano-Marín et al. (2018) No Cinara strobi symbionts
Feuda et al. (2017) Yes Animals
Szabó et al. (2017) Yes Pseudococcidae symbionts
Williams et al. (2017) Yes Archaea
Schwentner et al. (2017) No Pancrustacea
Shin et al. (2017) No Curculionoidea
Simion et al. (2017) No Animals
Yoshida et al. (2017) No Tardigrades
Leliaert et al. (2016) Yes Viridiplantae
Zhang et al. (2016) Yes Roseobacter CHAB-I-5 lineage
He et al. (2016) No Rhizaria
Song et al. (2016) No Holometabola
Domman et al. (2015) Yes Plastids
Luo (2015) Yes SAR11
Petitjean et al. (2015) Yes Archaea
Borowiec et al. (2015) No Animals
Derelle et al. (2015) No Eukaryotes
Wang and Wu (2015) No Mitochondria
(Luo et al., 2014) Yes Roseobacter
Fu et al. (2014) No Discoba
Lemieux et al. (2014) No Trebouxiophyceae
Raymann et al. (2014) No Archaea
Luo et al. (2013) Yes Marine Alphaproteobacteria
Morgan et al. (2013) Yes Placental mammals
Rota-Stabelli et al. (2013) Yes Pancrustacea
Hill et al. (2013) No Demospongiae
Kayal et al. (2013) No Cnidaria
Lasek-Nesselquist and Gogarten (2013) No 3 domains (eukaryotes, archaea, bacteria)
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TABLE 1. (Continued)

Citation Recoding in main figure Organismal scope or featured taxon

Ometto et al. (2013) No Drosophila suzukii
Lasek-Nesselquist (2012) Yes Syndermata
Rodríguez-Ezpeleta and Embley (2012) Yes SAR11
Burki et al. (2012) No Plastids
Derelle and Lang (2012) No Eukaryotes
Heinz et al. (2012) No Trachipleistophora hominis
Nishimura et al. (2012) No Mitochondria
Brochier-Armanet et al. (2011) Yes Archaea
Williams et al. (2011) Yes Nucleocytoplasmic large DNA virus
Matsumoto et al. (2011) No Plastids
Phillips et al. (2001) No Xenacoelomorpha
Wodniok et al. (2011) No Streptophyte algae and land plants
Torruella et al. (2011) No Opisthokonta
Parfrey et al. (2010) No Eukaryotes
Pons et al. (2010) No Coleoptera
Deschamps and Moreira (2009) Yes Archaeplastida
Foster et al. (2009) Yes Eukaryotes
Masta et al. (2009) Yes Arachnida
Cox et al. (2008) Yes Eukaryotes
Haen et al. (2007) No Hexactinellida
Andersson et al. (2006) Yes Eukaryotes
Fitzpatrick et al. (2006a) Yes Mitochondria
Fitzpatrick et al. (2006b) Yes Fungi
O’Halloran et al. (2006) Yes Caenorhabditis elegans
Delsuc et al. (2006) No Chordates
Wang and Lavrov (2006) No Homoscleromorpha
Martin et al. (2005) Yes Land plants
Philip et al. (2005) No Eukaryotes
Hrdy et al. (2004) Yes Hydrogenosomes
Embley et al. (2003a) Yes Hydrogenosomes
Embley et al. (2003b) Yes Hydrogenosomes
Davidson et al. (2002) Yes Hydrogenosomes

Note: Asterisk indicates the publication included recoding approaches in a main figure to test if this strategy was appropriate.

(Davidson et al. 2002; Embley et al. 2003a; Hrdy
et al. 2004), and there have been comparisons between
different recoding strategies (Susko and Roger 2007),
there has not been extensive empirical testing of
the widely applied six-state recoding approaches.
Historically, simulation has been an effective strategy
for empirically testing the performance of phylogenetic
approaches (Kuhner and Felsenstein 1994; Swofford
et al. 2001; Zwickl et al. 2002; Kubatko and Degnan
2007; Huang and Knowles 2016). In this study,
we simulate data sets with a gradient of either
compositional heterogeneity or saturation and compare
the performance of maximum-likelihood analyses on
six-state recoded data sets to the same analyses on non-
recoded data sets. We also run a subset of these analyses
using 9-, 12-, 15-, and 18-state recoding schemes and
compare these results to those achieved with six-state
recoded and non-recoded matrices.

MATERIALS AND METHODS

Reproducibility and Transparency Statement

Custom scripts, command lines, and data
used in these analyses are available in GitHub

(https://github.com/josephryan/Hernandez_Ryan_
2021_Recoding), Dryad (https://doi.org/10.5061/
dryad.5mkkwh757) and Zenodo (https://zenodo.org/
record/4660589). To maximize transparency and
minimize confirmation bias, all analyses were pre-
planned using phylotocol (DeBiasse and Ryan 2019)
and pre-registered using the Center for Open Science’s
pre-registration platform (https://osf.io/smj6k/ and
https://osf.io/6ubgj/). Prior to the initial submission
of this manuscript, we made four changes to the original
plan outlined in our phylotocol. Details of changes
and all versions of our phylotocol are available in our
GitHub repository (see Section 5 “Amendment History”
in the phylotocol). Briefly, our changes included (1)
adding tests of compositional heterogeneity to our
original plan to test saturation, (2) incorporating P4
after realizing that Seq-Gen was not well suited for
testing compositional heterogeneity, (3) adding deep
splits evaluation criteria, and (4) adding statistical tests
and testing alternative Dayhoff strategies. The latest
version of our phylotocol includes all of these changes
along with the additional analyses we made in response
to reviews of our manuscript by three reviewers (prior
to running new analyses).

https://github.com/josephryan/Hernandez{protect LY1	extunderscore }Ryan{protect LY1	extunderscore }2021{protect LY1	extunderscore }Recoding
https://github.com/josephryan/Hernandez{protect LY1	extunderscore }Ryan{protect LY1	extunderscore }2021{protect LY1	extunderscore }Recoding
https://osf.io/smj6k/
https://osf.io/6ubgj/
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Overview of Empirical Data Sets Employed
The following methods can be divided into two main

analyses: compositional heterogeneity and saturation.
Both analyses employ empirical data from the following
papers: Chang et al. (2015) hereafter “Chang,” and Feuda
et al. (2017) hereafter “Feuda.” The topologies from
Chang and Feuda are based on the same data set which
is made up of 51,940 amino acid positions from 78 taxa
representing a wide range of animals and 9 non-animal
outgroups. Feuda extensively applied six-state amino
acid recoding to this data set in a reanalysis of the Chang
study, which did not use recoding.

For the compositional heterogeneity analysis, we use
several hypothetical 20-taxon symmetrical trees which
consist of four clades (named clade-A, clade-B, clade-C,
and clade-D) made up of five taxa each (Fig. 1a), and
apply global parameters estimated from the Chang data
set. For the saturation analysis, we use the topologies
reported in Chang and Feuda. More details on these
analyses are provided below.

Testing Six-State Recoding Performance on Compositional
Heterogeneity

We used the script comphet.pl (available in our
GitHub repository) to simulate amino acid data in P4
(Foster 2004) on four hypothetical 20-taxon balanced
trees (Fig. 1a). We chose P4 because it specializes in
simulating data in which amino acid (or nucleotide)
composition varies across the tree. Using the amino
acid rates of substitution estimated from the Chang
data set, we simulated sequences that were 1000 amino
acids in length under the GTR model. To introduce
compositional heterogeneity, we used a balanced tree
and generated one set of amino acid frequencies for
clade-A and clade-C and a different set of frequencies for
clade-B and clade-D. We paired amino acids by starting
with the order of the 20 amino acids commonly used as
input to standard phylogenetic programs (i.e., A, R, N,
D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V), divided
them in half (i.e., [A-I] and [L-V]), and paired the two
groups (i.e., (A, L), (R, K), (N, M) (D, F), (F, P), (Q, S),
(E, T), (G, W), (H, Y), (I, V)). For clade-B and clade-D,
we used the amino acid frequencies estimated from the
Chang data set (Supplementary Table S1 available on
dryad at https://doi.org/10.5061/dryad.5mkkwh757).
For clade-A and clade-C, we added X to the amino acid
in each of the 10 frequency pairs that had the lowest
frequency in the Chang data set and subtracted X from
the other, where X is the inflation parameter (i.e., 0.1, 0.5,
0.9) multiplied by the lowest frequency of the pair.

For example, the Chang frequencies for the amino
acids R and K are 0.063 and 0.080, respectively. These
frequencies were used for clade-B and clade-D without
adjustment. To determine the increment value X under
the inflation parameter 0.1, we multiplied the frequency
of R, which is the lowest of the pair, by 0.1 (X =
0.0063). We then added X to the Chang frequency of
R (0.063+0.0063) and subtracted X from the Chang

frequency of K (0.080−0.0063). We rounded these values
to three decimal places (because P4 requires frequencies
to add up to 1 and the sum of non-rounded frequencies
was often slightly above or below 1) for a final set of
frequencies of R=0.069 and K =0.074. See pseudocode
in the Supplementary material available on dryad or the
CompHet.pm module in our GitHub repository for the
code used to implement this strategy. See Supplementary
materials available on dryad for comparisons of results
using 1000 random pairing strategies that show that
the paring strategy described in the previous paragraph
does not bias the results in favor of non-recoding.

We recoded each simulated data set with both
Dayhoff 6-state recoding and S&R 6-state recoding
(Supplementary Table S2 available on dryad), and
then reconstructed maximum-likelihood trees of these
recoded data sets using the GTR multi-state model and
of the non-recoded data sets using the Dayhoff and
JTT models in RAxML (Stamatakis 2014). We calculated
Robinson–Foulds distances (Robinson and Foulds 1981)
between each of the resultant 48,000 phylogenies and the
trees used for simulation using TOPD/FMTS (Puigbo
et al. 2007). We also scored trees based on deep
splits, a custom metric (see the is_mono.pl script in
the GitHub repository) that evaluates the monophyly
of the clade that includes clade-A and clade-B (this
evaluation, by definition, also includes the monophyly
of the clade that includes clade-C and clade-D). The
rationale for this metric rather than Robinson–Foulds
distances is that it focused on errors that were most
likely due to convergent amino acid compositions (i.e.,
the pulling together of compositionally homogeneous
but unrelated clades or tips). We evaluated deep split
accuracy for each combination of model, recoding
type (including no recoding), and level of applied
compositional heterogeneity (i.e., inflation parameter).
We performed chi-squared tests to compare the number
of incorrect trees between non-recoding and recoding
approaches. To correct for multiple chi-squared testing,
we applied the Bonferroni correction at which �=0.002.

Testing Six-State Recoding Performance on Saturation
We used Seq-Gen (Rambaut and Grass 1997) to

simulate the evolution of amino acids on the Chang
and Feuda trees (incorporating both topology and
branch-length estimates). We chose Seq-Gen because
it has a branch length scaling factor parameter
that allows for straight-forward introduction of
saturation into simulations. We confirmed that
increasing the branch length scaling factor parameter
in Seq-Gen linearly increased levels of saturation
(Supplementary Fig. S1 available on dryad) using
the script seq-gen_saturation_test.pl (available in the
accompanying GitHub repository). Next, we performed
1000 simulations per combination of tree (Chang and
Feuda), branch length scaling factor parameter (1–20),
and model of amino acid substitution (either Dayhoff
or JTT) for a total of 80,000 data sets. We simulated an

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab027#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab027#supplementary-data
https://doi.org/10.5061/dryad.5mkkwh757
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab027#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab027#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab027#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab027#supplementary-data
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FIGURE 1. Six-state recoding approaches produce more incorrect trees under various levels of compositional heterogeneity. a) Trees used
for simulations. The value in the name of the tree (e.g., 0.008 in Tree 0.008) denotes the length in substitutions per site of the stem branches of
clade-A and clade-B, and stem branches of clade-C and clade-D (highlighted in orange and with arrows). b) Percentage of 1000 trees that did not
reconstruct a monophyletic group of taxa from clade-A and clade-B and monophyletic group of taxa from clade-C and clade-D.
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additional 1000 data sets on the Chang topology for a
subset of branch length scaling factor parameters (1,
5, 10, 15, 20) under the GTR model using the amino
acid rates of substitution, amino acid frequencies
(up to three decimal places as in our P4 analysis),
and gamma rate heterogeneity estimated from the
Chang data set with maximum-likelihood (see shell
script run_seqgen_estimated_model.sh in our GitHub
repository for detailed parameters), bringing the grand
total to 85,000 data sets. Each data set included 1000
amino acid columns.

For simulations performed on the Chang tree, we
increased the branch length scaling factor parameter
from 1 to 20 in increments of 1. The Feuda tree was
produced from recoding the Chang data set (Feuda
et al. 2017), and because trees produced from recoded
data have substantially fewer substitutions and therefore
shorter branch lengths, we multiplied each branch
length on the Feuda tree by 2.6 (based on our calculation
that the sum of branch lengths in the recoded tree was
2.6 times shorter than the sum of branch lengths in the
non-recoded Chang tree).

We performed maximum-likelihood analyses with
RAxML for each set of sequences produced from
simulations over the Chang and Feuda topologies.
For the data sets simulated with Dayhoff and JTT
substitution models, we reconstructed trees using the
generating model, the six-state recoding scheme derived
from that model, and for a subset of branch length
scaling factor parameters (1, 5, 10, 15, 20) we also
reconstructed trees using LG, a sub-optimal model in
this context, as it was not the model used for the
simulations. For the data sets simulated with the GTR
substitution model, we generated trees using Dayhoff
and Dayhoff 6-state recoding. We produced 180,000
phylogenies in total to test saturation. To test the
performance of each recoding (or non-recoding) scheme,
we calculated Robinson–Foulds distances between the
topology used for simulation (i.e., Chang or Feuda)
and the reconstructed trees generated from simulated
sequences using TOPD/FMTS. We used a t-test to
determine if there were significant differences in
Robinson–Foulds distances between recoded and non-
recoded data sets for each branch length scaling factor.
To correct for multiple t-tests, we applied the Bonferroni
correction at which �=0.0009.

Testing Alternative Recoding Strategies on Compositional
Heterogeneity

To test the effect of the number of states on recoding,
we developed alternative Dayhoff 9-, 12-, 15-, and 18-state
recoding strategies. The first step in these analyses was
to determine the optimal amino acid binning strategy
for each number of tested states. Since the number of
possible bins for each state is finite, ideally, we would
use an exhaustive algorithm to identify the binning
scheme that maximizes the sum of intra-bin substitution
scores originating from the log odds matrix for PAM 250

TABLE 2. Best scoring binning schemes optimized on the Dayhoff
matrix
Dayhoff
recoding Binning scheme

9-state DEHNQ ILMV FY AST KR G P C W
12-state DEQ MLIV FY KHR G A P S T N W C
15-state DEQ ML IV FY G A P S T N K H R W C
18-state ML FY I V G A P S T D E Q N H K R W C

(Dayhoff et al. 1978). Unfortunately, as pointed out by
Susko and Roger (2007), the number of possible bins
is very large (e.g., there are roughly 1.5×1013 choices
of bins under an eight-state recoding strategy) and
an exhaustive algorithm is computationally intractable.
Instead, we calculated the sum of intra-bin scores using
the PAM 250 log odds matrix (see score.pl in our
GitHub repository) for several binning schemes that
incorporated subsets of the Dayhoff 6-state recoding bins
and chose the best-scoring binning strategies from this
set (Supplementary Table S3 available on dryad). We also
compared our best binning strategies to those proposed
in Susko and Roger (2007) using the PAM 250 log odds
matrix to calculate intra-bin substitution scores, and in
all cases, the scores we generated were higher, except for
one which had an equal score (not entirely surprising
given that the Susko and Roger bins were optimized for
JTT recoding).

We compared the binning schemes that scored the
highest for each recoding strategy (Table 2) against
the Dayhoff and Dayhoff 6-state recoded matrices by
testing their performance under reasonably high levels
of compositional heterogeneity. We recoded the data
that we simulated for the compositional heterogeneity
analysis [data simulated with inflation parameter 0.5
using the hypothetical tree 0.002 (Fig. 1a)] using our
Dayhoff 9-, 12-, 15-, and 18-state recoding strategies and
reconstructed maximum-likelihood trees in RAxML.
As in the main compositional heterogeneity analysis
outlined above, we calculated deep splits scores (using
the script is_mono.pl), to test the monophyly of the clade
that included clade-A and clade-B and the clade that
included clade-C and clade-D. We also performed a chi-
squared test to compare the number of incorrect trees
produced under Dayhoff-18 recoding (see Results for
rationale) to those produced under non-recoding. To
correct for multiple chi-squared testing, we applied the
Bonferroni correction at which �=0.017.

RESULTS

The Efficacy of Six-State Recoding Under a Compositional
Heterogeneity Gradient

We simulated data with various levels of
compositional heterogeneity by setting the amino
acid frequencies of two non-sister five-taxon clades
(e.g., clade-A and clade-C in Fig. 1a) to be highly
divergent to the amino acid frequencies of the other

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab027#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab027#supplementary-data


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[10:50 24/9/2021 Sysbio-OP-SYSB210026.tex] Page: 1206 1200–1212

1206 SYSTEMATIC BIOLOGY VOL. 70

two non-sister major clades (e.g., clade-B and clade-D
in Fig. 1a) on a balanced 20-taxon tree. We adjusted
the level of compositional heterogeneity by increasing
the frequency differences of each amino acid between
the two sets of frequencies by a factor that we call
the inflation parameter. We adjusted the impact of
introduced compositional heterogeneity by varying the
length of the stem branches leading to those four clades
(Fig. 1a). We tested the impact of sequence length by
generating alignments of length 1000, 2000, 3000, 4000,
and 5000 amino acids (see Supplementary material
available on dryad for methods). For each simulated
data set, we generated maximum-likelihood trees using
recoding and non-recoding approaches. We scored
these trees based on Robinson–Foulds distances from
the true tree, as well as on whether a tree recovered
the two major 10-taxon clades (i.e., a clade containing
all clade-A and clade-B taxa and a clade containing all
clade-C and clade-D taxa).

For each tree, we simulated 10,000,000 data sets
with no introduced compositional heterogeneity (i.e.,
inflation parameter set to 0) to generate a null
distribution of comp-het indices, to which we compared
the compositionally heterogeneous data sets. We
reconstructed trees on data simulated over hypothetical
tree 0.002 for the first 1000 out of these 10,000,000 data
sets. In our phylogenetic analyses of these 1000 data sets
lacking compositional heterogeneity, recoded data sets
performed consistently worse than non-recoded data
sets (Supplementary Fig. S2 available on dryad).

Analyses of non-recoded data sets consistently
produced trees that were more accurate than those
produced on recoded data sets using both our deep
splits metric and Robinson–Foulds distances. Despite
changes to the stem branch length on the tree
and level of compositional heterogeneity implemented
by the inflation parameter, non-recoding methods
produced more accurate trees (Fig. 1b; Supplementary
Fig. S3 available on dryad). While the performance
of the recoding approaches diminished at a slower
rate than non-recoding approaches (Fig. 1b) under
increasing compositional heterogeneity, non-recoding
performed significantly better than recoding in all
cases tested, except under the highest level of
compositional heterogeneity and shortest stem branch
(Supplementary Tables S4 and S5 available on dryad).
We explored how data size impacted the performance of
recoding methods in combination with compositional
heterogeneity (details of these analyses are described
in Supplementary material available on dryad). As
sequence length increased, phylogenetic analyses of non-
recoded data sets outperformed analyses of recoded data
sets, except under the highest level of compositional
heterogeneity (Supplementary Fig. S4 available on
dryad; i.e., inflation parameter =0.9). Additionally, we
explored the effect of tree shape and compositional
heterogeneity on recoding methods (analyses described
in Supplementary material available on dryad). These
results were consistent in that non-recoding methods

outperformed recoding under all levels of compositional
heterogeneity tested (Supplementary Fig. S6 available on
dryad).

To gauge how our simulated data compared to
real data in terms of the levels of compositional
heterogeneity, we scored real and simulated data sets
using the average relative compositional frequency
variability (RCFV) score (Kück and Struck 2014). Higher
RCFV scores indicate greater variability in amino acid
composition across a data set. We found that the level
of compositional heterogeneity (as measured by RCFV)
in data sets simulated with the inflation parameter set
to 0.9 was substantially higher than the majority of
real data sets. The median RCFV score was 0.088 for
all data sets simulated under the inflation parameter
of 0.9, while the median RCFV score for data from
papers in Table 1 was 0.036 (Supplementary Fig. S5
available on dryad). We reason that our simulated
data sets therefore are substantially compositionally
heterogeneous since these published data sets, many of
which used compositional heterogeneity as justification
for the application of recoding, are likely enriched for
compositional heterogeneity.

The Efficacy of Six-State Recoding Under a Saturation
Gradient

We simulated data sets on the Chang and Feuda
trees under the Dayhoff and JTT models with increasing
levels of saturation. Under all tested levels of saturation,
phylogenetic reconstructions using the Dayhoff and
LG models on non-recoded data matrices that were
simulated under the Dayhoff model produced trees with
fewer errors on average (as measured by Robinson-
Foulds distances from the true tree) than those that used
the Dayhoff 6-state recoded matrix (Fig. 2a). The results
were similar for data simulated under the JTT model,
where trees reconstructed with the JTT and LG models
on non-recoded data matrices contained fewer errors on
average across all tested levels of saturation compared
to reconstructions with the S&R 6-state recoded matrix
(Fig. 2b). The results were consistent regardless of
which tree (i.e., Chang or Feuda) was used for data
simulations (Supplementary Fig. S7 available on dryad).
As saturation increased, the performance of recoding
approaches decreased at a faster rate than non-recoding
approaches (Supplementary Fig. S7 available on dryad).
T-tests performed for each branch length scaling factor
parameter showed that Robinson–Foulds distances were
significantly higher for recoded data sets compared to
non-recoded data sets (P-value < 2.2e-16).

We also simulated data under the GTR model
using the amino acid rates of substitution, amino acid
frequencies, and gamma rate heterogeneity parameters
estimated from the Chang data set. Phylogenetic
analyses of data simulated under GTR resulted in
fewer errors on average when reconstructed with non-
recoded Dayhoff matrices compared to reconstructions
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FIGURE 2. Six-state recoding approaches produce more errors under increasing levels of saturation. Robinson–Foulds distances were calculated
for 1000 runs for each branch length scaling factor parameter. All data were simulated on the Chang tree. a) Data sets simulated under the Dayhoff
model. b) Data sets simulated under the JTT model. c) Data sets simulated under the GTR model using the amino acid rates of substitution,
amino acid frequencies, and gamma rate heterogeneity estimated from the Chang data set.

with the Dayhoff 6-state recoded matrices (Fig. 2c). T-
tests carried out for each branch length scaling factor
parameter indicated that recoded approaches performed
significantly worse than non-recoded approaches (P-
value < 2.2e−16).

Furthermore, we tested the combined effects of
sequence length and saturation on the performance
of recoding strategies (see Supplementary material
available on dryad for methods). Increases in sequence
length minimized the impact of saturation and reduced
errors in phylogenetic reconstruction for both recoding
and non-recoding methods. However, non-recoding
methods performed significantly better on all sequence
lengths and levels of saturation, except for on the largest
simulated data set with the lowest level of saturation
where results from recoded and non-recoded analyses
were equivocal (Supplementary Fig. S8 and Table S6
available on dryad).

The Effect of Alternative Recoding Strategies on
Compositional Heterogeneity

We used the data simulated under inflation parameter
0.5 (mid-level of compositional heterogeneity) using the
hypothetical tree 0.002 (short stem branches; Fig. 1a)
from the main compositional heterogeneity analysis to
test Dayhoff 9-, 12-, 15-, and 18-state recoding strategies
and compared the performance of these methods to
Dayhoff 6-state recoding and non-recoding. As in the
main compositional heterogeneity analysis outlined
above, trees were assessed by deep splits to determine if
they recovered the two compositionally heterogeneous
10-taxon clades (i.e., a monophyletic group of clade-
A and clade-B, and a monophyletic group of clade-
C and clade-D). The percentage of trees that passed
these criteria increased as the number of Dayhoff states
increased with Dayhoff 18-state recoding outperforming
all other strategies including the non-recoding approach
(Fig. 3). Non-recoding outperformed all other recoding
strategies except Dayhoff 12- and 15-state recoding

under the highest level of compositional heterogeneity
(inflation parameter 0.9; Fig. 3c). We performed a chi-
squared test to determine if the differences in numbers
of incorrect trees between analyses run with Dayhoff
18-state recoding and those run without recoding were
significant. The difference was significant only under the
highest level of compositional heterogeneity (P-values
for inflation parameters 0.1, 0.5, and 0.9: 0.4314, 0.2183,
and 6.622e-06, respectively).

DISCUSSION

The philosophy underlying recoding strategies in
phylogenetics is that sacrificing some information is
beneficial in cases where homoplasy is high, as is
the case when there is substantial heterogeneity in
nucleotide or amino acid composition or when data sets
are highly saturated. Six-state amino acid recoding has
been proposed as a strategy to improve phylogenetic
reconstruction in the presence of compositional
heterogeneity and saturation (Embley et al. 2003a;
Hrdy et al. 2004; Martin et al. 2005). While there
have been simulation analyses that compare different
binning schemes (Susko and Roger 2007; Nesnidal
et al. 2010), there are few if any studies that compare
the accuracy of six-state recoding to non-recoding
approaches. In this study, we used simulations under
gradients of compositional heterogeneity and saturation
to compare the performance of six-state amino acid
recoding strategies. Remarkably, we found that non-
recoding approaches outperformed six-state recoding
approaches in all of our comparisons. Our results show
that while six-state recoding seems to be less affected
by increases in compositional heterogeneity, it does not
overcome the penalty of information loss even under the
highest levels of compositional heterogeneity (Fig. 1b).
Furthermore, we found that six-state recoding performs
poorly when applied to highly saturated data sets. As
such, we conclude that the costs of information loss

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab027#supplementary-data
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FIGURE 3. Dayhoff 9-, 12-, 15- and 18-state recoding produce fewer incorrect trees than Dayhoff 6-state recoding under various levels
of compositional heterogeneity. Trees were reconstructed by applying the non-recoded (NR) Dayhoff matrix or alternative Dayhoff recoding
strategies (the number of states in the recoding strategy is indicated by digits). Incorrect trees did not include a monophyletic group of taxa from
clade-A and clade-B and monophyletic group of taxa from clade-C and clade-D. The Y-axis refers to percentage out of 1000 trees.

associated with the six-state recoding schemes are too
great to justify applying these strategies.

We confirm that Dayhoff 6-state recoding is
inappropriate for phylogenetic inference and our
analyses with S&R 6-state recoding show that limitations
extend beyond Dayhoff matrices, as six-states likely are
too few for reliable phylogenetic analysis. It is possible
that not all recoding strategies are inappropriate.
Specifically, we found that our Dayhoff 9-, 12-, 15-, and
18-state recoding strategies performed better than the
standard Dayhoff 6-state recoding approach for all tested
levels of compositional heterogeneity (Fig. 3). Dayhoff
18-state recoding performed the best under all gradients
of compositional heterogeneity and may comprise
the optimum balance of minimizing compositional
heterogeneity while maximizing information retention.
However, we do not advocate blindly applying
Dayhoff 18-state recoding, especially since significant
improvement only occurs under the most extreme

compositional heterogeneity setting (0.9), which
we show is uncommon in real data sets based on
RCFV scores (RCFV scores ≥0.1 occurred in 6 out
of 25 sampled publications; Supplementary Table S7
available on dryad). Nevertheless, conservative recoding
approaches under very high levels of compositional
heterogeneity may be justified provided that these
approaches are properly tested.

Applying a recoding method that is data set
specific may be another tactic to handle compositional
heterogeneity or saturation. Susko and Roger (2007) and
Nesnidal et al. (2010) applied this strategy by testing
several recoding binning schemes informed by their
data sets of interest. Tailoring the level and/or type of
recoding to the amount of compositional heterogeneity
and saturation, perhaps on a column-by-column basis,
may be a successful approach, but further testing using
such a tailored method would be necessary. Since only a
handful of studies have investigated different recoding
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https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab027#supplementary-data


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[10:50 24/9/2021 Sysbio-OP-SYSB210026.tex] Page: 1209 1200–1212

2021 HERNANDEZ AND RYAN—EVALUATING THE PERFORMANCE OF 6-STATE RECODING 1209

schemes, it is clear that more analyses are required
to gain an understanding of the impact of alternative
recoding methods for compositionally heterogeneous
and/or saturated data sets.

Implications
There are at least 91 publications that use six-state

amino acid recoding, with 2019 seeing more than
any year to date (Table 1). Many of these studies
have proposed controversial topologies with profound
implications across the tree of life including bacteria,
archaea, unicellular eukaryotes, fungi, animals, and
plants. We have shown that six-state recoding greatly
reduces information content and therefore often results
in suboptimal phylogenetic reconstructions. We suggest
that these data sets should be reevaluated using criteria
that assess the amount of compositional heterogeneity
within data sets, and/or reanalyzed using non-recoding
approaches unless extreme levels of compositional
heterogeneity are evident. When applying recoding,
it would be beneficial to determine the number of
states in a recoding strategy based on the level of
compositional heterogeneity using approaches that
we have applied in this study. Nevertheless, we
advocate caution when interpreting results stemming
from analyses that have employed six-state recoding
and contend that published analyses in which six-
state recoding approaches substantially influenced the
conclusions might need to be revisited.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
https://doi.org/10.5061/dryad.5mkkwh757.
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