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Abstract

We propose a deep-learning based annotation-efficient framework for vessel detection in ultra-

widefield (UWF) fundus photography (FP) that does not require de novo labeled UWF FP vessel

maps. Our approach utilizes concurrently captured UWF fluorescein angiography (FA) images, for

which effective deep learning approaches have recently become available, and iterates between a

multi-modal registration step and a weakly-supervised learning step. In the registration step, the

UWF FA vessel maps detected with a pre-trained deep neural network (DNN) are registered with

the UWF FP via parametric chamfer alignment. The warped vessel maps can be used as the

tentative training data but inevitably contain incorrect (noisy) labels due to the differences between

FA and FP modalities and the errors in the registration. In the learning step, a robust learning

method is proposed to train DNNs with noisy labels. The detected FP vessel maps are used for the

registration in the following iteration. The registration and the vessel detection benefit from each

other and are progressively improved. Once trained, the UWF FP vessel detection DNN from the

proposed approach allows FP vessel detection without requiring concurrently captured UWF FA

images. We validate the proposed framework on a new UWF FP dataset, PRIME-FP20, and on

existing narrow-field FP datasets. Experimental evaluation, using both pixel-wise metrics and the

CAL metrics designed to provide better agreement with human assessment, shows that the
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proposed approach provides accurate vessel detection, without requiring manually labeled UWF

FP training data.

Index Terms—

Retinal vessel detection; multi-modal registration; ultra-widefield fundus photography; noisy
labels

I. Introduction

Ophthalmologists recognize features of retinal vasculature as important biomarkers

associated with multiple diseases. For example, diabetic retinopathy and retinal vein

occlusion are characterized by increase in retinal vasculature tortuosity, vessel caliber

expansion, and retinal non-perfusion [1]. Therefore, detecting vessels is a fundamental

problem in retinal image analysis that has been extensively researched. Existing approaches

can be classified into two main categories, supervised and unsupervised, depending on

whether they do or do not use labeled training data [2]. Traditionally, the focus was on

unsupervised methods that addressed the problem from a variety of perspectives, incuding

hand-crafted match filtering [3], [4], morphological processing [5]–[7], multi-scale

approaches [8], [9], and matting-based techniques [9]. Recently, supervised learning

approaches, specifically deep neural networks (DNNs), have led to significant improvements

in retinal vessel segmentation. A variety of DNN architectures have been proposed for

retinal vessel segmentation, including per-pixel classifier [10], fully convolutional network

[11], [12], U-Net [13]–[16], graph neural network [17], context encoder network [18], and

generative adversarial networks [19]. Additionally, several works exploit novel loss

functions [20]–[22] and training strategies [23]. These DNN based methods have primarily

focused on narrow field (NF) fundus photography (FP), both because NF FP is the

predominant format and modality of capture in the clinical setting and because recent efforts

have created reasonable sized labeled ground truth datasets for DNN training [4], [24]–[29].

Due to the additional diagnostic information they can offer, vessel detection is also of

interest in formats and modalities other than NF FP [30]. Specifically, in this paper, we focus

on ultra-wide field (UWF) FP [31] leveraging concurrently captured UWF fluorescein

angiography (FA) images. Like NF FP, UWF FP is noninvasive and only involves capture of

the retinal images under low-power illumination; even pupil dilation is not required [31]. As

shown in Fig. 1(a), UWF FP images provide a wide 200° field-of-view (FOV) in a single

high-resolution image, as opposed to the much narrower 30°–50° FOV for NF FP. Manual

examination of the UWF images in diagnosis achieves reliable performance comparable to

direct clinical examination using an opthalmoscope with pupil dilation. At the same time,

UWF FP also reveals additional peripheral retinal vasculature structure that is of diagnostic

importance when compared to NF FP [32], [33]. UWF FA, which is shown in Fig. 1(b),

represents an alternative modality that also offers a wide FOV and additional diagnostic

utility, but has the limitation that it is more invasive, requiring intravenous injection of

fluorescein sodium dye.
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While DNNs trained on NF FP can be applied to UWF FP, the performance is relatively

poor in the peripheral region (as demonstrated in Section III-F). The development of DNNs

specifically for detecting vessels in UWF FP has been stymied by the paucity of labeled

ground truth data. Manually annotating the binary vessel maps for UWF FP is particularly

time-consuming and requires clinical-expertise. High-resolution UWF FP exhibits non-

uniform illumination and contrast between vessels and background, which makes it

challenging and time-intensive to accurately annotate both major and minor vessels across

the large FOV; estimates indicate that approximately 18 hours are required for de novo
manual annotation for one UWF FP image [34]. Prior work on UWF FP vessel detection

[34] therefore proposed the use of pixel-wise hand-crafted features with a shallow, two-

layer, multi-layer perceptron that were trained on a limited number of small labeled patches.

The approach, however, does not take full advantage of deep learning advances that employ

end-to-end training and also learn features in a data-driven fashion.

In this paper, we focus on innovative methodologies that train DNNs for UWF FP vessel

detection in an annotation-efficient fashion and eliminate the requirement of manually

labeled datasets for supervised learning. To this end, we make the following contributions:

• We present a novel iterative framework for vessel detection in UWF FP using

DNNs that does not require de novo labeled UWF FP vessel maps. Instead, we

rely on datasets that also include concurrently captured UWF FA images, for

which effective deep learning approaches for vessel detection have recently

become available allowing for accurate vessel detection. The proposed

framework then jointly addresses precise registration between the vessel images

for the modalities and vessel segmentation in UWF FP, where the two tasks

synergistically benefit each other as iterations progress despite the differences in

geometry and modality.

• We construct a new ground truth labeled dataset, PRIME-FP20, to evaluate

retinal vessel detection in UWF FP and to facilitate further work on this problem.

• The proposed framework provides a method for accurate vessel detection in

UWF FP imagery, a modality that has received limited attention in prior works.

The proposed approach significantly outperforms existing methods on the

PRIME-FP20 dataset and, on NF FP datasets, achieves performance comparable

with state-of-the-art methods designed specifically for NF FP.

We note that an alternative framework for joint vessel segmentation and registration on

paired NF FP and NF FA images has also been proposed in [35]. This approach formulates

vessel segmentation as a style transfer task (from retinal images to binary vessel maps) and

uses one vessel map from the existing dataset as the style target. As we discuss in Section IV

and demonstrate in the Supplementary Material, the proposed framework is more effective

and achieves better performance than the method in [35].

The rest of the paper is organized as follows. Section II describes the proposed iterative

registration and learning framework. In Section III, we perform the detailed analysis of the

proposed framework and present the experimental results of vessel detection. A discussion
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of prior work in [35] that addresses a similar problem and the broader utility of the proposed

framework is included in Section IV. Section V concludes the paper.

II. Iterative Registration and Learning approach

As already mentioned, instead of labeled data, training in the proposed approach is

accomplished by using a set of concurrently captured UWF FP and UWF FA images, which

we denote as Xc
i , Xa

i
i = 1
M

, where Xc
i , Xa

i  denotes a simultaneously captured UWF FP and

UWF FA image pair (in that order) and M is the number of image pairs. Importantly, we

note that while the image pairs for the two modalities are captured during the same clinical

visit, they are not aligned and have significant differences in geometry in addition to

fundamental differences in the information they contain arising from the differences in the

modalities. In the ensuing discussion, we illustrate and describe the processing for one pair

Xc
i , Xa

i , the ith pair, for situations where the same processing flow applies to all pairs.

For each UWF FA image Xa
i , a corresponding vessel map Ya

i  is obtained using a pre-trained

DNN for this modality (shown in green Fig. 2). Our implementation uses [36] though

alternative approaches could also be utilized for this purpose. The training of the desired

DNN for FP vessel detection is then accomplished as shown in Fig. 2 by iterating between

two steps comprising (a) multi-modal registration between the estimated UWF FA vessel

map and a current estimate for the UWF FP vessel map and (b) weakly-supervised learning

from noisy labels. Specifically, at iteration t, using parametric chamfer alignment, the

detected UWF FA vessel map Ya
i  is registered with the current estimate Yc

i, t of the UWF FP

vessel map. The UWF FA vessel map Ya
i  is warped using the estimated registration

transformation to obtain tentative/noisy training labels Ya c
i, t  for pixels in the corresponding

UWF FP image Xc
i . The collective set of such pairs of images for the concurrent UWF FP

and FA captured images form the (noisy-labeled) training data Xc
i , Ya c

i, t
i = 1
M

. The

fundamental differences between FA and FP imaging modalities and invariable errors in the

registration contribute to the noise in the labeling. In particular, FA imaging captures fine

vessels that are not visible in FP [31]. Consequently, the warped vessel maps Ya c
i, t  contain

a large amount of “false positive” labels that are actually background in Xc
i .

In the learning step, we propose a robust weakly-supervised learning approach to train DNN

that identifies and corrects the noisy labels in the generated dataset. The detected UWF FP

vessel map Yc
i, t + 1, estimated by the trained DNN, is used for the registration step in the (t

+ 1)th iteration.

The proposed framework iteratively addresses precise registration and vessel detection,

where two tasks synergistically benefit each other as iterations progress. Precise alignment is

important to obtain high-quality training labels. Even a small misalignment between the FA

and FP images can significantly deteriorate the training data quality by assigning incorrect
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labels to the image pixels. On the other hand, accurate UWF FP vessel detection, estimated

using the weakly-supervised learning approach, helps estimate the registration parameters

because chamfer alignment uses detected UWF FP vessel maps for anchoring. Using

concurrently captured UWF FP and FA images, the proposed framework accomplishes the

training of a DNN for FP vessel detection without requiring labeled UWF FP data. Note that

vessel detection in UWF FP images can be performed using the trained DNN without

requiring concurrently captured UWF FA images.

Next we provide details for the registration and learning steps that constitute the two major

steps in the proposed iterative framework.

A. Vessel Registration via Chamfer Alignment

Binary UWF FA vessel maps Ya
i  are transferred to the corresponding UWF FP images Xc

i  by

using a geometric transform that is estimated using the chamfer alignment technique from

[36]. To make the presentation self-contained, we include a brief overview here that conveys

the key intuition.

We denote the locations of estimated vessel pixels in the UWF FA vessel map Ya
i  by

𝒬a = q j
a

j = 1

Na
, where q j

a are the 2D coordinates of vessel pixel j and Na is the number of

vessel pixels in Ya
i . Similarly, the locations of the Nc vessel pixels in the estimated UWF FP

vessel map Yc
i, t at iteration t are represented as 𝒬c

t = qk
c

k = 1

Nc
. Chamfer alignment [37]

estimates a parametric geometric transformation 𝒯β to register the points in 𝒬a to those in

𝒬c
t  by minimizing the average squared Euclidean distance between the transformed locations

𝒯β q j
a  and the closest point in 𝒬c, where β denotes the vector of parameters for the

geometric transform. Specifically, define the objective function

L(β) = 1
Na

∑
j = 1

Na
D j qk

c, q j
a , (1)

with D j qk
c, q j

a = mink qk
c − 𝒯β q j

a 2
. Then the estimated registration transform is obtained

as 𝒯β * where β* minimizes L(β). We use a second order polynomial transformation for 𝒯β,

which is parameterized by a 12-dimensional parameter vector β and has been shown to be

suitable for retinal vessel registration in prior work [36], [38].

In practice, we use a refinement of the basic chamfer alignment approach outlined above that

uses a latent-variable based probablistic formulation along with the expectation

maximization (EM) algorithm [39] to provide robustness against outlier points that exist in

𝒬a but do not have correspondences in 𝒬c. The robustness against such outliers is

particularly crucial in this application setting because, as noted earlier, some fine vessels

appear only in 𝒬a because the FA modality detects these much better than FP. We refer
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readers to [36] for detailed derivations of the parameter estimation with the EM approach.

Here we only note that the key intuition can be understood from the fact that, in the EM

approach, the arithmetic average in (1) is replaced by a weighted average where the weight

for the squared error D j qk
c, q j

a  corresponding to the jth point in 𝒬a corresponds to the

estimated posterior probability that it is not an outlier (and has a corresponding point in 𝒬c).

When these posterior probabilities are accurately estimated, the errors for the outlier points

effectively drop out from the weighted average, as desired.

For the tth iteration, once the registration transform parameters have been estimated, by

applying the corresponding transformation 𝒯β * to the UWF FA vessel maps Ya
i  we obtain

the warped version Ya c
i, t  as the current estimate of the FA vessel map aligned with the FP

imagery, which serves as “noisy labels” for the learning step.

B. Weakly-Supervised Learning with Noisy Labels

While the multi-modal registration provides tentative dataset Xc
i , Ya c

i, t
i = 1
M

 to train a

DNN for detecting vessels in UWF FP, the labels in Ya c
i, t  inevitably contain noise

(incorrect labels) due to the fundamental differences in FA and FP modalities. In this sub-

section, we analyze the characteristic of the label noise and propose a weakly-supervised

learning method to train DNN against label noise.

FA imaging is able to capture the fine retinal vessels better than FP [31]. Consequently, the

warped FA vessel maps Ya c
i, t  contain a large number of vessel branches, especially fine

vessels, that are not visible in FP modality. Figures 3(a) and Figures 3(b) show a sample

UWF FP patch selected from the peripheral region and the corresponding warped UWF FA

vessel map, respectively. From these two figures, one can appreciate that the majority of fine

vessels are not captured in UWF FP image. In Fig. 3(c), we compare and visualize the

differences between the warped vessel map and ground truth labels that are manually

annotated from scratch by a human annotator. The red pixels in Fig. 3(c) depict a large

proportion of vessel labels in the warped UWF FA vessel map Ya c
i, t  that are actually

background in the UWF FP image. On the other hand, the FP vessel pixels that are not in the

warped UWF FA vessel map Ya c
i, t , shown in blue in Fig. 3(c), are a rather small fraction of

the FP vessel pixels. Thus, treated as an estimate of the FP vessel map, the warped FA vessel

map Ya c
i, t  has low precision but high recall. Therefore, the label noise in Ya c

i, t  is

asymmetric: the background labels are largely accurate and the vessel labels potentially have

errors.

We exploit the asymmetry of the label noise and propose a weakly-supervised learning

approach to train a DNN using Ya c
i, t  as noisy labels. Formally, we divide pixels in Ya c

i, t

into two sets, 𝒴v
i, t and 𝒴b

i, t, where pixels in 𝒴v
i, t are labeled as vessels (white pixels in Fig.

3(b)) and those in 𝒴b
i, t are labeled as background (black pixels in Fig. 3(b)). We further
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denote 𝒴v
t = 𝒴v

1, t ∪ 𝒴v
2, t ∪ ⋯𝒴v

M, t and 𝒴b
t = 𝒴b

1, t ∪ 𝒴b
2, t ∪ ⋯𝒴b

M, t. Our goal is to train a

DNN, modeled as a function f with learnable weights W, that outputs a probabilistic vessel

map Yc = f(Xc; W) in response to an input FP image Xc. In the tth iteration, weight

parameters Wt for the DNN are estimated by minimizing the binary cross-entropy loss, viz.,

ℒt = 1
𝒴v

t + 𝒴b
t ∑

v ∈ 𝒴v
t
lv
t + ∑

b ∈ 𝒴b
t

lb
t , (2)

where lv
t = − log yc, v

t  and lb
t = − log 1 − yc, b

t  are the binary cross-entropy loss computed

from the predicted vessel probability yc, v
t  and yc, b

t  in yv
t  and yb

t , respectively, and | · |

represents the cardinality. Our motivation is that while DNNs can be over-fitted on noisy

labels with sufficient training epochs, in the early training epochs [40], DNNs tend to first

learn on the correct labels. Thus the correct and the incorrect labels can be distinguished

based on the loss values [41].

In Fig. 4 (left), we plot the training loss values lv
t  computed after each training epoch for

both correct (green) and incorrect (red) labels in yv
t . At the early stage of the training, pixels

with incorrect labels have larger loss values than the correctly labeled pixels, allowing one to

identify the noisy labels from the loss values. In Fig. 4 (right), we show the loss distribution

after 20 training epochs for both correctly and incorrectly labeled pixels. We see that the

distribution is bimodal and can be modeled as a two-component mixture model.

To estimate the distribution of lv
t , we use the latent variable Zv

t ∈ 0, 1  to indicate if the pixel

v in yv
t  is mislabeled. Given that the label is correct Zv

t = 1 , the conditional probability of lv
t

is modeled as an exponential distribution λexp −λlv
t  with parameter λ. See the green

distribution in Fig. 4. And, given Zv
t = 0, the conditional probability of lv

t  is modeled as a

Gaussian distribution 𝒩(μ, σ) with mean μ and standard deviation σ. See the red distribution

in Fig. 4. The distribution of the mixture model for lv
t  takes the form of

p lv
t = πλe

−λlv
t

+ (1 − π) 1
2πσ

e
−

tv
t − μ

2

2σ2
,

(3)

where π = p Zv
t = 1  is the mixing weight that represents the prior probability of latent

variable Zv
t . We adopt the EM algorithm [39] to fit the proposed mixture model. EM

algorithm alternates between the E-step and the M-step. In the E-step, we compute the

posterior probability pv
t = p Zv

t = 1 ∣ lv
t , which can be obtained using Bayes’ rule:
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pv
t = πλe

−λlv
t

πλe
−λlv

t
+ (1 − π) 1

2πσ e
−

lv
t − μ

2

2σ2 .
(4)

In the M-step, we update the parameters of the mixture model. Using the estimated posterior

probability, we obtain

πt =
∑

v ∈ 𝒴v
t pv

t

𝒴v
t , μt =

∑
v ∈ 𝒴v

t 1 − pv
t lv

t

∑
v ∈ 𝒴v

t 1 − pv
t ,

λt =
∑

v ∈ 𝒴v
t pv

t

∑
v ∈ 𝒴v

t pv
t lv

t , σt =
∑

v ∈ 𝒴v
t 1 − pv

t lv
t − u 2

∑
v ∈ 𝒴v

t 1 − pv
t .

(5)

The process is repeated until parameters converge. The fitted mixture model provides a tool

for analyzing the label noise in the warped vessel maps. The prior probability p Zv
t = 1  is an

estimate of the amount of correct labels in 𝒴v. More importantly, the posterior probability

p Zv
t = 1 ∣ lv

t  indicates the probability of pixel being correctly labeled, which allows us to

update labels in yv
t . Specifically, the label in updated ground truth 𝒴u

i, t is computed as

yu, v
t =

pv
t ya c, v

t + 1 − pv
t yc, v

t , if v ∈ 𝒴v
i , 6a

0, if v ∈ 𝒴b
i . 6b

In (6a), the updated label for pixel in 𝒴v
t  is a linear combination of the label in the warped

vessel map ya c, v
t  and the predicted probability vessel map yc, v

t  where the coefficients are

determined by the posterior probability pv
t . Intuitively, if the posterior probability pv

t  is close

to 1, we trust the label ya c, v
t  in the warped vessel map because the corresponding pixel is

correctly labeled. Otherwise, we reduce the weights of label ya c, v
t  and rely more on the

network-predicted probability vessel maps yc, v
t . In (6b), we do not update background labels

in yb
t  because these labels are considered accurate.

The training process is divided into two stages. First, we train the DNN on the tentative

noisy dataset Xc
i , Ya c

i, t
i = 1
M

 for E0 epochs. Then we fit the proposed mixture model on

the loss values lv
t  and obtain the updated labels Yu

t . In the second stage, we continue to train
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the DNN on Xc
i , Yu

i, t
i = 1
M

 for another E1 epochs. The overall algorithm for the proposed

framework is summarized in Algorithm 1.

Note that both the vessel registration and the robust learning steps utilize the EM framework

to estimate the posterior probabilities of a pixel being outlier/mislabeled. However, the

objectives in these two steps are different and we can not use the posterior probabilities

estimated in one step for the other. In the registration step, the EM framework mitigates the

effects of outlier vessel points. The outliers are defined as the vessel points in Ya
i  that do not

have correspondences in the current estimated vessel map Yc
i, t. As we show in Section III-D,

some vessels are not properly detected in Yc
i, t in the first few iterations. As a result, the

outlier pixels in the registration step are not necessarily the same as the mislabeled pixels

that need to be identified in the training step.

III. Experiments

In this section, we first introduce a new dataset, PRIME-FP20, that is used for implementing

the proposed iterative framework and for evaluating the vessel detection performance. Next,

we summarize the evaluation metrics in Section III-B, and describe the implementation

details and alternative methods used as baselines in Section III-C. The experimental results

are structured as follows. We provide detailed analysis to demonstrate the effectiveness of

the proposed iterative framework and the weakly-supervised learning method in Section III-

D and Section III-D, respectively. We then compare the proposed framework with alternative

methods on the PRIME-FP20 dataset in Section III-F. Finally, we show the boarder utility of

the proposed framework for detecting vessels in NF FP in Section III-G.

A. PRIME-FP20 Dataset

We construct a new dataset, PRIME-FP20 [42], for evaluating the performance of vessel

detection in UWF FP. The PRIME-FP20 dataset consists of 15 pairs of concurrently

captured UWF FP and UWF FA images that are selected from baseline images of patients

enrolled in the PRIME study1. The images are captured using Optos California and 200Tx

cameras (Optos plc, Dunfermline, United Kingdom) [43]. The system uses a scanning

ophthamoscope with a low power laser to capture dual red and green channel UWF FP

images and a single channel FA image. All images have the same resolution of 4000 × 4000

pixels and are stored as 8-bit TIFF format with lossless LZW compression. The green

channel UWF FP image is used as the input Xc for our vessel detection because it captures

information for layers with the retinal vasculature, whereas the red channel captures

information from other layers (from the retinal pigment epithileum to the choroid) [43]. For

evaluation, ground truth vessel maps for the UWF FP modality are manually labeled by a

human annotator using the ImageJ software [44] with the segmentation editor plugins. The

available selection tools in ImageJ, such as brush tool and free-hand selection tool were used

to mark the vessel pixels in the UWF FP. The annotator repeatedly adjusted image

1The PRIME study (ClinicalTrials.gov Identifier: NCT03531294) evaluates the impact of intravitreal aflibercept in diabetic
retinopathy patients with a baseline diabetic retinopathy severity score level of 47A to 71A inclusive.
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brightness and contrast to precisely label both major and minor vessel branches in different

regions. For each UWF FP, we also provide a binary mask for the FOV of the image. To

obtain the mask, we simply binarize the green channel of the UWF FP because the pixels

intensities out of FOV are close to zero.

B. Evaluation Metrics

For quantitative evaluation, we report the area under the Precision-Recall curve (AUC PR)2,

the Dice coefficient (DC), and the CAL metric [45]. The computation of these metrics is

summarized in Section S.III of the Supplementary Material.

The AUC PR and the Dice coefficient, although widely used in prior literature, are based on

the pixel-wise comparison of the ground truth and the estimated vessel map. However, the

pixel-wise comparison does not consider the structure of retinal vasculature and is sensitive

to the label ambiguities, particularly for peripheral pixels that only partially belong to

2We do not choose the Receiver Operating Characteristic (ROC) curve as the evaluation metric because the ground truth label is
highly skewed. We provide additional discussion in Supplementary Material (Section S.III).
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vessels. The CAL metric [45] is designed to be less sensitive to label uncertainties and

provides better agreement with human assessment of higher level structure. CAL evaluates

the consistency between the binary ground truth and the binary predicted vessel map by

calculating three individual factors that quantify the consistency with respect to the

connectivity (C), the area (A), and the corresponding length of skeletons (L). Each factor

ranges between 0 and 1 where 1 indicates perfect consistency to the ground truth. The

product of three factors is defined as the overall CAL metrics. The computation of the CAL

metrics requires a binary vessel map, to obtain which, we binarize the predicted probabilistic

vessel map Yp with a threshold τ = 0.5.

For the experiments on the PRIME-FP20 dataset, we perform the K-fold cross-validation

[46] to evaluate the performance of vessel detection, where K is set to 5, and report the

statistics of the five evaluation metrics. We only consider pixels within the FOV mask when

computing the metrics.

C. Implementation Details and Alternative Methods

To detect UWF FA vessels Xa, we train the U-Net [13] model on the RECOVERY-FA19

dataset [36] that provides eight high-resolution (3900 × 3072 pixels) UWF FA images and

the ground truth vessel maps. We use the U-Net model because of its superior performance

in medical image segmentation [47]. Detailed training protocol is included in the

Supplementary Material (Section S.II-B). We apply the trained model to the UWF FA

images Xa
i  and binarize the estimated vessel map Ya

i  with a threshold τ = 0.5.

For the proposed iterative framework, we use the pairs of UWF FP and UWF FA images in

the PRIME-FP20 dataset. Note that the proposed framework does not require the ground

truth vessel maps for UWF FP in the PRIME-FP20 dataset. These manually labeled ground
truth are only used for evaluation in our experiments. We implement the chamfer alignment

and the weakly-supervised learning using MATLAB™ and PyTorch [48], respectively. We

perform three iterations between registration and learning (T = 3) and provide an empirical

evaluation of different number of iterations in Section III-D. In the first iteration, we use a

preliminary UWF FP vessel map Yc
i, 0 for chamfer alignment, which is obtained from a DNN

pre-trained on existing NF FP dataset. For the weakly-supervised learning step, we use the

U-Net [13] model. We set the training epochs E0 = 25 and E1 = 30. Detailed network

architectures and training protocol are included in Section S.II of the Supplementary

Material.

We consider existing learning-based vessel detection methods for as baselines for

comparison. These methods include HED [49], U-Net [13], DRIU [11], CRF [50], NestUNet

[14], M2U-Net [51], CE-Net [18], CS-Net [52], RU-Net [15], and IterNet [16]. For each

method, we obtained two versions of the network by training on different datasets, and

evaluate each version on the PRIME-FP20 dataset. The first dataset for training consisted of

UWF FP images and the warped FA labels obtained from the first iteration using the

proposed framework, i.e., Xc
i , Ya c

i, t
i = 1
M

, where t = 1. The second dataset used for

training was the IOSTAR [26] dataset that provides 30 images and binary vessel maps.
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While the images in the IOSTAR dataset are narrow-field, they are captured with the

scanning laser ophthalmoscopy (SLO) technique that is also used in the PRIME-FP20

dataset3.

D. Iterative Registration and Learning Framework

We demonstrate the effectiveness of the proposed iterative framework by showing that both

registration and learning benefit from each other and improve progressively.

To quantify registration accuracy, we compute the chamfer distance as the average Euclidean

distance between each point in the ground truth binary vessel maps and its closest point in

the transformed vessel maps detected in UWF FA. The average chamfer distance under the

second-order transformation can be treated as a proxy for the registration error. The blue line

with circle markers in Fig. 5(a) shows the average chamfer distance over 4 iterations. In the

first iteration, the chamfer distance is on average 1.66 pixels. While the misalignment is

slight, it can significantly deteriorate the quality of the training data. The generated tentative

ground truth in the first iteration only has a recall of 0.63, which means that 37.0% of true

vessels are labeled as background (false negative labels). The third column in Fig. 5(b)

shows sample results of the generated ground truth in the first iteration, where the blue

pixels highlight the false negative labels. In the third iteration, the chamfer distance drops to

0.77 pixels, yielding accurate training data with a recall increased to 0.83. The fifth column

in Fig. 5(b) shows training data obtained from the third iteration.

The improved ground truth dataset in turn benefits network training for vessels detection in

UWF FP. The fourth and the last columns in Fig. 5(b) show the predicted vessel maps in the

first and the third iteration, respectively. The yellow arrows highlight the improved vessel

detections that are not correctly identified in the first iteration. We quantify and visualize the

performance of vessel detection obtained over 4 iterations in Fig. 5(a). The axes on the right

side correspond to the three metrics used for evaluation. It is clear that, as the registration

and training proceed, the performance of vessel detection is improved progressively.

Additionally, we see that the DNN performance becomes stable after three iterations and

going to the fourth iteration offers limited improvement. Thus, we set the total number of

iterations T to 3 in our experiments.

E. Robust Learning with Noisy Labels

We conduct detailed analysis for a better understanding of the proposed method for robust

learning from noisy labels. Because we focus on the robust learning method, all

experimental results reported in this section are performed on the noisy training data that is

generated from the last iteration in the proposed framework.

To justify the effectiveness of the proposed robust learning method, we compare the

performance of vessel detection with the following alternative training strategies: (1) the

standard training approach that directly trains a DNN without any techniques particularly

attuned to noisy labels, (2) the re-labeling method that dynamically updates the labels in the

3We also trained the alternative methods on DRIVE [24] and STARE [4] datasets. The performance of the resulting networks was,
however, significantly worse than the ones trained on the IOSTAR dataset.
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training dataset [53], and (3) a re-weighting method that reduces the weight for the noisy

labels in the loss function. The re-labeling method seeks to obtain a clean dataset by

dynamically updating the training labels using the probabilistic vessel maps predicted from

the DNN. The training process is formulated as a joint framework that alternatively

optimizes the DNN parameters and the training labels. For the re-weighting method, the idea

is to adaptively assign small weights to the potential noisy pixels and to emphasize the clean

pixels in the loss function. Specifically, we assign the posterior probability pv as the

weighting factor to each pixel in 𝒴v and set the weights to 1 for all pixels in 𝒴b.

The quantitative results obtained from different training methods are listed in Table I.

Directly training on the incorrect labels adversely impacts the performance of vessel

detection, even though we apply early stopping to prevent the DNN from over-fitting the

noisy labels. In addition, it is difficult to determine the stopping criterion because no

validation dataset is available in this settings. The re-weighting and the proposed

approaches, both of which utilize the posterior probabilities pv to train DNNs, show

significant improvement over the direct training and the re-labeling methods. This also

demonstrate the effectiveness of the proposed mixture-model-based noisy label

identification. Unlike the re-weighting method, which uses pv to reduce the effects of

incorrect labels, the proposed robust training approach updates the noisy labels and therefore

explicitly forces DNN to learn on the correct prediction.

Next, we assess the effects of different mixture models on fitting the loss distribution and

estimating the posterior probabilities pv. Specifically, we compare the proposed mixture

model with a two-component Gaussian mixture model (GMM) and a two-component beta

mixture model (BMM) [41]. A proper mixture model, which provide a good approximation

to the loss distribution, should lead to an accurate estimation of the posterior probability pv

and an accurate update on the training labels Yu. Thus, we compare the quality of the

updated labels with respect to the manually labeled ground truth4. To do so, we fit the

mixture models on the same loss distribution and update the labels using (6a) and (6b).

Figure 6 plots the AUC PR obtained after each training epoch for different mixture models.

We have several observations from this figure. First, the GMM is not a good approximation

for the loss distribution and the accuracy of noisy label correction decreases as the training

proceeds and is significantly worse than other two mixture models. Second, compared to the

BMM, the proposed mixture model provides the more accurate results and the performance

is largely stable in the first 70 training epochs. In Fig. 7, we show the sample results of

updated labels, the corresponding noisy labels from the warped vessel maps, and the

manually labeled ground truth. The “false positive” labels are removed from the warped

vessel maps, highlighted by the yellow arrows in Fig. 7, yielding to updated labels that is

similar to the ground truth labels. In Section S.IV of the Supplementary Material, we present

intermediate results in a visual format, specifically, the predicted vessel maps and the

posterior probabilities estimated using the proposed mixture model, that provide additional

insight into the working of the EM-based noisy label correction in the proposed approach.

4We also evaluated the alternative models using goodness-of-fit criteria. The evaluation presented in Section S.IV of the
Supplementary Materials further supports the conclusions presented here.
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F. Evaluation on the PRIME-FP20 Dataset

As mentioned in Section III-B, we perform 5-fold cross-validation to assess the results of

vessel detection on the PRIME-FP20 dataset. Table II lists the quantitative results obtained

from the proposed iterative framework and the existing methods. The proposed iterative

framework performs remarkably well and significantly outperforms other methods with

respect to all evaluation metrics, achieving an AUC PR of 0.845, the maximum Dice

coefficient of 0.776, and an overall CAL of 0.730. Notably, the performance metrics for the

proposed framework are quite close to the annotation-intensive approach, where a U-Net

model is trained manually labeled clean dataset with the same 5-fold cross-validation (The

row labeled U-Net* in Table II). We show sample results of the detected vessel maps

obtained from different methods in Fig. 8 and provide more visual results in the Section S.V

of the Supplementary Material. In Fig. 8, we see that the existing DNNs trained on NF

fundus images perform poorly in the peripheral region. We attribute this poor performance

to the fact that the peripheral region contains artifacts that are not visible in the NF dataset.

Such artifacts normally have dark and curvilinear structures that can be misinterpreted as

vessels in the image. For example, the yellow arrows in the enlarged view of region III

highlight the “false positive” detection region that is not a vessel but an eyelash shadow

appearing in the periphery. Compared to the DNNs trained on NF images, the proposed

iterative framework accurately detects vessel maps from different regions in UWF FP. See

the enlarged view of regions III and IV for the result patches selected from the periphery and

the central retina, respectively.

Comparing the results in Table II across different training datasets for each of the alternative

approaches, we observe that most networks perform better when trained on the noisy

PRIME-FP20 dataset obtained in the first iteration of the proposed framework compared

with training on the IOSTAR dataset, even without using any learning approaches that are

attuned to noisy labels. These results further reinforce the benefits of the proposed

registration based transfer approach for generating training data for UWF FP modality.

G. Evaluation on Narrow-Field Fundus Photography

Fundus photography shares common characteristic between the ultra-widefield and the

narrow-field modalities. In this section, we demonstrate that the DNN trained only on ultra-

widefield images using the proposed framework is capable of detecting vessels in NF FP. To

this end, we test the performance of the trained DNN on two public datasets, DRIVE [24]

and STARE [4], and compare with the existing learning-based methods for vessel detection.

Note that we train the DNN on ultra-widefield images using the proposed weakly-supervised

learning approach and evaluate the performance on the NF images. We refer to this

experiment as the cross-training evaluation [12], [54] where the training and the test data

come from two independent sources. For existing learning-based methods, the models are

trained on the DRIVE [24] and evaluated on the STARE [4], and vice versa. These two

datasets provide two independent ground truth vessel maps manually labeled by two human

annotators. We choose the vessel maps from the first annotator as the ground truth also

report the human performance by evaluating the vessel maps made by the second annotator,

which is commonly accepted approach in the literature.
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Complete results are listed in Table S.III in the Supplementary Material. On the DRIVE

dataset, the proposed framework achieves the best performance with the AUC PR of 0.886,

the maximum DC of 0.803, and the overall CAL metric of 0.827. Note that the CAL metric

is significantly better than those obtained from prior alternatives by large margins and is

close to human performance (0.839). The second-best performing method, HED [49],

achieves an overall CAL of 0.743. The performance on the STARE dataset, while slightly

worse than the best performing method, is comparable to other methods. Specifically, the

results obtained from the proposed framework has the AUC PR of 0.884, the maximum DC

of 0.795, and the overall CAL metric of 0.756. The results on both datasets reinforce the

robustness and the accuracy of the proposed iterative framework. We provide visual results

of detected vessel maps in Section S.VII of the Supplementary Material.

IV. Discussion

For narrow field FP and FA images, the problem analogous to the one we address for UWF

FP and FA images, has been previously addressed in an alternative approach called SegReg

[35]. This approach utilizes paired image-pairs from FP and FA modalities and jointly

addresses registration and the training of DNNs for vessel segmentation for both modalities.

Trained networks can then be used for vessel detection in each modality individually. We

evaluated SegReg on the PRIME-FP20 dataset. Implementation details and visual results are

included in Section S.VI of the Supplementary. SegReg performs rather poorly on the

PRIME-FP20 dataset, achieving an AUC PR of 0.535 and the maximum Dice coefficient of

0.560, which is not competitive with the other prior methods used for the comparisons in

Table S.III. The reasons for the poor performance are twofold. First, SegReg assumes that

the registered vessel maps in FA and FP modalities are identical. The assumption, however,

does not hold for UWF FP and UWF FA pairs. Second, SegReg estimates the displacement

field for registration, which only handles small deformation and therefore requires a good

initialization. In addition to its poor detection performance, SegReg also consumes more

computational resources for training than the proposed framework – approximately 11.5

hours as opposed to about 3.25 hours for the proposed network on an Nvidia V100 GPU.

Although, in this paper, we considered a very specific problem setting in retinal image

analysis and presented our work in that context, the proposed methodology could also be

adapted and applied in other situations. Alternative imaging modalities that vary in their

ability to resolve different anatomical features (or physiology) are quite common and it is

also a common situation that for some patients, data is acquired with a subset of the

modalities. Techniques motivated by and/or developed using appropriate adaptations of the

proposed method could be useful in these alternative settings, for both medical imaging and

other image processing applications. Within the domain of image-based retinal diagnosis, an

additional potential application of the proposed framework would be for vessel detection in

optical coherence tomography angiography (OCT-A), which is also being increasingly used

for examining retinal vasculature. Outside of medical imaging, an analogous problem also

arises in understanding the evolution of road networks from a progression of satellite/aerial

images captured over an extended duration of time. Later times typically contain more roads

than earlier ones and additionally are likely to have precise labeled data compared with older

imagery. Although beyond the scope of the current paper, techniques motivated by and/or
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developed using appropriate adaptations of the proposed method can be expected to useful in

these alternative settings. Promisingly for such broader applications, our preliminary

experiments indicate that the methodology for learning from noisy labels used in the

proposed approach is not heavily reliant on the assumption that the supervising (FA)

modality has greater detail than the supervised (FP) modality.

V. Conclusion

The iterative registration and deep-learning framework proposed in this paper provides an

effective and annotation-efficient approach for detecting retinal blood vessels in UWF FP

imagery without requiring manually labeled UWF FP vessel maps. Experimental evaluations

demonstrate that the proposed approach significantly outperforms the existing methods on a

new UWF FP dataset, PRIME-FP20, and achieves comparable performance with the state-

of-the-arts on existing NF FP datasets. The PRIME-FP20 is made publicly available [42] to

facilitate further work on retinal image analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1:
Concurrently captured ultra-widefield (UWF) fundus photography (FP) and UWF

fluorescein angiography (FA) image pair. Cyan circles depict the approximate field-of-view

for narrow-field FP.
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Fig. 2:
Proposed iterative registration and learning approach for retinal vessel detection in UWF FP

without requiring labeled FP vessel data. For clarity, the figure illustrates the processing

flow for only the ith pair Xc
i , Xa

i  of UWF FP and UWF FA images, from the complete set of

M pairs Xc
i , Ya c

i, t
i = 1
M

 used for the training.
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Fig. 3:
(a) Sample UWF FP patch and (b) the corresponding labels from warped UWF FA vessel

map. Red and blue pixels in (c) indicate incorrect vessel labels (“false positive”) and

background labels (“false negative”), respectively, in the warped UWF FA vessel map.
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Fig. 4:
Left: The binary cross-entropy loss for correct (green) and incorrect (red) vessel labels in the

course of training. The curve shows the median loss value and the shaded region represents

the range between the 15th and the 85th percentile of the loss values. Right: histogram of the

training loss after 20 training epochs (indicated by the dash line in the left plot).
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Fig. 5:
Registration and vessel detection performance as a function of iteration count. (a) the

residual chamfer distance, which serves as a good proxy for the registration error, is labeled

on the left axis. The axis on the right-hand side, with labels shown in different colors,

corresponds to the metrics used for evaluating vessel detection performance. (b) Sample

vessel maps obtained in the first and the third iterations. Red and blue pixels indicate

incorrect vessel labels (“false positive”) and background labels (“false negative”),

respectively, in the warped UWF FA vessel map.
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Fig. 6:
AUC PR obtained with alternative mixture models for modeling the loss distribution as a

function of training epochs. The curves show the average AUC PR values over 5-fold cross-

validation, and the shaded region represents the one standard deviation from the mean AUC

PR values.
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Fig. 7:
Sample results of noisy label correction in the proposed framework. Additional results,

including the predicted vessel maps and the posterior probabilities, are provided in Section

S.IV of the Supplementary Material.
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Fig. 8:
Sample images and detected vessel maps for the proposed approach and alternatives from

the PRIME-FP20 dataset. The contrast-enhanced enlarged views I-IV, marked by the cyan

rectangles in the full image, are included. Additional visual results are provided in Section

S.V of the Supplementary Material.
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TABLE I:

Accuracy metrics for vessel detection results obtained with alternative training strategies. All DNNs are

trained on the dataset obtained from the third iteration in the proposed framework. The best result is shown in

bold.

Methods AUC PR Max DC CAL (C, A, L)

Direct Training 0.802 0.745 0.628 (0.998, 0.777, 0.809)

Re-labeling [53] 0.837 0.769 0.586 (0.999, 0.729, 0.805)

Re-weighting 0.842 0.768 0.713 (0.999, 0.833, 0.856)

Proposed 0.842 0.772 0.730 (0.999, 0.849, 0.860)
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