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Abstract

Background: White matter hyperintensities (WMH), associated with both dementia risk and 

progression, can individually progress, remain stable, or even regress influencing cognitive decline 

related to specific cerebrovascular-risks. This study details the development and validation of a 

registration protocol to assess regional, within-subject, longitudinal WMH changes (ΔWMH) that 

is currently lacking in the field.

New Method: 3D-FLAIR images (baseline and one-year-visit) were used for protocol 

development and validation. The method was validated by assessing the correlation between 

forward and reverse longitudinal registration, and between summated regional progression­

regression volumes and Global ΔWMH. The clinical relevance of growth-regression ΔWMH were 

explored in relation to an executive function test.

Results: MRI scans for 79 participants (73.5±8.8 years) were used in this study. Global 

ΔWMH vs. summated regional progression-regression volumes were highly associated (r 2 

=0.90; p-value<0.001). Bi-directional registration validated the registration method (r 2 =0.999; 

p-value<0.001). Growth and regression, but not overall ΔWMH, were associated with one-year 

declines in performance on Trial-Making-Test-B.

Comparison with Existing Method(s): This method presents a unique registration protocol 

for maximum tissue alignment, demonstrating three distinct patterns of longitudinal within-subject 

ΔWMH (stable, growth and regression).

Conclusions: These data detail the development and validation of a registration protocol for use 

in assessing within-subject, voxel-level alterations in WMH volume. The methods developed for 

registration and intensity correction of longitudinal within-subject FLAIR images allow regional 

and within-lesion characterization of longitudinal ΔWMH. Assessing the impact of associated 

cerebrovascular-risks and longitudinal clinical changes in relation to dynamic regional ΔWMH is 

needed in future studies.

GRAPHICAL ABSTRACT

Tracking dynamic changes in white matter hyperintensities (WMH) is critical for the assessment 

of longitudinal degenerative and vascular disease related injury. WMHs have been shown 

to progress, remain stable, or even regress over time. The present study sought to develop 

and validate a registration protocol that will allow the assessment of regional, within-subject, 

longitudinal WMH changes over periods as short as one-year, necessary for use in future clinical 
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trials of disease modifying therapies that hope to limit, stabilize, or even reverse deleterious WMH 

injury.

Keywords

Longitudinal; White matter hyperintensity; Aging; Dementia; Small vessel ischemic disease; 
Cerebrovascular disease

1. Introduction

White matter hyperintensities (WMH), visualized on magnetic resonance imaging (MRI) 

T2-weighted fluid-attenuated inversion recovery (FLAIR) images, are a critical biomarker 

in the study of cerebrovascular small vessel ischemic disease (SVID) (Wang et al. 2020), 

an important contributor to cognitive decline and development of dementia (Kandel et 

al. 2016, Habes et al. 2016, Prabhakaran 2019, Brugulat-Serrat et al. 2020, Zhao et al. 

2019). WMH volumetric assessment has contributed to the understanding of SVID and its 

impact on cognitive status in both normal aging and dementia (d’Arbeloff et al. 2019), 

demonstrating strong associations with both memory and executive function (Brickman, 

Muraskin, and Zimmerman 2009, Iorio et al. 2013, Rost et al. 2014, Tsai, Peng, et al. 

2014, Valdes Hernandez et al. 2017). Although WMHs occur in many disease states, in the 

aging population they are most frequently associated with SVID and cerebrovascular disease 

(CVD) risk factors including poorly controlled hypertension, hyperlipidemia, and diabetes 

(Kalaria and Erkinjuntti 2006, Murray et al. 2012). Few studies, however, have explored 

the development of longitudinal WMH volumetric quantification techniques that can track 

longitudinal, within-person, regional WMH changes (Al-Janabi et al. 2019, Ramirez et al. 

2016).

Total WMH volumes are dynamic over time and frequently progress (Ramirez et al. 2016, 

Silbert et al. 2008), but in a substantial proportion of persons WMH may be stable or even 

regress over time (van Leijsen et al. 2019, van Leijsen et al. 2017, Al-Janabi et al. 2019). 

We hypothesize that the dynamic nature of WMH may not be evident when analyses are 

limited to assessment of total WMH volumes, as different regions and or discrete WMH 

lesions may differentially exhibit growth (Dickie et al. 2016), stability (Lauer et al. 2021) 

and or regression (van Leijsen et al. 2019, van Leijsen et al. 2017, Al-Janabi et al. 2019). 

Thus, in many individuals, the total WMH volume change may represent a cancellation of 

WMH growth and regression that co-occur, albeit in different neuroanatomic and or lesional 

distributions. We further hypothesize that although progression of WMH likely represents 

tissue damage associated with poorly controlled CVD risks, stability of WMH lesions may 

suggest adequate control of CVD risks, and regression of WMH may represent intrinsic 

healing or reparative processes, such as the induction of de novo angiogenesis (Greenberg 

2014, He et al. 2017, Raman et al. 2018, Al-Janabi et al. 2019). It is likely that even a single 

WMH lesion could progress in one neuroanatomic direction and simultaneously regress in 

another, dependent on the interplay between causative and reparative mechanisms within the 

local neuroanatomic and neurovascular milieu. Understanding such changes longitudinally 

in relation to specific neuroanatomic distributions of WMH growth, stability, and regression 
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has important implications for the understanding of underlying biological mechanisms of 

WMH change, associations with CVD risk factors, and longitudinal cognitive outcomes.

Developing protocols that allow the quantification of progression, stability, or regression 

of discrete and regional WMH lesions may help to clarify the relative contributions of 

risks for WMH progression (e.g., uncontrolled CVD risks) versus mechanisms of healing or 

repair associated with WMH regression (e.g., induction of angiogenesis (Greenberg 2014, 

He et al. 2017, Raman et al. 2018), reduction in focal WMH inflammation (Wardlaw et 

al. 2017, Wardlaw, Valdes Hernandez, and Munoz-Maniega 2015), etc.) that may occur 

simultaneously. Such techniques could support therapeutic clinical trials targeting CVD 

risk reduction (reduced progression) or strategies designed to promote WMH healing 

(enhanced regression). This manuscript details the development and validation of one such 

longitudinal, within-subject, regional, white matter hyperintensity volumetric protocol.

2. Methods

2.1. Participants

Research volunteers were drawn from the University of Kentucky Sanders-Brown Center on 

Aging cohort. Details of the recruitment criteria and annual longitudinal examination have 

been published previously (Schmitt et al. 2012). Participants were included in the current 

study if they had both a baseline and one year follow up MRI scan that included identical 

T1 MPRAGE and 3D FLAIR acquisition sequences, irrespective of clinical diagnoses (N 

= 83). Identical MRI sequences were acquired for each participant on the same scanner at 

both baseline and one-year follow-up. Four participants were excluded from the analysis on 

the basis of extreme motion artifact or distortion of normal anatomy required for accurate 

volumetric processing (Fig. 1).

The study procedures were approved by the University of Kentucky Institutional Review 

Board (IRB), and written consents were obtained from all participants (or a legally 

authorized representative for participants without the capacity to provide informed consent).

2.2. MRI acquisition

MRI images were obtained using a 3T TIM-Trio MRI scanner (Siemens Healthcare, 

Erlangen, Germany) at the Magnetic Resonance Imaging and Spectroscopy Center (MRISC) 

of the University of Kentucky. All participants underwent two MRI sessions using a 32­

channel receiver head coil. The T1-weighted MPRAGE image acquisition parameters were 

TE 2.3 msec, TR 2,530 msec, TI 1,100 msec, flip angle 7°, and isotropic 1×1×1 mm 

resolution with full brain coverage. The MPRAGE imaging sequence was repeated twice 

at both baseline and one year follow up visits for each participant, which were averaged 

to increase the signal-to-noise ratio. The T2-weighted FLAIR image acquisition parameters 

were TE 388 msec, TR 6,000 msec, TI 2,200 msec, and isotropic 3D resolution of 1×1×1 

mm.

Bahrani et al. Page 4

J Neurosci Methods. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3. Image Processing

Image processing parameters were determined for each of four main steps: 1) pre­

longitudinal registration, 2) longitudinal registration, 3) segmentation, and 4) generation 

of WMH masks.

2.3.1. Pre-longitudinal registration—Based on previously published WMH 

volumetric methods (Bahrani et al. 2017), two anatomical T1-weighted images and one 

FLAIR image were acquired for each time-point for each participant. Intensity bias 

was corrected using non-parametric, non-uniform intensity normalization (N3-correction) 

methods (Sled, Zijdenbos, and Evans 1998, Boyes et al. 2008, Ashburner and Friston 

2005). For each time-point, the two anatomical T1-weighted images were co-registered 

and averaged to optimize the signal-to-noise ratio. The averaged T1-weighted image 

was subsequently registered to the FLAIR image, using a rigid body registration with 

6-parameters, for each time point (Fig. 2) and similarly the follow-up visit FLAIR image 

co-registered to the baseline FLAIR image (Fig. 2, Fig. 3A and B, and Fig. 4A–C).

2.3.2. Longitudinal Registration—The paired (baseline and follow-up) FLAIR images 

derived from the pre-longitudinal registration step were used to generate a midpoint 

image and establish a deformation field for each time-point using the SPM12 longitudinal 

registration tool (http://www.fil.ion.ucl.ac.uk/spm) (Fig. 5) (Ashburner and Ridgway 2012). 

The midpoint FLAIR image (Fig. 5 and Fig. 3C) and deformation field maps were used to 

register the two-time-point images (rT1-BL, rrT1-Y1, T2-BL and rT2-Y1) longitudinally to 

the midpoint image to reach a maximum alignment of the two images (Fig. 3A–E and Fig. 

4D–F). The deformation field map is a matrix that carries the information of the position 

and magnitude of the deflection in the image space. In our case, this deformation map 

is generated as an outcome of the longitudinal registration. The deformation field map is 

utilized in our protocol to apply the stored information that is essential for registering the 

baseline and one-year images to the midpoint image (Ashburner and Ridgway 2012, Beg 

and Khan 2007, Hadj-Hamou et al. 2016, Hutton et al. 2002).

The longitudinal registered T1-weighed images (LR-T1-BL and LR-T1-Y1) of the two-time 

points were averaged to create a midpoint of the T1-weighted image (T1-midpoint, Fig. 5). 

Both T1-weighted and FLAIR midpoint images were used for the subsequent segmentation 

protocol.

To ensure the registration algorithm did not create excessive voxel deformation in images 

between time points, the images from baseline and one-year were registered in two 

directions. The protocol used the baseline image as a reference, and the image from the 

one-year visit as a target for all steps (pre-longitudinal and longitudinal steps) to generate the 

midpoint image (Fig. 3C and Fig. 5). To ensure the registration process did not create bias 

for one image over another, the algorithm was repeated with a subset of cases, reversing the 

sequence of the images, i.e., one-year visit as a reference and the baseline as a target (n = 8).

2.3.3. Segmentation—Each FLAIR midpoint image was stripped using the FSL-BET 

FMRIB software library (FSL v5.0.8) Brain Extraction Tool (http://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/BET) to generate FLAIR brain tissue image and binary masks. The binary mask 
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was multiplied by the T1-midpoint image to create the T1-midpoint brain tissue image. 

The binary mask was also multiplied by the FLAIR longitudinal registered images to get 

the FLAIR brain images. Intensity bias correction was run again for the stripped images as 

described above.

SPM12 was used to perform unified segmentation of the T1- and T2-midpoint brain images 

based on a custom template that has been described previously (Smith et al. 2016, Bahrani 

et al. 2017). Five separate native space masks were generated from this segmentation step: 

gray-matter (GM), two white matter (WM), cerebral spinal fluid (CSF) and unclassified 

tissue.

2.3.4. Generation of Total WMH Growth and Regression Masks/Volumes: The 

two-segmented WM tissue class images were summed to obtain the total WM mask, which 

was converted to a binary mask. The resultant WM binary mask was multiplied by the 

FLAIR images of each time-point to obtain the total WM tissue intensity image (Fig. 3F). 

The histogram distribution for each WM mask was fitted to a two-component Gaussian 

mixture model curve to adapt two components of the WM signal intensities, which included 

normal-appearing WM and WMH. The mean and standard deviation from the Gaussian 

curve were used to calculate the maximum (mean + 15 SD) and minimum (mean + 3 SD) 

intensity thresholding values. Stripped FLAIR images for each time-point were then subject 

to these thresholding parameters to generate the final raw WMH mask. This mask includes 

some false-positive artifacts related to intensity overlaps between the normal-appearing 

WM and the WMH. These artifacts were reduced by performing a median filtering on a 

slice-by-slice basis using a 3×3 2D kernel filter. Manual editing was required to delete 

artifactual WMH voxels using the original FLAIR images as a guide (Fig. 3G and 3H) based 

on a standard editing criterial (Bahrani et al. 2019).

2.3.5. Generation of Regional WMH Growth and Regression Masks/Volumes
—Regional WMH masks were generated based on simple subtraction between the total 

WMH masks described above. Specifically, the one-year time point, and baseline time point 

total WMH masks were subtracted from each other in order to generate the regional growth 

and regression represent regression (shrinkage) of the WMH volume. An example of a single 

subject’s data showing voxels characterized by growth, regression and stability is presented 

in Fig. 3I, Fig. 6 and Fig. 7.

A subset of 30 participant scans were analyzed using both the longitudinal regional methods 

presented in this manuscript and also using standardized cross sectional volumetrics method 

that we previously published (Bahrani et al. 2019, Bahrani et al. 2017) for each time point 

independently. The total volume difference between progression and regression (P-R) within 

each participant was compared to the WMH volume difference (WMH2-WMH1) for each 

participant.

The protocol was scripted for automated application within a Singularity container (https://

singularity.lbl.gov/) to streamline the process. Despite an attempt to fully automate the 

protocol, the pipeline still requires a manual editing step to be performed on the final 
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composite WMH mask to remove any false positive voxels before generating the WMH 

growth and regression masks.

2.4. Exploring the potential clinical utility of WMH growth/regression

Clinically, deficits in processing speed and executive function on neuropsychological testing 

are a hallmark of SVID (Lamar et al. 2010). Trail Making Test (TMT) A (processing speed) 

and B (executive function) were used to evaluate the potential clinical utility of the protocol. 

TMT was administered at the time of the first and second MRIs. Difference scores for 

TMT-A and TMT-B were computed as difference in completion time (i.e., second scan 

minus first scan). Both difference scores were roughly normal upon visual inspection and 

not subject to transformation. Negative values represented improvement.

For the analysis, WMH growth was computed as progression / ([TIV1 + TIV2] / 2) and 

WMH regression was computed as regression / ([TIV1 + TIV2] / 2). Both were highly 

right-skewed and subjected to square root transformation for analysis. Total WMH change 

was computed as (WMH2 – WMH1) / ([TIV1 + TIV2] / 2). Several transformations were 

attempted, but none improved nonnormality and the raw value was used in analysis.

2.5. Statistical Analysis

SPSS 23.0 was used to calculate Pearson’s correlations in the evaluation of co-registration 

and intensity correction techniques and the relation of the experimental growth/regression 

protocol to longitudinal WMH volume changes. The R v4.0.0 console (Team 2013, 

Wickham 2016) was used to perform a preliminary analysis of potential clinical 

meaningfulness of penumbra data. Backwards selection was applied to two linear regression 

models, one for each part of the TMT. Age, sex (male or female), education (in years), 

clinical status at time of first MRI (Association 2013), MCI (Winblad et al. 2004), or 

cognitively intact, WMH growth, WMH regression, and total WMH change were included 

as predictors in both initial models. Backwards selection procedures included sequentially 

removing the predictor with the largest p-value >0.05 until the model fit failed to improve 

with subsequent backward selection (fit measured using AIC).

3. Results

Paired scans were initially available for 83 participants (baseline and one-year visits). Four 

subjects were excluded due to either motion artifact or irregular shape of the brain images, 

demonstrating that the protocol can be successfully applied in over 90% of participants (Fig. 

1). Basic demographic and clinical features of the 79 participants are presented in Table 1. 

A graphical depiction of stable, growth, and regression WMH volumes for all subjects is 

shown in Fig. 8A. These data demonstrate that while approximately 50% of subjects show 

no appreciable total WMH volume change over the one-year study period, 19% demonstrate 

overall regression and 31% exhibit overall growth (right panel). The number of subjects that 

showed dynamic growth (55%) and regression (31%) in combination (partially cancelling 

growth and regression volumes out) was much higher than those identified using total 

WMH volumes above. A sample of three cases shown in Fig. 8B to demonstrate the WMH 
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difference of the two-time points compared to the longitudinal WMH growth and regression 

protocol.

3.1. Registration Validation

Forward and reverse longitudinal registrations were significantly associated (r2 = 0.999; 

p-value < 0.001) supporting our use of a midpoint registration method that was unaffected 

by variability in discrete scan acquisition.

3.2. Longitudinal registration vs. cross-sectional WMH volume

Total change in WMH volume determined using the longitudinal regional vs. absolute 

difference in cross sectional WMH volumes were highly related based on a linear regression 

model (r2 = 0.90, p-value < 0.001).

3.3. Potential clinical utility

TMT from both time points were available for 3 demented, 34 MCI, and 28 cognitively 

intact participants. Sex was the only predictor retained following backwards selection on 

the model with TMT-A difference as the dependent variable (being female, β = −8.13, p = 

0.11, η2 = 0.04). Backwards selection on the model with TMT-B difference as the dependent 

variable retained education (β = −5.45, p = 0.02, η2 = 0.06), WMH growth (β = 429.1, 

p = 0.16, η2 = 0.041), and WMH regression (β = 584.6, p = 0.13, η2 = 0.034), but not 

total WMH change. The model explained about 13.5% of the variation in TMT-B difference 

scores in this sample, F (3, 61) = 3.17, p = 0.031, R2 = .135, adjustedR2 = 0.092.

4. Discussion

These data and the methodology described demonstrate the feasibility of characterizing 

within-subject, regional changes in WMHs over time. The present investigations focused 

on validation of a registration pipeline that allows longitudinal regional and within lesion 

comparisons. A one-year period was used to validate and develop the methods as such a 

short time frame is ideal for future use in VCID interventional clinical trials. Tracking such 

WMH changes longitudinally is important for understanding the dynamic nature of WMH 

and to enable further understanding of vascular imaging abnormalities within and in the 

immediate vicinity of WMH lesions.

Previous studies assessing total WMH volume change over time have demonstrated that 

WMH are dynamic, with some participants demonstrating progression (Ramirez et al. 2016), 

while many others show stability or even regression (Chen et al. 2018, Al-Janabi et al. 

2019). Similar results were seen in the present study with total WMH volumes remaining 

stable in 50% of participants, but demonstrating either total growth or regression in 31% 

and 19% respectively. It is intriguing that the present results demonstrate ongoing growth 

and regression in many of the same subjects to a much higher degree, suggesting that 

WMH lesions may be far more dynamic than envisioned previously. Such findings regarding 

dynamic WMH change in the elderly are likely the result of fluctuating control of CVD risk 

factors that lead to progressive vascular injury and or a healing processes that can occur 

simultaneously. The dynamic nature of WMH is not unprecedented across the spectrum of 
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neurologic diseases in which WMH are the major imaging finding (Moroni et al. 2018, 

Williamson et al. 2018, Gunstad et al. 2005). Similar dynamic change in WMH can occur 

in patients with Multiple Sclerosis (Zhong et al. 2014, Trip and Miller 2005), infectious 

and inflammatory processes (Sarbu et al. 2016, Pandit 2009), cerebral amyloid angiopathy­

related inflammation (Lee et al. 2018, Rigney, Sebire, and Cordato 2015, Makarewicz 

et al. 2019, Kirshner and Bradshaw 2015), and in amyloid-related imaging abnormalities 

(ARIA) associated with anti-amyloid therapies for Alzheimer’s disease (Gordon et al. 2015, 

Nasrabady et al. 2018).

Whether longitudinal WMH progression, stability, or regression within all WMHs are 

uniform in discrete subjects, or whether they are dynamic within subjects and or within 

discrete lesions has been unclear previously. Despite this lack of understanding, it has been 

hypothesized that discrete within lesion growth vs. regression may be important in our 

understanding of the interplay between injurious and reparative vascular processes. The 

present data demonstrate that such lesion-discrete within subject dynamism is true, with 

each distinct WMH lesion demonstrating local areas of progression, stabilization, and or 

regression to varying degrees. Understanding such within lesion areas of focal dynamic 

WMH change is critical for our understanding of localized neuroanatomic, neurovascular 

and potentially regional impacts of CVD risk factors in influencing WMH change over time.

Several studies have previously attempted to predict such dynamic changes in WMH and 

neuroanatomic distribution, popularizing the term “penumbra” to describe such areas of 

potential change. This concept of a regional area “at-risk” is similar to the concept of a 

penumbra associated with large-vessel ischemic strokes (Tsai, Yuan, et al. 2014, Wintermark 

et al. 2006, Saver 2017). Several of these studies focused on specifying the WMH penumbra 

as the region surrounding observed WMH lesions, within a specific radius agnostic to local 

neuroanatomy, neurovascular distributions, or actual WMH lesional volume change over 

time (Baldaranov et al. 2017, Beason-Held et al. 2007, Keihaninejad et al. 2013, Mills 

and Tamnes 2014). Further advances using such methodology include the development of 

a probability model to generate a neighborhood WMH injury score that again is agnostic 

to actual observed changes in discrete WMH lesional volumes (Maillard et al. 2011). Such 

approaches have identified abnormalities in diffusion tensor imaging fractional anisotropy 

and arterial spin labeling perfusion, but were unable to detect overt WMH changes within 

the identified at-risk regions (Maillard et al. 2013, Maillard et al. 2011, Maillard et al. 2012).

Tracking focal within lesion WMH volumetric change is problematic due to a number 

of factors, most important of which are refining longitudinal co-registration and intensity 

corrections. The present method of longitudinal registration requires alignment of the 

ventricular borders. This alignment creates a reference point in relation to WMH changes 

using the SPM12 toolbox. Ashburner et al. (2013) created the longitudinal registration 

application with version SPM12 and further referred to the existence of a steeper signal 

intensity gradient between the two-time-points images after longitudinal registration that 

was problematic (Ashburner and Ridgway 2012). The explanation for the steeper gradient 

was not elucidated based on these studies (Ashburner and Ridgway 2012). The present 

experiments identified a residual linear WMH signal along the ventricular border after 

the longitudinal registration that contributed to the gradient abnormalities. To overcome 
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this issue, an extra linear registration step was added to the protocol prior to longitudinal 

registration to aid in maximal co-registration of images from the two time points. Without 

such an intermediate step, the z-score difference between the baseline and the one-year 

images, (see Fig. 4), demonstrates that the longitudinal registration may not always result 

in an accurate alignment of the FLAIR images. Such misalignment in the longitudinal 

registration can produce false positive changes in discrete WMHs that largely remain 

confined to the ventricular boundaries and some gyri. Such findings indicate an inaccurate 

alignment of the two sets of images rather than true WMH change. The present protocol 

included an additional rigid body registration prior to the longitudinal registration step that 

appears to be important for assessing discrete focal lesional WMH changes in all directions.

Even though N3-correction was used in both the longitudinal registration process 

(Ashburner and Ridgway 2012) and the segmentation process (Ashburner and Friston 

2005), we employed this technique again two more times. Once during the pre-longitudinal 

registration, to increase the quality of the co-registration process of the T1-weighted 

and FLAIR images to correct the background intensity inhomogeneity resulting from 

imperfections in the MRI imaging acquisition, and second to remove the residual intensity 

nonuniformity after the nonbrain tissue extraction of the midpoint images before the 

segmentation step. The inclusion of the extra intensity bias corrections resulted in an almost 

zero unclassified tissue volume supporting the importance of such additional N3-correction 

steps.

Maltbic et al. (2012) found that inherent brain asymmetry influenced the segmentation of 

the brain structures in the left and right hemisphere (Maltbie et al. 2012). The present data 

confirm this prior finding (Fig. 1B). The present data also identified significant motion 

artifacts as barriers to the use of the present protocol as they lead to inaccurate segmentation 

due to intensity overlaps resulting in either an over- or under-estimated WMH voxels change 

at the circumferential border of the WMH lesion. Scans with either significant asymmetry 

or motion artifact should be identified as unsuitable for volume and regional pattern 

longitudinal WMH analysis prior to investing time and effort and potentially including 

confounded data in any analyses using this or similar protocols.

We relied on two methods to test the validity of the present protocol. We first validated 

the registration in two directions by switching the order of the reference image between the 

baseline and one-year visit. The results of this analysis demonstrated a strong relationship 

between forward and backward reference comparisons (r2 = 0.999, p-value < 0.001) 

supporting to the validity of the proposed methodology. Further validation included a 

comparison of the WMH volume difference between the total WMH volume and regional 

WMHs (summation of progression and regression). The difference between cross-sectional 

WMH volumes derived individually from the baseline and one-year images, demonstrated 

a strong relationship with the measurement of absolute WMH volume change (r2 = 0.988, 

p-value < 0.001) further supporting the validity of the current methodology.

Finally, we assessed WMH progression, regression, and total WMH volume change in 

relation to longitudinal change in Trail Making Test A and B time to completion. These 

preliminary data showed that both greater progression and regression are potentially related 
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to declining Trail Making Test B performance over time. Although these results only trended 

toward significance in the small sample used for individual tests, the combined model 

including education and both growth and regression volumes explained about 13.5% of the 

variation in TMT-B difference scores in this sample. While a sex difference was found using 

backwards selection on the model with TMT A as the dependent variable, neither growth 

or regression WMH volumes were found to influence TMT A performance in this model. 

As such, the finding of sex differences in TMT A performance in this study appear to be 

an incidental finding of uncertain significance. Sex did not appear to have any influence 

on the methods for isolating WMH growth or regression volumes, nor were sex differences 

found to be important in the clinical validation of WMH growth and regression changes 

that influenced TMT B performance. Deficits on TMT-B, and other tests of executive 

function, are a prominent clinical feature of SVID (Lamar et al. 2010) and deficits in TMT-B 

performance in particular have been shown to be associated with WMH volumes (Ciulli 

et al. 2016, Duering et al. 2014). The present finding is intriguing in that it highlights the 

dynamic nature of WMHs when measured discretely by voxel as opposed to using aggregate 

WMH volume change scores. This result also sheds light on the importance of studying the 

longitudinal correlates of the WMH changes in relation to cognitive domain change over 

time and its potential contributions to the development of protocols designed to evaluate 

interventions that may influence WMH change, either through reducing WMH progression 

or in promoting WMH regression.

5. Conclusions:

The registration method developed here may ultimately aid our understanding of dynamic 

longitudinal volume and regional pattern WMH changes in older adults with varying degrees 

of CVD risks. Future work toward this goal will be required to develop statistical approaches 

to within-subject penumbra estimates that go beyond the simple voxel-level subtractions 

used here. Limitations of the present study include issues inherent in WMH post-processing 

techniques limiting analysis to individuals with scans devoid of significant brain atrophy, 

motion artifact, and extreme intensity variability between scans that may not be fully 

overcome using the present protocol. Further limitations include the lack of a broadly 

representative population that might inform on the generalizability of the findings in persons 

with disparate racial, ethnic and or socioeconomic status. Strengths include a rigorous 

approach focused on addressing the confounds of longitudinal volume and regional pattern 

analysis of WMH dynamic change, and broad distribution of subjects with heterogenous 

CVD risk factors required to effectively study dynamic WMH change over time.

Despite the limitations of the present study, the methods developed will help to advance 

the study of discrete, lesional, CVD-mediated, WMH change that has risen to critical 

importance in assessing the mixed contributions of degenerative and vascular disease states. 

Such mixed states are the norm rather than the exception in the vast majority of community­

based cohorts at risk for cognitive decline and dementia (Abner et al. 2017, Schneider et al. 

2009, Schneider et al. 2007). Future studies, afforded through the use of this protocol, will 

more fully explore the clinical utility of this protocol in identifying regional neuroanatomic 

WMH changes in relation to specific cerebrovascular risks, therapeutic interventions, and 

discrete clinical outcome measures that extend beyond TMT B.
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HIGHLIGHTS

• Midpoint co-registration of FLAIR images can be used to assess longitudinal 

WMH changes

• Image intensity z-score corrections minimize co-registration T2 signal 

artifacts

• Dynamic intra-subject WMH volume changes include a mix of both 

progression and regression

• WMH progression is associated with a decline in executive function

• This standardized protocol can accurately detect such changes over a short 

one-year interval
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Fig. 1: 
Sample of the excluded T2-weighted fluid-attenuated inversion recovery (FLAIR) images. 

A) A FLAIR image with a motion artifact leads to undefined ventricles and white matter 

hyperintensities edges (see the circle). Also, the motion artifact could lead to a variation in 

the intensity that may appear as a WMH and may cause an overestimation volume (see the 

rectangle). (B) A FLAIR image shows an irregular brain shape and ventricles that can cause 

a segmentation error.

Note: The motion artifact in panel A can be compared to panel B, and the asymmetry in 

panel B can be compared to panel A.
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Fig. 2: 
Pre-longitudinal registration step. T2-BL, -Y1 (T2-weighted image, FLAIR, baseline, year 

one visit). T1-BL, -Y1 (T1-weighted, MPRAGE image, baseline, year one visit). This step 

divided into two parts: First, intensity correction (N3) for all the images and co-registering 

the T1 and T2 for each time point separately. Second, registering each one-year visit 

imaging sequence (T1 or T2) to the baseline.
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Fig. 3: 
The main output steps of the penumbra protocol. A and B are the FLAIR images of 

the twotime-points before the longitudinal step. C is the midpoint image of the two 

FLAIR images of the longitudinal step. D and E are the longitudinal registered images 

of the two-time-points after stripping the nonbrain tissue. F is the white matter mask after 

segmentation step (normal appearing WM and WMH). G and H are the WMH masks of 

the two-time-points. I is the regional pattern penumbra (white) and regression (black) masks 

after subtracting WMH masks at time-2 and time-1 from each other.
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Fig. 4: 
The z-score of the FLAIR images from baseline and year 1 scans. A and B are the 

normalized FLAIR images of a two-time-points before longitudinal registration. C is the 

z-score difference of the two-time-points before registration. D and E are the normalized 

FLAIR images of a two-time-points after longitudinal registration and F is z-score difference 

image. Red arrows show the result of subtraction of the two normalized images before 

longitudinal registration due to the poor alignment.
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Fig. 5: 
Longitudinal registration step. T2-BL, -Y1 (T2-weighted image, FLAIR, baseline, one­

yearvisit). T1-BL, -Y1 (T1-weighted image, baseline, one-year-visit). DF, deformation 

field. LR, longitudinal registration. The T2-weighted FLAIR images (T2-BL and rT2-Y1) 

from the preregistration step registered longitudinally to generate the midpoint image (T2­

Midpoint) and the deformation field of each time point (DF-Y1 and DF-BL). Applying the 

deformation filed of each time point to register all images to the midpoint image, to get the 

longitudinal registered images (LR-T2-BL, LR-T1-BL, LR-T2-Y1, and LR-T2-Y1).
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Fig. 6: 
WMH masks from a single representative subject overlaid on their FLAIR image. Red: 

WMH static, Blue: WMH regression and, Green: WMH growth.
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Fig. 7: 
An example of year 1 WMH voxels overlaid on a baseline FLAIR image. A: Baseline. 

B: One-year. The narrow arrows show the edge of the WMH bordering the ventricles. 

A: Baseline. B: One-year. The narrow arrows show the edge of the WMH bordering the 

ventricles. The full yellow arrows indicate the regression of the WMH at one-year visit 

(changes inside the WMH cluster). The arrowheads show the changes of the WMH toward 

the deep WM. The rectangles show stable WMH. The circle shows the appearance of a new 

WMH (Penumbra). The ellipsoids show the penumbra inside the WMH cluster.
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Fig. 8: 
Longitudinal WMH for 79 participants. A) Participants are sorted greatest to least (left 

to right) by total WMH at first scan (i.e., WMH1 / TIV1). The top row of panels shows 

the growth, stable, and regression segmentations of WMH, as a proportion of mean TIV. 

The bottom row of panels shows the total WMH change as a proportion of mean TIV. B) 
Three different cases with WMH2-WMH1 compared to the longitudinal WMH results that 

demonstrate both growth and regression in WMH whereas the WMH difference shows only 

a single volume.
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Table 1.

Basic demographic features at the time of the baseline scan for the participants analyzed in this study.

All Participants (n = 79)

Age (mean years ± SD) 74.01 (7.6)

Education (mean years ± SD) 16.11 (2.8)

Female (n, %) 42 (53.1%)

Black (n, %) 3 (3.7%)

History of Hypertension (n, %) 57 (72.2%)

History of Hypercholesterolemia (n, %) 51 (64.6%)

History of Diabetes (n, %) 17 (21.5%)

History of Remote Stroke (n, %) 9 (11.4%)

MMSE (mean ± SD) 27.1 (3.4)

Total WMH as % of TIV (mean ± SD) 0.89 (1.18)

Cognitively Intact (n, %) 39 (49.3%)

Mild Cognitive Impairment (n, %) 36 (45.6%)

Dementia (n, %) 4 (5%)
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