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Abstract

In this study, we propose a post-hoc explainability framework for deep learning models applied 

to quasi-periodic biomedical time-series classification. As a case study, we focus on the problem 

of atrial fibrillation (AF) detection from electrocardiography signals, which has strong clinical 

relevance. Starting from a state-of-the-art pretrained model, we tackle the problem from two 

different perspectives: global and local explanation. With global explanation, we analyze the 

model behavior by looking at entire classes of data, showing which regions of the input repetitive 

patterns have the most influence for a specific outcome of the model. Our explanation results 

align with the expectations of clinical experts, showing that features crucial for AF detection 

contribute heavily to the final decision. These features include R-R interval regularity, absence of 

the P-wave or presence of electrical activity in the isoelectric period. On the other hand, with local 

explanation, we analyze specific input signals and model outcomes. We present a comprehensive 

analysis of the network facing different conditions, whether the model has correctly classified the 

input signal or not. This enables a deeper understanding of the network’s behavior, showing the 

most informative regions that trigger the classification decision and highlighting possible causes of 

misbehavior.
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I. Introduction

The application of deep learning (DL) is in constant expansion in the medical field. DL 

solutions are approaching state-of-the-art diagnostic accuracy, even performing better than 

clinicians in some specific tasks [1]. For example, DL algorithms obtained sensitivity and 

specificity similar to that of a certified ophthalmologist in the detection of referable diabetic 

retinopathy using retinal fundus images from adults with diabetes [2]. To automatically 

classify malignant versus benign skin lesion images of epidermal or melanocytic origin, 

DL-based models have been shown to achieve performance on par with board-certified 

dermatologists [3]. Beside image analysis, an increasing interest is devoted to time-series 

data, including the use of long short-term memory recurrent neural networks in pediatric 

intensive unit care [4] and predictive medicine based on patient history [5]. A specific 

type of time-series is the electrocardiogram (ECG), representing the electrical signal of 

the heart. Inside the clinic, a 10 second 12-lead clinical ECG (usually sampled at 500 

Hz) is commonly used by cardiologists, providing accurate information on the status 

of the heart for a short time interval. For non-permanent issues like paroxysmal atrial 

fibrillation (AF), a common non-persistent form of arrhythmia, a 10 second ECG is unlikely 

to capture intermittent, but meaningful, real-world cardiac events. Instead, a longitudinal 

view of cardiac electrical activity is needed [6]. While non-invasive wireless devices can 

provide continuous single-lead ECG recording for up to two weeks, they provide too 

much information to be analyzed in the limited time that a clinician can dedicate to a 

patient, thus an automated analysis such as DL is needed [7]. Accuracy of DL in the 

automatic identification of arrhythmia from single-lead ECG has been highlighted recently 

in a retrospective study [8], together with a comparison between DL and manual feature 

engineering methods [9] showing the benefits of representation learning. Nevertheless, 

these algorithms are data-driven and leverage complex representations of data, thereby 

making the interpretation of the underlying model difficult. The lack of transparency 

and accountability can be detrimental in the clinical setting, where additional information 

besides the model inputs needs to be combined for final risk assessment [10]. This highlights 

the need for understanding the model, in order to have a more effective clinical adoption 

of these methods. There are two solutions to understand the model and its behavior. The 

first one is to build a transparent (interpretable) model from the ground up, such that its 

output is meaningful through human readable rules established before training. Traditional 

symbolic machine learning approaches like decision trees, rule lists and rule sets are usually 

interpretable and can explicitly model our assumptions for rules, examples and sparsity 

[11]. Alternatively, if the model is too complex (black-box), it is possible to approximate 

the relationship between input and output in human-understandable terms after training, 

explaining how high-level features affect the output.
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Since for unstructured and noisy data a black-box DL model may provide higher accuracy, 

as demonstrated for single-lead ECG data in [9], there have been significant attempts to 

create human understandable explanations for DL-based models. Most of these efforts were 

devoted to image classification, where explanations are directly interpretable for humans, 

e.g., natural association to similar looking details in the analyzed images [12]. The domain 

specific nature of time-series data makes it difficult to directly transfer these ideas for 

improved human understanding of the model. The use of attention systems embedded in the 

network architecture has also been investigated for improving interpretability of DL models, 

even if with some limitations [13]. In this paper, we focus on local and global explanation 

techniques applied to time-series data. Local explainability techniques deal with individual 

examples, and use visualization techniques like saliency maps [14] or deconvolutions [15] to 

identify specific regions of input that have the most influence on the network output. While 

they can be very effective in understanding regions of the input that were responsible for a 

particular prediction, it is not clear which characteristics of the highlighted region trigger a 

specific output. Thus, global explanations are also needed to capture the overall relationship 

between input and output variables from all examples in the training set. They may provide 

useful information for clinicians to understand what feature or part of signal is triggering the 

model decision.

The goal of this study is to present a model-agnostic explanation framework for models that 

analyze clinical time-series data. The main contributions are summarized as follows.

• We propose a general pre-processing pipeline for quasi-periodic time-series 

signals, which will be the basis for the analysis of a DL classification algorithm.

• We introduce global explanation methods to enhance transparency of the 

decision-making process, and to provide global insights into the model’s 

behavior.

• We discuss local explanation techniques for biomedical time-series, focusing on 

individual examples, which can be used to identify important segments/features 

of the input data.

• As a clinical case study, we consider the detection of AF from single-lead ECG 

signals. We discuss both global and local explanation results for AF detection, 

revealing interesting model behaviors in accordance with clinical analysis of 

these signals.

The rest of the paper is organized as follows. We discuss previous work on explaining 

DL models and time-series signals in Sec. II. In Sec. III we describe the case study under 

investigation, in Sec. IV we detail the methods for global and local explanations, while in 

Sec. V and Sec. VI we present the corresponding quantitative results.1 Finally, in Sec. VII 

we discuss results and future directions.

1The source code used in these experiments is available at https://github.com/pi242/medx.git
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II. Related Work

There has been a variety of work on building interpretable models or explaining predictions 

of black box models for time-series classification [16]. Classical rule-based models, such 

as decision trees, decision lists, and decision sets, produce easy to understand decision 

boundaries in terms of the input features. A popular approach to explainable time-series 

classification is the use of shapelet-based classifiers, introduced in [17]. Shapelets are short 

time-series which are used to classify inputs based on whether a shapelet is present in most 

series of one class and absent from others. Authors in [18] and [19] focus on jointly learning 

a shapelet-based representation of data, and generating explanations from these internally 

learned shapelets. Recently, more inherently interpretable architectures have been shown to 

achieve performance similar to deep networks. Authors in [20] and [21] demonstrated the 

use of multiple symbolic representations and random convolutional kernels respectively, to 

obtain accurate classification using linear classifiers.

On the other hand, local proxy methods like LIME [22] and SHAP [23], including 

frameworks built upon these methods [24], have been used for post-hoc explanations. 

However for applications of convolutional neural networks (CNNs) in the clinical context, 

most explanations are presented as visualizations, in order to provide an interpretable 

feedback that highlights the reason for a certain decision taken by the classifier. In [25], 

authors explore one-dimensional Class Activation Map (CAM) [26] with an application to 

time-series classification to highlight the parts of the series that contribute most for a given 

class identification. Authors in [27] also use a similar technique of Gradient-weighted Class 

Activation Map (Grad-CAM) [28] for visualizing saliency of the CNN model. Similarly, 

authors in [29] generate representative attribution maps obtained by layer-wise relevance 

propagation [30]. Recent work in [31] proposes a framework for evaluation, in order to 

compare the informativeness of occasionally conflicting explanations generated through 

these methods.

III. Case Study: Atrial Fibrillation

In order to design a framework for the explainability of quasi-periodic time-series models, 

we consider the detection of AF from single-lead ECG signals as a case study. This is a 

clinical task that can be successfully automated, but it needs to be explained in order to be 

fully useful in a clinical environment. In the clinic, cardiologists analyze short ECG traces 

by visual inspection to spot anomalous events. Among the many features typically related 

to AF detection, the most prominent ones can be identified as: absence of the P-wave, the 

electrical activity representing the atrial depolarization2; irregularity of R-R intervals; and 

absence of the isoelectric baseline, a short interval without electrical activity between the 

end of T wave and the start of P wave.

The proposed explainability framework aims at identifying the main signal characteristics 

leveraged by DL approaches during the detection process. This can verify if the learned 

representation corresponds to the human understanding of the underlying process.

2Further details on the terminology regarding the different parts of the ECG signal can be found in [9].
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A. Dataset

The dataset used in this study is publicly available as part of the 2017 PhysioNet and 

Computing in Cardiology Challenge: AF Classification from a short single-lead ECG 

recording [32]. All ECG recordings were collected using AliveCor devices. The dataset 

contains 8,528 single-lead ECG recordings lasting from 9 seconds to just over 60 seconds. 

All ECG recordings are labeled into one of four categories: normal sinus rhythm (5,154 

data points in the public data set), AF (771 data points), other types of arrhythmia (2,557 

data points) and noisy data (46 data points). For all the results reported henceforth, the 

class labels used are referred to as S (normal sinus rhythm), A (atrial fibrillation), O (other 

arrhythmia) and Z (Noisy signal).

B. Baseline Classification Model

The DL architecture used for all experiments in this study is a MobileNet model [33]. 

MobileNet is a lightweight CNN primarily used for mobile and embedded applications in 

computer vision due to its smaller model size and computational complexity. We use an 

architecture optimized for classification of single-lead ECG signals into one of the four 

classes described in III–A. The network was trained according to the guidelines in [9]. 

In general, a CNN learns operations to capture local dependencies in the input signal. A 

convolution operation consists of a kernel that slides over the input signal, performing 

element-wise matrix multiplications to output a feature map. Considering a convolutional 

layer with kernel of size dK, number of input channels m and number of output channels 

n, a standard convolution with input dimensionality of dF has a computational cost of 

dK · dK · m·n · dF · dF. The MobileNet architecture is based on depthwise separable 

convolutions, which split the computation of a standard convolution into two steps: a 

depthwise convolution and a pointwise convolution. Depthwise convolutions apply a single 

kernel for each input channel. Pointwise convolutions, implemented as 1×1 convolutions, are 

used to create a linear combination of the output of the depthwise layer. Depthwise separable 

convolutions have a much lower cost of dK · dK · m·dF · dF +m·n·dF · dF. For dK = 3, it leads 

to a reduction in computation costs by 8 to 9 times. This allows the network to deal with a 

large number of parameters and high computational complexity [33].

Architecture of the MobileNet model used in this study is described in Tab. I. The model 

was trained for 200 epochs, with batch size 50, a step-based learning rate annealing policy 

(starting from a learning rate of 0.1 and reducing by a factor of 3 every 25 epochs). Dropout, 

gradient clipping, momentum and weight decay were used to stabilize training and improve 

generalization.

We use 5-fold cross validation to report model performance for global explanation. The data 

set was split randomly into 5 subsets, maintaining the original distribution between classes. 

Each unique subset was used as a testing set, while the others were used for training. The 

accuracy so obtained is 84.38 ± 0.96%, with the confusion matrix reported in Tab. II. Results 

are reported in terms of average ± standard deviation across the 5 folds.
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IV. Methods

In this study, we propose two different approaches to analyze network behavior: 1) global 
explanation methods, which are used to analyze the overall model behavior for a given class 

of data, and 2) local explanation methods, which explain how the model makes a specific 

decision on a single input signal.

Although we primarily focus on the specific case study, the proposed framework is model­

agnostic, as it is not limited to any specific model. In the same manner as concept-based 

methods for model interpretation [34], we aim to provide evidence that the high-level 

representation, automatically extracted and processed by deep networks, are in accordance 

with the physiological knowledge of the underlying mechanism.

A. Signal processing

To properly highlight and understand the most important characteristics of the input signal 

considered by the model, some relevant regions of the ECG should be selected and analyzed 

independently. To this end, we propose a segmentation procedure (Sec. IV–A.1) for dividing 

periodic patterns. The signal between two consecutive R-peaks is divided into specific sub­

regions corresponding to different phases of the cardiac cycle. We also define a periodicity 
normalization function (Sec. IV–A.2) to properly analyze the effect of R-R variability on 

the model’s behavior. R-R variability represents a measure of variation in the beat-to-beat 

interval, and is a very important ECG feature. Here, we detail the specific processing used 

for the case study analyzed, but analogous approaches can be applied to other signals with 

similar periodicity, a common characteristic in human data.

1) Segmentation: To understand how each sub-region of the cardiac cycle is affecting 

the classification decision, we define a segmentation function, which can be easily extended 

to any quasi-periodic signals. For each ECG E in the dataset, we first evaluate the temporal 

position of all R-peaks. An R-R interval is defined as the segment between two consecutive 

R-peaks. Each R-R interval is further divided into 8 equally sized segments, which will be 

used in the analysis3. An example of this segmentation technique is illustrated in Figure 1.

2) Periodicity Normalization: In order to analyze the importance of R-R intervals 

variability in the detection of AF from ECG signal E, we define a normalized version 

of the signal E, by applying a periodicity normalization function. First, we evaluate the 

median value of all R-R intervals rE. Then, E is obtained by stretching or compressing 

each R-R interval forcing its duration to be equal to rE. While the information about R-R 

variability has been completely removed in the new signal, most of the intra-beat features 

are unaffected. An example of this normalization technique is illustrated in Figure 2.

3Each of the 8 segments corresponds approximately to a region of interest, like P wave, T wave, or isoelectric baseline; we have also 
tested a division into 16 segments, which has not provided additional insight regarding feature importance.
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B. Global Explanation

The proposed framework includes three different techniques for global explanation: ablation 
study, permutation study, and LIME method. First, we divide each ECG cycle into 8 

segments (numbered 0–7) using the segmentation function defined in Sec. IV–A.1. For most 

signals the P-wave lies entirely in Segment 6. Segment 4 corresponds to the isoelectric 

baseline, sometimes extending into segments 3 & 5.

1) Ablation Study: In general, ablation study refers to a procedure wherein certain 

parts of the network architecture or input features are removed, and then predictions of 

the model are analysed to understand the importance of the corresponding ablated section. 

Specifically to this study, the main goal is to quantify the contribution provided to the 

network’s decision by each one of the periodic segments defined in Sec. IV–A.1. To 

emulate the absence of electrical activity in that particular region of the ECG, we effectively 

removed the information contained in the corresponding segment by replacing it with a 

straight line through its endpoints. This removal can be achieved through other approaches 

like replacing the corresponding segment with zero or a scalar mean. But these methods 

can create discontinuities within the signal which may affect the model outcome during 

analysis. Similarly, to investigate the importance of R-R interval variability, we leveraged 

the periodicity normalization function defined in Sec. IV–A.2. The prediction changes of the 

classification model are then evaluated to estimate how the removed information contributed 

to the original output. Ablation of specific information in the input signal is one of the most 

intuitive ways to understand whether and how much the corresponding feature affected the 

original outcome (feature importance). This procedure highlights the most important regions 

of the ECG that lead the network to a specific decision. Each of the ECG waves is associated 

to a specific event of the cardiac cycle, enabling a direct connection from the physiological 

functioning of the heart to the model’s prediction.

2) Permutation Study: First introduced in [35], permutation study is a different 

approach to quantify feature importance. It analyzes how model behavior is affected when 

the corresponding feature is randomly substituted with values from other samples. This 

procedure breaks the relationship between feature and target, thus the variation in model 

output is indicative of how much the model depends on the feature. As opposed to the 

ablation study, where contribution of the feature is entirely or drastically suppressed, in this 

case the information content is replaced with a random selection from other data. Also in 

this case, we focus our study on the effect of each one of the 8 ECG segments, along with 

R-R interval variability. In order to focus on the specific information, and how it affects 

predictions, the replacement has to be targeted to the specific feature under analysis. To this 

end, we propose a permutation based on sample-wise shuffling and periodicity alignment. 
With sample-wise shuffling, starting from an input ECG sample, we randomly select another 

ECG having equal or greater number of R-peaks. All occurrences of a specific segment 

in the original ECG are changed to the corresponding segment of the new sample. To 

focus even more on the specific characteristic, we consider a permutation with periodicity 

alignment. In particular, after the replacement, the new segment instance is resampled to 

have the same length as in the original ECG. This allows to maintain R-R separations in 

the entire sample, which would otherwise affect the outcome when analyzing a specific 
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segment. The specific analysis for R-R interval variability is then considered separately. In 

this case, the information between the R-peaks are kept the same, but the signal is resampled 

to match R-R separations from the permuted ECG. The overall changes in predictions are 

evaluated before and after permutation for each sample category, thus providing a class-level 

overview of feature importance.

3) LIME Study: The LIME [22] (Local Interpretable Model-agnostic Explanations) 

method attempts to explain a system by analyzing how predictions change when a 

perturbation is applied to input data samples, without additional information about the 

model. The general idea is to approximate a complex model with a collection of many 

simpler models, each of which is faithful in the neighborhood of a unique sample. Fig. 3 

illustrates how LIME can be used to explain model predictions. Starting from a specific 

ECG signal, perturbations are generated by removing a random selection of features. These 

perturbed samples along with their probability scores obtained through the deep network are 

then used to train an interpretable model (typically Lasso regression or decision tree). The 

losses for perturbed samples are weighted according to their proximity to the original, which 

means that the interpretable model incurs a greater cost when it incorrectly labels a sample 

which is close to the original. This model is an approximation of the deep network only for 

small regions of the feature space in the neighborhood of the original signal, but can be used 

to evaluate the contribution of each perturbed feature to the final prediction, as an estimation 

of overall feature importance.

In this study, we apply LIME to each of the 8 ECG segments (defined in Sec. IV–A.1) and to 

R-R interval variability. The perturbations are achieved in the same way as described for the 

ablation study (IV–B.1). These perturbed samples are then used to train a Lasso regression 

model as a local approximation, in order to predict the corresponding class probability 

scores from the pre-trained deep network. Coefficients of the linear regression model denote 

the change in class probability score when the corresponding feature is perturbed. These 

coefficients are used to quantify the corresponding feature importance. Finally, the outcomes 

for all samples of a specific class are averaged to estimate a class-level feature importance 

(global explanation).

C. Local Explanation

As opposed to global explanation studies, where the overall performance of the classifier 

are analyzed, local explanations consider each example in the dataset individually. They 

try to highlight the sections or features of the input signal that have the most influence on 

the classifier output. Evaluation of the contribution of each input feature to the output of a 

model has been largely investigated in the computer vision field [23], [28], [36]. Here, our 

goal is to extend previous findings to biomedical time-series, which are less intuitive to be 

interpreted from a visual perspective. To this end, we consider two different approaches: 

the first is based on saliency maps, to provide a direct evidence of the contribution of 

individual input samples; the second leverages LIME, which refers to the contributions of 

the same features presented for global explanation. With local explanations, each example is 

propagated through the classification network to obtain a probability score for each of the 
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four classes. The class label with the highest probability is said to be the predicted label. In 

this study we present results for two specific cases:

Case 1) Correct classification with high confidence: we consider examples where the 

predicted label matches the true label.

Case 2) Incorrect predictions with high confidence: in this case, we consider examples 

where the predicted label and the true label do not match.

For both cases, 20% of the data was selected as a testing set for local explanations, and has 

not been used in training.

1) Saliency Map: We utilize saliency maps with the guided back-propagation technique 

[37] to highlight the most important regions of input data [14]. Through our analysis 

we have observed that guided back-propagation, deconvolution and GradCAM all provide 

similar local explanations, with vanilla back-propagation being noisier. Guided back­

propagation method is similar to the vanilla back-propagation approach [14], which provides 

a model-agnostic approach for computing primary attributions by analyzing the gradient of 

output with respect to the input, and approximating the network’s behavior with a linear 

representation. More specifically, the input ECG E is propagated through the classification 

network to obtain a probability score GC(E), with C ∈ {S, A,O,Z}. For any class label C, 

the score GC(E) is estimated by the first-order Taylor expansion GC(E) ≈ wTE + b. Here 

w is the gradient of GC with respect to the input, computed using a single pass of the back­

propagation algorithm. With guided back-propagation, negative gradients are additionally 

clamped to zero during the backward pass. The absolute value of the coefficients w are 

considered an estimation of feature importance.

As any individual ECG signal in the dataset lasts for 9 to 60 seconds, we select an interval of 

3 seconds for our study, focusing on the time of highest importance.

2) LIME Study: With a procedure similar to the one described in Sec. IV–B.3, LIME can 

also be used for local explanation. In fact, with LIME we can study the contribution of a 

specific segment (among the 8 segments defined in Sec. IV–A.1) in the classification of a 

specific ECG signal.

V. Results: Global explanations

A. Ablation and Permutation Studies

The results of ablation and permutation studies for each of the 8 segments and for R-R 

variability analysis are shown in Tab. III, where the variation of samples predicted as AF 

by the perturbed model is shown with respect to what was detected by the baseline model. 

In this case, we focus specifically on the AF class. In the first 8 rows of Tab. III, only 

one segment is perturbed, while in the following 8 rows we show the impact of a larger 

perturbation produced by two consecutive segments. We also report the results for R-R 

variability, as described in Sec. IV–B.
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The most evident result is related to R-R variability. We observe a major average drop 

of 65.7% in samples predicted as AF for class A when we remove the variability. This 

means that out of 100 samples classified as A, when we remove the information about R-R 

variability only 34 are classified as A. Therefore, the DL model automatically extracts and 

utilize this information for its final decision. This is also confirmed by the permutation study 

results, which shows a drop of 38.5% for class A. When the true label is S or O instead, by 

permuting the information about R-R variability we have an increase in sample incorrectly 

classified as A, of 9.7% and 12.7%, respectively.

We also observe similar outcomes for all analyses involving segment 7 and 0, which 

correspond to the QRS complex. Intuitively, this part of the signal is crucial for a correct 

estimation of R-peaks, and consequently for R-R intervals. This effect is most prominent 

when both segments are removed (ablation study), with a general drop (considering all 

samples) of 6.9% of samples classified as AF, and 66.6% specifically for class A.

An interesting outcome is related to segment 6, which corresponds to the P-wave for most 

samples. When we remove the signal from this area (ablation study), we observe an overall 

increase in samples detected as AF for all classes with and increase of 0.41%, 4.9%, and 

2.3% for class S, A and O, respectively. On the other hand, with the permutation study, 

which typically entails an increase in P-wave energy, we observe a consistent drop in 

samples detected as AF, in particular for class A (17.6%). This is in accordance with our 

intuition: in a cardiac cycle, the P-wave is associated with atrial contraction, but during 

AF the electrical pulse that cause this contraction is irregular both in location of onset and 

timing, resulting in complete loss of the P-wave in the ECG tracing. The results show that 

the model was able to automatically associate the absence of the P-wave to an AF event.

To correctly interpret these results, we should notice that the results for ablation and 

permutation studies analyze complementary aspects of the same specific feature, as shown in 

this particular case. For example, ablation removes the effect of the P wave, which leads to 

a higher percentage of A samples classified as A. On the other hand, permutation introduces 

P wave into AF signals, which leads to a lower percentage of samples predicted as A. 

Both the suppression and replacement of information from a sample allow to analyze the 

importance of the corresponding feature, but interpretation of the induced effects on the 

model’s behavior lead to a deeper understanding from two different points of view.

Finally, the isoelectric region of the cardiac cycle (segments 3, 4, 5) is another aspect taken 

into account by the DL model. During an AF event, since the action potential might start 

from a random area of the atria, and without the usual coordination and synchronous efforts 

of the sinoatrial (SA) node, there may be some electrical activities also in the hypothetical 

isolectric section of the cycle. In fact, ablation of segment 4 causes a drop in samples 

detected as AF by 2.5% for class A, which is increased to 17.7% when both segment 3 and 

4 are removed or 16.9% when segments 4 and 5 are removed. Once again, the representation 

learned by the DL model includes features that are consistent with the clinical interpretation 

of these signals.
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B. LIME Study

Similar results are obtained with LIME and reported in Fig. 4. Results for class Z do not 

hold practical interpretation, so have been skipped for brevity. For class A, we observe that 

segments 0 and 7 (corresponding to R-peaks) have the most positive weight from linear 

regression, on average. This means that if segments corresponding to the peaks are kept, the 

probability score of correct classification is significantly higher on average as compared to 

when they are removed. Additionally, an average positive weight for class A can be also 

noted for segments 3, 4 and 5. This supports the hypothesis that the presence of electrical 

activity in the isoelectric baseline of the ECG is effectively taken into account by the 

network for AF detection. As shown in Fig. 4, the highest average LIME weight corresponds 

to R-R variability. This implies a greater probability score for A on average, which in turn 

means higher rate of correct classification when the original variability is kept, proving 

once again the primary importance of this feature during the representation learning process. 

Also for class S, the most prominent results are related to segments containing the QRS 

complex (segments 0 and 7). The behavior is similar to what is observed for class A, but the 

magnitude is even larger. On the other hand, the behavior when R-R variability is removed 

is vastly different among the two classes. As expected, removing the variability does not 

significantly affect the probability score of class S.

Similar results are shown also for class O, where the R-R normalization leads to a 

substantial drop in the probability score of O. Segments 0 and 7 (R-peaks) and segment 6 (P­

wave) also show significant positive weights. Moreover, segments 3, 4 and 5 have negligible 

weights, implying that the isoelectric baseline is either present for most samples of class 

O or considered not important for prediction during the representation learning phase. 

Nevertheless, it is worth noting that class O is a group containing multiple arrhythmias, 

thus limiting a direct comparison to human understandable features associated to a specific 

condition. Global explanations can also be used to compare faithfulness of different 

architectures to the clinical features (P-Wave, R-R variability, isoelectric baseline). We use 

LIME quantitative scores to compare the baseline MobileNet architecture with two deep 

networks: AlexNet and ResNet (further details about the architectures can be found in [9]). 

These results are reported in Fig. 5. With 5-fold cross validation, AlexNet achieved overall 

accuracy of 82.06±0.45% and ResNet obtained overall accuracy of 84.93±0.62%. Although 

performance of all the deep networks is similar in terms of accuracy, we can see significant 

difference in their use of clinical features. We observe that the baseline MobileNet model 

and ResNet both have similar LIME weights for all segments and R-R variability. AlexNet 

presents some differences with respect to the other two, with a noticeable positive weight for 

Seg. 6. This means that the presence of P-wave would increase the chance of prediction of 

label A, which is not intuitively explainable from a clinical point of view, and will require 

additional studies to be properly interpreted.

VI. Results: Local Explanations

Since local explanations are unique to each example, we present here representative cases 

for high confidence correct and incorrect classifications for S, A, and O examples.
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Two examples of class S are reported in Fig. 6a and 6b corresponding to a high confidence 

correct and incorrect classification, respectively. Saliency maps give an immediate feedback 

on the parts of the input signal that are considered important for the final DL classification. 

While the ECG in Fig. 6a was correctly classified as S, Fig. 6b shows an example where 

the network focuses its attention on a premature atrial contraction event that occurred 

in a sample labelled as normal sinus rhythm. The high saliency of this region proves 

that this event is the primary reason for the input being incorrectly classified as O. This 

is an important outcome, since it shows that the erroneous behavior of the network has 

been triggered by an anomalous physiological event, and not by some unexplained reason, 

in a similar way a human may be misled during the analysis. Furthermore, automatic 

highlighting of these important regions of the signal may be an additional tool for clinicians 

for a more targeted manual analysis. LIME weights for the same examples are reported in 

Tab. IV, in order to provide additional insights into the specific information used by the 

network for high confidence predictions. For class S, we can see that the example classified 

correctly has a small weight for R-R variability, whereas this feature has a large weight in 

the example classified incorrectly as O. This confirms that R-R variability is one of the main 

reason for the classification outcome. Additionally, the LIME weight for Segment 6 is a 

large positive value, showing that the presence of P wave has been important to classify the 

erroneous example as O, instead of A.

Two examples for class A with high confidence correct and incorrect classification are 

shown in Fig. 6c and 6d, respectively. The saliency map in Fig. 6c identifies an interval 

with non uniform separation between R-peaks, as expected for A. The separation between 

R-peaks seems to be constant in the saliency map from Fig. 6d, which could be a possible 

reason for the network being incorrectly predicting the corresponding input as S. This 

hypothesis is also supported by the corresponding LIME weights (Tab. IV). In fact, the 

example predicted correctly has a very large weight for the R-R variability, as opposed to the 

small value observed for the example predicted incorrectly as S.

Finally, two examples for class O with correct and incorrect classification are shown in Fig. 

6e and 6f, respectively. Fig. 6e shows how the network focuses on specific heartbeats of the 

input signal, which may be considered the discriminating factors for a general arrhythmia. 

The LIME weights in Tab. IV reveal that Seg. 4, corresponding to the isoelectric region of 

the ECG cycles, has a large negative weight, which means that the presence of a signal in 

Seg. 4 leads to a lower probability score as compared to when it is removed. This confirms 

that the focus for prediction is not based only on changes in the heart-rate, but a more 

in-depth analysis is required to discriminate between different arrhythmias. Also for the 

example shown in Fig. 6f, the network automatically identifies a region with large R-R 

variability as highly informative. In this case the network wrongly classifies the sample as A, 

probably due to high noise and the abnormal rhythm.

In all these examples, we observed how the network often focuses on anomalous regions of 

the ECG, which drove the classification of the signal, in accordance to a manual analysis 

performed by human experts.
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VII. Discussion and Conclusion

Recent improvements in both accuracy and usability of personal medical sensors contributed 

to a rapid increase in their use and consequently to the collection of large datasets of 

biomedical data. The availability of such large datasets makes DL methodologies very 

attractive, with recent outstanding results. Their use in clinical applications, however, is 

currently a strong source of debate. This is mainly due to their black-box nature, and the 

challenge to understand which aspects of input data drive the final decisions of the model. 

To encourage the widespread diffusion of these approaches inside and outside the clinic, it is 

thus important to be sure that these decisions are driven by a combinations of data features 

that are appropriate in the specific context.

While classical and interpretable models are typically preferable [10] as they facilitate the 

work of clinical experts that can confirm the algorithm’s diagnosis or identify a potential 

artifact triggering the fallacious decision, on the other side it is often difficult to design 

an interpretable model reaching the performance of a black-box DL model. Also, classical 

models rely on the selection of a unique set of clinical features, which are usually suggested 

by clinical studies, and on the subsequent detection of such features in the signal. These 

approaches typically require a specific domain knowledge to transform unprocessed data 

into suitable representations that can generalize to unseen data. DL showed its value where 

other types of classical models have showed poor performance, from forecasts based on 

electronic medical records [38], to the classification of echocardiograms [39], and other 

types of medical images [40]. Additionally, DL can be valuable also in the detection of 

COVID-19 from longitudinal wearable device data [41]. In all these cases, if a native 

interpretation of the DL output is not possible, a valuable alternative is to rely on post­

hoc explanation techniques, highlighting particular features of the input that triggered the 

DL decisions [42]. Post-hoc explanation techniques can provide both global and local 

explanations. The former is used to explain the behavior of the DL technique at a high 

level for any type of input, while the latter focuses on specific input cases and features that 

triggered the DL decision.

In this work, we focused on explanation of time-series and we chose as a case study the 

detection of AF from 30 seconds single-lead ECG signals. AF is often undiagnosed [43] and 

has significant clinical consequences including a 5-fold increase in the risk of stroke. But 

when diagnosed, there exist therapies proven to be effective in significantly reducing severe 

consequences. Therefore, there is substantial value in frequent (and potentially automated) 

screening for individuals at risks [44], [45] and the potential prediction of AF from ECG 

in normal sinus rhythm [46]. The use of portable devices could facilitate the cost-effective 

collection of cardiac electrical activity outside of the clinic [47], and a large prospective 

trial has already been made with commercial smartwatches [48]. Another option involves 

short at-home measurements of single-lead ECG with other commercial devices, but there 

is a trade-off between continuous measurements, and intermittent or symptomatic screening 

[49]. In any case, the interpretation of these signals will be fully useful to cardiologists 

only if the automatic output can be explained and related to specific features/intervals of the 

ECG input. In this study, we provide a framework for both global and local interpretation 

of ECG signals and other quasi-periodic signals alike. Using ablation tests, permutation tests 
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and LIME method, we showed that the network effectively considers physiological features, 

such as the absence of P-wave, variability of R-R intervals and electrical activity in the 

isoelectric region of the ECG, as important factors for the classification of AF. We were able 

to establish that, at least in part, the model leverages features that match with those used 

by cardiologists in clinical diagnoses. Furthermore, through the use of saliency maps and 

LIME, we also present local explanations for some relevant examples, which can be used 

to confer useful information about the model’s behavior for a specific input by highlighting 

most important regions and features in the input. Moreover, even in the case of erroneous 

behavior, the network is often misled by actual anomalous conditions in the input signal, that 

can be easily highlighted and further investigated.

While clinical cardiologists have helped in the definition of clinical features used in the 

study and interpretation of the explanations, these techniques should be used in a prospective 

study and their clinical effectiveness should be demonstrated before they can be adopted.

In conclusion, the presented framework enables an in-depth exploration of the DL network 

and its decision-making process. This exploration will help in understanding the network 

itself as well as enable new improvements within the architecture, with the ultimate goal of 

exploiting the immense potential of DL for biomedical data analysis, and help make the use 

of neural networks more transparent and fully useful for clinicians.
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Fig. 1: 
Segmentation of one R-R interval into 8 segments of equal length.
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Fig. 2: 
Illustration of periodicity normalization. (a) Original ECG E. (b) Normalized ECG E.
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Fig. 3: 
Explaining a prediction using LIME: (1) Original ECG signal (class label S). (2) Perturbed 

signals with a random subset of segments removed, along with corresponding probability 

scores for class S obtained through the deep network. (3) Interpretable regression model. (4) 

Quantitative explanations.
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Fig. 4: 
LIME average segment and R-R variability weights for S, A and O classes. Error bars 

represent the cross-validation variability in terms of standard deviation.
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Fig. 5: 
LIME average segment and R-R variability weights for class A. Results for three different 

architectures are reported: MobileNet, AlexNet and ResNet. Error bars represent the cross­

validation variability in terms of standard deviation.
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Fig. 6: 
Local explanations using saliency map. (a) S, predicted correctly. (b) S, predicted as O. (c) 

A, predicted correctly. (d) A, predicted as S. (e) O, predicted correctly. (f) O, predicted as A.
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TABLE I:

MobileNet architecture used as baseline classification model.

Layer Type Kernel Shape / Stride Input Size

Conv. 16 × 32 / 2 1 × 9000

Depthwise Conv. 16 × 64 / 1 32 × 4500

Depthwise Conv. 16 × 128 / 2 64 × 4500

Depthwise Conv. 16 × 128 / 1 128 × 2250

Depthwise Conv. 16 × 256 / 2 128 × 2250

Depthwise Conv. 16 × 256 / 1 256 × 1125

Depthwise Conv. 16 × 512 / 2 256 × 1125

Depthwise Conv. 16 × 512 / 1 512 × 563

Depthwise Conv. 16 × 512 / 2 512 × 563

Depthwise Conv. 16 × 512 / 1 512 × 282

Depthwise Conv. 16 × 512 / 2 512 × 282

Depthwise Conv. 16 × 512 / 1 512 × 141

Depthwise Conv. 16 × 1024 / 2 512 × 141

Depthwise Conv. 16 × 1024 / 1 1024 × 71

Average Pooling Pool 1 × 71 1024 × 71

Fully Connected 1024 × 4 1024 × 1
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TABLE II:

Confusion matrix C of the baseline classification model. Ci,j denotes the percentage of ECGs with true label i 

predicted as label j.

Predicted Label

S A O Z

True Label

S 93.01±1.00% 0.43±0.05% 6.04±1.23% 0.51±0.31%

A 3.95±1.17% 80.08±3.07% 14.91±2.55% 1.05±0.52%

O 22.48±3.89% 4.55±0.97% 71.76±4.51% 1.20±0.08%

Z 30.94±3.72% 5.40±3.44% 15.44±5.06% 48.21±4.82%
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