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Abstract

OBJECTIVE: Digital messaging is an established method for promoting physical activity. 

Systematic approaches for dose-finding have not been widely used in behavioral intervention 

development. We apply system identification tools from control systems engineering to estimate 

dynamical models and inform decision rules for digital messaging intervention to promote 

physical activity.

METHODS: Insufficiently-active emerging and young adults (n = 45) wore an activity monitor 

that recorded minute-level step counts and heart rate, and received 0–6 digital messages daily on 

their smartphone for six months. Messages were drawn from three content libraries (move more, 

sit less, inspirational quotes). Location recordings via location services in the user’s smartphone 

were used to lookup weather indices at the time and place of message delivery. Following 

system identification, responses to each message type were simulated under different conditions. 

Response features were extracted to summarize dynamic processes.

RESULTS: A generic model based on composite data was conservative and did not capture 

the heterogeneous responses evident in person-specific models. No messages were uniformly 

ineffective but responses to specific message content in different contexts varied between people. 

Exterior temperature at the time of message receipt moderated the size of some message effects.

CONCLUSIONS: A generic model of message effects on physical activity can provide the initial 

evidence for context-sensitive decision rules in a just-in-time adaptive intervention, but it is likely 

to be error-prone and inefficient. As individual data accumulates, person-specific models can 

be estimated to optimize treatment and evolve as people are exposed to new environments and 

accumulate new experiences.
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Physical activity is a widely recommended behavior across the lifespan because it reduces 

risk for chronic diseases and improves well-being but only 1 in 3 adults achieves the 

recommended level of physical activity (Bennie et al., 2019). Over 95% of emerging 

and young adults have smartphones that afford new possibilities for promoting physical 

activity during the transition into adulthood (Pew Research Center, 2019). Digital messages 

via text messages or notifications have become a popular mode for motivating physical 

activity (Smith et al., 2020). The timing and frequency of messages varies considerably 

between interventions but dosing parameters have typically been constant for all participants 

receiving the intervention. We recently proposed that the optimal dosing of digital messages 

for physical activity promotion may be person-specific (Conroy et al., 2020). In this paper, 

we apply methods from control systems engineering to address the challenge of person­

specific dose-finding for a digital messaging intervention.

Physical Activity Promotion

Physical activity has been called the “best buy” in public health because of its multi­

system benefits for health (Powell et al., 2011). The World Health Organization and the 

United States Department of Health and Human Services have issued guidelines for health­

enhancing physical activity (Bull et al., 2020; U.S. Department of Health and Human 

Services, 2018). Both guidelines recommend accumulating at least 150 minutes/week 

of moderate-intensity or 75 minutes/week of vigorous-intensity physical activity (or an 

equivalent combination). Yet most American adults, including emerging and young adults, 

fail to achieve this recommended level of aerobic physical activity (Bennie et al., 2019).

Inactivity during the transition into adulthood is a particular concern because physical 

inactivity tracks across the lifespan. Although the biggest decreases occur in adolescence 

and midlife, emerging and young adulthood represent a time of increased independence and 

identity exploration that can have lasting effects on physical activity in adulthood (Nelson 

et al., 2008). Promoting physical activity during this period, when contextual cues are 

frequently disrupted, can promote long-term health outcomes. For example, the CARDIA 

study found that young adults who engage in regular physical activity are more likely to 

have a low risk profile (i.e., no cardiovascular events) 20 years later (Liu et al., 2012).

Unfortunately, this segment of the population often eludes the reach of traditional health 

care interventions because they feel healthy, have not developed chronic conditions that 

would require care, and do not see physicians regularly for preventive care (Dietz, 2017; 

Monaghan, 2014). One way to reach them may be through the digital environment. Over 

95% of emerging and young adults in the United States have smartphones (Pew Research 

Center, 2019). Wearable activity trackers, smartphone applications, and text messages 

produce small-to-moderate effects on physical activity (Armanasco et al., 2017; Laranjo 

et al., 2020; Smith et al., 2020).
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Consumer-grade activity trackers have popularized the step count as a physical activity index 

over the intensity-specific activity durations noted in guidelines. Bassett argued that steps 

are “intuitive and readily interpretable to the layperson…measured easily and accurately…

[and] objective” (Bassett et al., 2017, p. 1306). Although a consensus evidence-based goal 

for daily step counts has not been established for adults (Tudor-Locke et al., 2011), there 

is clear evidence that daily step counts are linearly and inversely associated with risk for 

mortality and cardiovascular disease (Hall et al., 2020; Kraus et al., 2019; Saint-Maurice et 

al., 2020). Yet little is known about the optimal dosing of digital messaging interventions for 

increasing step counts. For example, it is unclear if messages to “move more” or “sit less” 

are more effective, or if the same dose should be delivered on weekends and weekdays.

Dose-Finding Methods in Early Stage Intervention Development

Behavioral interventions are complex and development can proceed more efficiently using 

a phased approach. The Obesity-Related Behavioral Intervention Trials framework was 

modeled on the drug development pipeline (Czajkowski et al., 2015). Dose-finding is a key 

task during early-phase intervention development. With a digital messaging intervention, 

delivering too few messages can compromise behavior change but delivering too many 

messages may be disruptive and threaten user engagement. Although dose-finding methods 

are well-established and widely used in drug development, dose-finding has not been 

approached as systematically in developing behavioral interventions, and particularly digital 

health interventions (McVay et al., 2019; Towner et al., 2020; Voils et al., 2014).

Given the low risk for harm from digital messages that promote physical activity, our focus 

was on identifying the minimally-effective dose. Dosing is often described in terms of the 

duration, frequency, and amount of treatment (Voils et al., 2012). For digital messaging, 

doses can represent the number of messages sent, the content of those messages, and the 

timing of the messages. An optimized digital messaging dose will deliver the right content 

at the right time in the fewest number of messages needed to achieve a behavioral goal. 

Determining how to tailor message content and timing to achieve this goal is challenging 

because behavior is multiply determined and the contexts in which behavior unfolds are 

dynamic. Computational modeling of dynamic systems via system identification can be 

useful for determining how to tailor message content and timing (Conroy et al., 2020).

We have previously shown that it is possible to apply system identification tools from 

control systems engineering to develop person-specific dynamic models of behavioral 

responses to digital messages (Ashour et al., 2016; Conroy et al., 2019). In this context, 

the focus is on both how the dynamics of behavior unfold in the presence or absence 

of micro-interventions, and how that knowledge can inform the selection and timing of 

interventions to attain behavioral goals (Albertos & Mareels, 2010). Continuous streams 

of physical activity data can be modeled as a function of recent behavior and message 

content, and model coefficients can be used to simulate expected changes in future behavior 

if different types of messages were delivered following recent behavior. When dynamics 

differ during clearly-defined periods – such as on weekends versus weekdays – piecewise 

dynamic models can be estimated to characterize complementary behavioral systems.
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In this paper, we extend this approach in two important ways. First, we simulate responses 

to different message types under different conditions and, for the first time, extract features 

of those responses to compare person-specific models with a generic model based on 

composite data from the sample as a whole. Second, we enrich the dynamic model of 

physical activity by using momentary weather conditions as inputs to improve predictions 

of behavioral responses. Adults frequently describe poor weather as a barrier to exercise 

(Salmon et al., 2003). Our recent scoping review indicated that device-measured physical 

activity has an inverted-U shaped association with temperature and a negative association 

with precipitation (Turrisi et al., 2021). We hypothesized that the effects of digital messages 

would vary as a function of momentary temperature and precipitation indices, with the 

greatest effects observed during dry conditions with moderate temperatures.

The Present Study

The Physical Activity Guidelines for Americans assert that, “adults should move more and 

sit less throughout the day [and] some physical activity is better than none” (Piercy et 

al., 2018, p. 2025). Translating that recommendation into action is an ongoing challenge. 

Technology provides a means of promoting physical activity during the transition into 

adulthood but little is known about the optimal dosing of a messaging-based intervention. 

In this study, we applied system identification tools to determine the optimal dosing for 

a context-specific, just-in-time digital messaging intervention to promote physical activity. 

For six months, insufficiently-active emerging and young adults wore a consumer-grade 

smartwatch and received randomly-assigned intervention messages (Random AIM) in this 

trial. The number, timing and content of messages varied randomly. Location data at 

the time of message receipt and acknowledgement was used to lookup current weather 

conditions to enrich model predictions. The primary purpose of this study was to identify 

and characterize the heterogeneity of dynamical models of physical activity responses to 

digital messages. A second purpose was to determine whether person-specific dosing of 

digital messages may be warranted by comparing the performance to a generic dynamical 

model based on composite data from the entire sample to person-specific dynamical 

models. A third purpose was to extend and enrich the model by accounting for varying 

environmental conditions at the time of message receipt.

Methods

Participants

Emerging and young adults were recruited using fliers and online advertisements from 

April 2019 to July 2020. Eligible participants were 18–29 years of age, ambulatory, free 

of functional activity limitations, free of visual impairment that would interfere with 

smartphone use, had verbal and written fluency in English and were capable of giving 

informed consent. Participants also needed to own a smartphone using the iOS (v10 or 

later) or Android (v7 or later) operating system. Participants were excluded if self-reported 

physical activity levels were greater than 90 minutes of moderate or higher physical activity 

per week, if unable to be physically active or with medical contraindications for physical 

activity, if pregnant or had a prior diagnosis of cancer, cardiovascular disease, diabetes, or 
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metabolic disorder. Participants completed a telephone screening with a researcher followed 

by a 1-week ambulatory monitoring period wearing an Actigraph wGT3X-BT activity 

monitor. Participants were excluded if the device recorded the equivalent of more than 150 

total minutes of moderate-intensity or greater physical activity based on five or more days 

with 10+ hours of monitor wear time during the 1-week monitoring period.

The World Health Organization declared the COVID-19 pandemic on March 11, 2020. 

Stay-at-home orders associated with the pandemic reduced physical activity levels (Pépin 

et al., 2020; Tison et al., 2020). To prevent confounding of message and pandemic effects, 

analyses were restricted to participants who completed 6 months of data collection prior to 

the pandemic declaration (n = 45).

Measures

During the first laboratory visit, participants self-reported demographic characteristics 

including age, ethnicity, race, sex, educational attainment, employment status and 

occupation. Research staff measured height and weight in duplicate using a wall-mounted 

stadiometer and a digital scale upon removal of the participant’s shoes.

Actigraph wGT3XP-BT activity monitors were worn at the waist over the midline of 

the dominant thigh to assess the duration of moderate-to-vigorous intensity physical 

activity during the secondary screening process (without providing behavioral feedback that 

could elicit reactivity). This device and placement are widely-used as a gold-standard for 

ambulatory physical activity assessment. Established cutpoints were used to classify minutes 

as moderate (1952–5724 counts/min) and vigorous (>5724 counts/min) physical activity 

(Freedson et al., 1998).

The Fitbit Versa/Versa Lite smartwatch, a widely-available consumer-grade monitor that 

could be used to scale an intervention later in development, was worn on the non-dominant 

wrist to track step counts during the 6-month intervention period. This device recorded 

minute-level step counts and heart rate (in 5-minute moving averages). Fitbit devices have 

demonstrated accuracy for step counting that is comparable to research-grade Actigraph 

monitors and suitable for use in adults without mobility limitations (Feehan et al., 2018; 

Imboden et al., 2018).

Protocol

The protocol and compensation schedule are summarized in Figure S1 (available online). 

All procedures were approved by the Institutional Review Board at The Pennsylvania State 

University (Study#00009455).

Screening & Lab Visit #1.—Prospective participants provided verbal consent (day 0) and 

completed a telephone screening interview to determine eligibility. Provisionally-eligible 

participants were scheduled for a laboratory visit to complete screening. During that first lab 

visit (day 1), the researcher described the study and participants provided written informed 

consent. The researcher provided the participant with an Actigraph wGT3X-BT activity 

monitor and instructions to wear it at their waist on an elastic waistband over the midline of 

their dominant leg for the next week during waking hours for a minimum of 10 hours/day, 
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and to remove it when bathing or swimming. The researcher provided a paper wear log and 

asked participants to record times when they placed the device each morning, removed the 

device in the evening, and removed or re-placed the device during the day.

Lab visit #2.—During the second lab visit (day 9), the researcher collected the activity 

monitor and wear log, downloaded data, reviewed non-wear classifications from the 

“Troiano 2007” algorithm in the ActiLife v.6.13.4 software and determined eligibility. 

The researcher described the second phase of the study and participants provided written 

informed consent to enroll. The researcher then assisted the participant with installing 

the Random AIM (custom-designed for this study) and Fitbit mobile applications on her 

or his smartphone, registered the participant on the backend system, confirmed Random 

AIM functionality with a test message, provided the participant with a Fitbit Versa/Versa 

Lite smartwatch, and assisted participants in authorizing Fitbit to share their data via 

Fitabase. The researcher asked the participant to identify separate Do Not Disturb periods 

for weekdays and weekends (<14 hours to provide at least a 10-hour messaging window), 

and informed participant that these times could be changed at any point by contacting the 

researcher.

Intervention period.—For the next 6 months, the Random AIM app delivered 0–6 

messages/day as notifications via the operating system. The number, timing, and content of 

messages were determined at random each night with the constraints that no message could 

be delivered within 15 min of the previous message or within the Do Not Disturb window 

for that day. Messages were drawn from three content libraries: move more (108 messages), 

sit less (108 messages), and inspirational quotes (54 messages). Half of the messages 

were accompanied by a stock photography image corresponding to message content (i.e., 

physical activity for move more messages, standing for sit less images, scenic landscapes 

for inspirational quotes). Notifications with each message were available for viewing and 

acknowledgement for 30 minutes after which time they disappeared and were recorded as 

received but not acknowledged.

For each message, the backend system recorded the time that the message was sent 

from the server to the mobile app, delivered and displayed on the participant’s device, 

and acknowledged by the participant (three separate timestamps). The mobile app used 

location services within the operating system to record latitude and longitude coordinates 

each time a message was received and acknowledged. The timestamped location data at 

display and acknowledgement were used to lookup location-specific momentary weather 

indices via the AccuWeather Current Conditions application programming interface 

(AccuWeather, n.d.). Weather indices are recorded approximately hourly but are rarely 

available immediately so, 3 hours after message receipt, the server looked up location­

specific weather indices using the Historical Current Conditions (past 6 hours) application 

programming interface. Recorded weather indices included temperature (Fahrenheit), dew 

point (Fahrenheit), relative humidity (%), Real Feel temperature (Fahrenheit), apparent 

temperature (Fahrenheit), wind chill temperature (Fahrenheit), wet bulb temperature 

(Fahrenheit), wind direction (degrees), wind direction (English), wind speed (miles/hour), 

wind gust speed (miles/hour), UV index, cloud cover, past-hour precipitation (liquid 
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equivalent, inches), and past 3-hour precipitation (liquid equivalent, inches). The researcher 

monitored the backend dashboards for both the Random AIM and Fitbit apps daily to detect 

compliance problems. A researcher contacted participants via telephone or email anytime 

3 consecutive days without Fitbit heart rate data (suggesting device non-wear) or 3 days 

without acknowledging Random AIM messages were observed.

Lab visit #3.—The researcher scheduled a final lab visit (day 190) after participants 

completed the 6-month intervention period to assist the participant with removing the study 

apps.

Data Analysis

Pre-processing.—Four data tables were combined to model physical activity dynamics 

following messages: person-level availability for messages, minute-level physical activity, 

minute-level heart rate, and messages with weather indices at the time of delivery and 

receipt. Timestamps were harmonized in four source data files and the files were merged. 

Physical activity and heart rate data were truncated to the period from one hour before the 

messaging availability window started to one hour after it ended to ensure sufficient activity 

data when messages were sent early or late in the day. Activity data was separated for 

weekdays and weekends, and classified as missing if zero steps were recorded and heart rate 

data was not available for a minute epoch. Minutes with missing heart rate and zero step 

counts were not included in the model (weekends: 15% missing, weekdays: 13% missing). 

Messages scheduled and sent from the server that were not received and displayed on a 

participant’s device were excluded from the model because future intervention decisions will 

be made without regard to whether a message will be read or not. The available and valid 

minute-level physical activity data was aggregated into sums for each 15-minute epochs. 

Message and weather data were merged with those 15-minute epochs. Days were treated as 

independent and message effects on physical activity were not modeled across days.

System identification.—The Python programming language was used to implement the 

system identification algorithms used to identify the models (Van Rossum & Drake, 2009). 

Building on prior work, physical activity was modeled as a switched system with separate 

models to reflect the different amount and patterns of physical activity on weekdays and 

weekends (Conroy et al., 2019; Phatak et al., 2018). The first stage of analyses was based on 

a linear regression model with multiple variables and noise of the form

y kd = a0 + ∑
i = 1

5
aiy kd − id + ∑

j = 1

3
    ∑

i = 0

5
bijuj kd − id + ε kd (1)

where y(kd) is the system output at time kd which is the step counts for the 15-minute 

epoch at time kd, uj(kd − id) are the inputs for the three message types (move more, sit 

less, inspirational quotes) at time kd − id(0 [message not sent], 1 [message sent]), d is 

the sampling time, ε(kd) is noise at time kd, and a0,ai,bij are the unknown coefficients 

of the model. To manage the trade-off between model complexity and size of the model 

error, model order was constrained to 5 which means that the last five epochs were used in 

predicting the next epoch.

Hojjatinia et al. Page 7

Health Psychol. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the second stage of analyses, a linear parameter-varying (LPV) system was modeled. 

This LPV model described how the dynamics of behavioral responses to messages varied 

as a function of time-varying parameters. In this study, the time-varying parameter was 

temperature. The LPV model with noise is of the form

y kd = a0 p kd + ∑
i = 1

5
ai p kd y kd − id + ∑

j = 1

3
    ∑

i = 0

5
bij p kd uj kd − id

+ ε kd
(2)

where a0(p(kd)),ai(p(kd)),bij(p(kd)) are the unknown functions in the model that vary with 

parameter p at time kd. In this work, the parameter p is considered to be temperature 

and the coefficients a0(p(kd)),ai(p(kd)),bij(p(kd)) are considered to be quadratic function of 

parameter p at time kd. A quadratic function was selected based on evidence that physical 

activity has an inverted-U relation with temperature (Turrisi et al., 2021).

Models from both stages of analyses were used to simulate responses to each message 

type. Impulse responses represent expected step count changes during each 15-minute epoch 

following receipt of each message type (compared to expected step counts had a message 

not been received). Cumulative step responses represent the total expected effect of each 

type of individual message. Error bounds were estimated for each response curve to indicate 

whether effects exceeded the threshold of noise in the model. Full details on estimation and 

optimization methods are provided in a Supplemental File.

Seven features were extracted to describe person-specific impulse response and cumulative 

response curves (Conroy et al., 2019). Initial delay describes the delay between message 

delivery and the first effects (non-zero impulse response) of the message. Peak magnitude 
describes the absolute value of the maximum change in step count during any individual 

epoch following message receipt. Peak delay describes the latency between message receipt 

and achieving peak response magnitude. These first peak features indicate how quickly 

messages have their largest instantaneous effect on behavior. Steady state describes the 

expected overall effect (step count change) of a single message and was defined as the 

value when the cumulative response curve becomes stable. Rise time describes the time 

required for physical activity responses to progress from 10% to 90% of the expected 

total response (steady state). Settling time describes the duration between message receipt 

and cumulative responses achieving ±5% of their steady state. Steady state, rise time, and 

settling time indicate the overall effect of a single message, how quickly that effect emerges, 

and how much time is required to achieve most of the effect. Effective time describes the 

duration that the expected overall effect of a single message is expected to exceed the 

cumulative threshold for noise (i.e., outside the error margin). This feature indicates the time 

that a message is expected to be actively influencing behavior in the face of progressively 

accumulating noise which adds uncertainty to long-term prediction of behavior change.

Results

Participant flow in the Random AIM trial is summarized in Figure S2. Approximately 45% 

of interested participants qualified and enrolled. The analytic sample (n = 45) was mostly 
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women (n=30 [67%]) who identified as White (n=29 [64%]) and not Hispanic or Latino 

(n=43 [96%]). The sample included participants who identified as Asian (n=10 [22%]), 

African-American (n=4 [9%]) and two or more races (n=2 [4%]). The mean age was 24.4 

years (SD = 3.1, range = 18 – 29) and participants’ highest level of education included no 

college education (15.9%), some college (22.7%), bachelor’s degree (34.1%), and graduate 

or professional degrees (27.3%).

Message Delivery

For the 45 participants in the analytic sample, a total of 24,123 messages were scheduled on 

the server (M = 3.05 messages/person/day, SD = 0.16). Of the scheduled messages, 96.0% 

were received and displayed on the mobile device with the total of 23,149 messages (M = 

2.92 messages/person/day, SD = 0.33), and 78.2% were acknowledged within 30 minutes of 

receipt (M = 2.38 messages/person/day, SD = 0.33). The mean latency of acknowledgements 

was 00:05:26 (SD = 00:20:46). Received messages were distributed between “move more” 

(n=9093 [39%]), “sit less” (n=9363 [40%]), and “inspirational quotes” (n=4693 [20%]) 

message libraries. A total of 20,735 of the messages were available with corresponding 

data from the physical activity monitoring device, with a similar distribution of messages 

between “move more” (n=8161 [39%]), “sit less” (n=8351 [40%]), and “inspirational 

quotes” (n=4223 [20%]) in the received messages.

Most messages were delivered on weekdays (72%). The average Do Not Disturb window for 

participants spanned from 19:50 (95% CI = 16:30–23:10) to 09:20 (95% CI = 06:40–12:00) 

for weekdays and 20:30 (95% CI = 18:00–23:00) to 10:10 (95% CI = 08:00–12:20) for 

weekends. Acknowledged messages were distributed across the day so messages provided 

suitable coverage during waking hours outside the Do Not Disturb window (Figure S3, 

top row). Messages were distributed across all four seasons (Figure S3, bottom row). Due 

to the 6-month protocol duration, no participant was sampled in more than three seasons. 

Weather conditions at the time of message acknowledgement varied considerably. When 

weather indices at message acknowledgement were aggregated within person, the average 

temperature was 62°F (SD = 15, 95% CI = 31–92°F), and an average of 8.3% of the 

messages were received after measurable past-hour precipitation (SD = 2.2, 95% CI = 3.9–

12.7). Based on the limited proportion of messages sent during moments with measurable 

precipitation, precipitation models were excluded from this study.

System Identification

Do person-specific models match a generic model?—Two dynamical models of 

physical activity were estimated for each person based on their recent physical activity and 

the types of messages received on weekdays and weekends. The simulated impulse response 

and cumulative step response curves for two participants can be seen in Figures S4–S5.

For the participant in Figure S4, the steady state of physical activity responses differed 

from weekdays to weekends and as a function of the type of message sent. On weekdays, a 

single “sit less” message would be expected to lead to 87 more steps than if he or she did 

not receive the message, but “move more” and “quotes” messages were expected to reduce 

step counts. In contrast, on weekends, “sit less,” “move more” and “quotes” messages were 
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expected to lead to 133, 183, and 65 more steps, respectively, than if he or she did not 

receive the message.

For the participant in Figure S5, the steady state of physical activity responses also differed 

from weekdays to weekends and as a function of message type, but the pattern was different 

from the previous participant. On weekdays, “move more” and “sit less” messages were 

expected to lead to 136 and 132 more steps, respectively, than if he or she did not receive 

the message, but “quotes” messages were not expected to lead to non-trivial changes in step 

counts. On weekends, “quotes” messages were expected to lead to 166 more steps than if he 

or she did not receive the message, but neither “move more” nor “sit less” messages were 

expected to lead to non-trivial changes in step counts.

As a contrast to these person-specific models, a generic model was estimated using 

composite data from all eligible participants. Figure S6 presents the impulse (left panel) 

and cumulative response (right panel) curves for weekdays and weekends. On weekdays, “sit 

less” messages would be expected to lead to 25 more steps than if the message was not sent 

but neither “move more” nor “quotes” messages would be expected to change behavior. On 

weekends, “move more,” and “sit less” messages would be expected to lead to 46 and 53 

more steps, respectively, than if the message was not sent; however, “quotes” messages were 

not expected to lead to non-trivial changes in step counts.

Table 1 compares the features of the simulated responses to messages on weekdays and 

weekends based on the person-specific models and the generic model. The initial delay of 

responses was zero in all models so this feature excluded from the table. Three observations 

can be made based on the remaining features. First, response features in the person-specific 

models vary considerably. Peak response magnitudes in a single 15-minute epoch ranged 

from quite small (<10 step increase) to quite large (~200 step change). Some people are 

expected to have immediate peak responses to messages but others are expected to have 

quite delayed peak responses to messages (60 min). Cumulative responses to messages 

varied considerably with greater responses evident on weekends than weekdays. The 

“average” participant would be expected to increase their activity slightly following most 

messages but individual responses varied. Some participants would be expected to increase 

and others would be expected to decrease activity following messages. The latency of 

total effects was highly variable as indicated by the range of settling time, rise time, and 

effective time in the person-specific models. Second, no single message type appeared to 

be uniformly ineffective. As illustrated by Figures S4–S5, participants exhibited differential 

responsivity to messages both as a function of message content and whether that content 

was sent on a weekday or weekend. Third, the generic model features were within the 

range of features from the person-specific models for 81% (29/36) of the features. Peak 

magnitude estimates from the generic model were especially conservative, account for 5 of 

the 7 out-of-range values. In general, features from the generic model failed to address the 

heterogeneity of responses observed in the person-specific models.

Do person-specific responses to messages vary as a function of 
temperature?—Building on the heterogeneity of responses in our initial models, we 

sought to determine whether participants’ responses also varied under time-varying 
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environmental conditions (specifically, temperature at the time of message receipt). Figures 

S7–S8 present cumulative response curves from person-specific models of two participants’ 

weekday (top row) and weekend (bottom row) responses to three message types: “move 

more” (left panel), “sit less” (center panel) and “quotes” (right panel). These figures 

represent data for the same participants shown in Figures S4–S5, respectively. The range 

of temperatures plotted approximates the 95% confidence interval for observed temperatures 

during the 6-month study (36°F to 90°F for the participant enrolled from June to December; 

23°F to 72°F for the participant enrolled from August to February).

For the participant depicted in Figure S7 (cf. Figure S4), the effects of “move more” 

messages on weekdays were trivial regardless of temperature but, on weekends, “move 

more” message effects on physical activity increased monotonically with the temperature. 

On a hot weekend day (90°F), a single “move more” message would be expected to lead 

to more than 500 additional steps compared to what would be expected if the message 

was not sent. On a cold day (≤63°F), “move more” messages had little to no effect on 

this participant’s physical activity. “Sit less” messages exhibited a different pattern. On 

weekdays, “sit less” message effects increased monotonically with temperature. A single 

“sit less” message on a hot day (90°F) would be expected to lead to nearly 300 more 

steps compared to what would be expected if the message was not sent, but effects were 

progressively smaller as temperatures dropped. On weekends, “sit less” messages would be 

expected to have their greatest effect (>300 step increases) for this participant during more 

extreme – hot or cold – conditions.

For the participant depicted in Figure S8 (cf. Figure S5), message effects consistently 

varied as a function of message type, timing, and temperature. Of note, temperature-related 

differences in effects were not consistently monotonic. The largest effects of “move more” 

messages would be expected on weekdays with extreme temperatures (hot or cold). On 

weekdays, the largest effects of “sit less” and “quotes” messages would be expected at 

times with warmer temperatures. On weekends, “sit less” and “quotes” messages would 

be expected to have their greatest impact on physical activity at moderate temperatures. 

Surprisingly, “sit less” messages were expected to decrease physical activity by over 300 

steps at extremely cold moments on weekends.

Figure S9 (cf. Figure S6) presents the corresponding cumulative response curves from a 

generic model based on composite data from all participants. The generic model simulation 

implies smaller expected effects than the person-specific models, particularly on weekdays. 

Overall, the generic model implied that most message types sent under most conditions 

would have little to no effect on participants’ behavior. The effects of “sit less” message 

increased monotonically as a function of temperature on both weekdays and weekends, 

though the gradient of effects between message types was minimal. “Move more” messages 

had limited effects (~70 step increase) under most conditions with the exception being on 

hot (90°F) weekends. Surprisingly, the generic model implied that “quotes” messages on hot 

(90°F) days would lead to the largest expected effects of all message types on weekdays.
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Discussion

This research applied an engineering-inspired approach to determine the optimal dose for 

a digital messaging intervention. The approach extends the toolkit for dose-finding in 

behavioral intervention development (McVay et al., 2019; Towner et al., 2020; Voils et 

al., 2014). It extended our prior work on dynamical modeling of physical activity and the 

effects of digital messages by obtaining a larger sample with a longer time series enriched 

by data on current weather conditions at the participant’s location when they receive a 

message (Ashour et al., 2016; Conroy et al., 2019). A heterogeneous suite of person-specific 

models of individual participant’s responses to messages under different conditions were 

estimated along with a generic model based on composite data. The heterogeneity of 

responses was notable considering that the sample was delimited to a narrow age range of 

adults who were verified as insufficiently active. Rather than comparing model coefficients 

directly, expected behavioral responses were simulated for different types of messages under 

different conditions and key features of those responses were compared.

These dynamical models provide an evidence-based foundation for future work developing 

algorithms that are optimized to achieve behavior change goals with the smallest number of 

messages possible. Such algorithms represent the decisions rules that determine dosing in a 

just-in-time adaptive intervention as an optimization problem to be solved (Nahum-Shani et 

al., 2018). By applying the computational model at prespecified decision points to simulate 

the expected responses to a variety of intervention options at that decision point, these 

algorithms can determine which message type would yield the greatest benefit under current 

conditions and, if the expected effect of a particular message type exceeds the threshold 

for a minimally-effective dose, trigger delivery of that message. These results provide new 

insights for dose-finding with digital messaging interventions to promote physical activity.

First, based on the heterogeneity of person-specific models, person-specific decision rules 

would appear to be superior to a generic decision rule for optimizing dosing. Features of 

impulse responses (peak magnitude, peak delay) in the generic model were consistently 

dampened in comparison to the mean of person-specific model features. Some features 

of the generic cumulative response curves (steady state, settling time) approximated the 

mean of person-specific cumulative response curves, but those estimates were fixed and 

failed to account for the tremendous variation in individual responses. This insensitivity 

of the generic model to individual differences could result in counter-productive treatment 

decisions if decision rules were based on that model. For example, the generic model 

implied a small but uniform positive effect of the “move more” and “sit less” messages. In 

contrast, the person-specific models revealed that approximately one in three participants 

would be expected to reduce their physical activity following one of these messages 

(see Supplementary Tables 1–2). Decision rules should be designed to accommodate this 

heterogeneity because group-level models are unlikely to generalize to individual-level 

processes (Molenaar, 2004). If not, treatment decisions will be error-prone (selecting the 

wrong message content for delivery or sending messages at the wrong moments) and 

inefficient (sending too many messages to achieve a goal). These characteristics could 

jeopardize engagement and efficacy. Thus, findings point to the promise of using a small 

data paradigm for dose-finding (Hekler et al., 2019).
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Second, although clearly sub-optimal, the generic model may still serve an important role 

in developing person-specific decision rules. Person-specific decision rules are developed 

based on person-specific models, and person-specific models can only be estimated when 

sufficient time-series data are available. Such time series are not immediately available when 

onboarding new users. One solution is to use the generic model of group-level physical 

activity dynamics to generate an initial decision rule (i.e., warm-start optimization). This 

initial generic decision rule could be replaced by progressively more refined person-specific 

decision rules as information accumulates for an individual. In this way, the intervention 

could be doubly adaptive – first adapting individual intervention decisions (i.e., whether to 

send a message and which message to send at each decision point) and second adapting 

individual decision rules as individual data accumulates and person-specific models are 

refined (Conroy et al., 2020; Wongvibulsin et al., 2020).

Third, this study revealed that real-time temperatures provide a potentially-valuable tailoring 

variable for decision rules in a digital messaging tool for promoting physical activity. 

Temperature exhibits one of the clearest relations between the natural environment and 

device-measured physical activity but research has been observational and largely based 

on aggregated temperature data over time (Turrisi et al., 2021). In behavioral intervention 

research, perceived weather has been identified as a barrier to physical activity (Salmon 

et al., 2003). Temperatures also appear to function as an operating condition for physical 

activity interventions. Prior work supported this proposition at the daily time scale but used 

average daily temperature readings from a single (fixed) weather station in Chicago (Welch 

et al., 2018). To accommodate human mobility patterns and weather dynamics from hour to 

hour, the present study extended that support using momentary GPS coordinates to lookup 

temperature indices recorded (or forecast) for the users’ actual location.

The dose-finding approach described here complements methods like the microrandomized 

trial which has been used to develop evidence-based decision rules for just-in-time adaptive 

interventions (Klasnja et al., 2015). For example, the microrandomized trial design was 

used to develop a decision rule for the HeartSteps intervention (Klasnja et al., 2018) and 

that approach is currently being extended using reinforcement learning techniques to adapt 

the decision rule as data accumulates (Liao et al., 2020). System identification techniques 

used here can also be extended to design effective controllers (decision rules) that maximize 

the probability of achieving a desired goal while avoiding unsafe or ineffective operating 

regions.

One of the differentiating features of the system identification approach applied in this study 

involved its flexibility in accommodating smaller streams of data. Although reinforcement 

learning algorithms can be applied to adapt individual’s intervention in real time, they still 

face many challenges such as a need for accommodating noisy data, learning quickly, and 

accommodating model mis-specification (Liao et al., 2020). On the other hand, system 

identification techniques can operate well in the presence of uncertainty and noisy datasets.

The expected effects reported here may seem modest in relation to normative daily step 

counts but keep in mind that these estimates are specific to individual digital messages 

and messaging interventions can send multiple messages each day. Additionally, behavioral 

Hojjatinia et al. Page 13

Health Psychol. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interventions for physical activity rarely involve single components and there may be 

additional effects from and interactions with other components (e.g., behavioral feedback, 

goal setting, social support; Conroy et al., 2014; Michie et al., 2009). Decisions about 

whether to include digital messaging components with person-specific decision rules can 

be informed by factorial experiments to optimize treatment packages for different target 

populations, goals, and resource constraints (Collins, 2018).

Limitations

One limitation of this approach is that the person-specific models are opaque input-output 

models that do not reveal the mechanism(s) of behavior change. System identification has 

been applied to test social-cognitive models on slower (e.g., daily) time scales (Freigoun et 

al., 2017; Hekler et al., 2013; Phatak et al., 2018; Riley et al., 2016). Few health behavior 

theories articulate dynamic processes clearly (Riley et al., 2011) but obtaining intensive 

self-reports of motivational targets following message delivery may be disruptive. It may be 

possible to code messages within each content library based on their social-cognitive targets 

to identify which targeted messages affect behavior. Elaborating the number of message 

categories will reduce the data available to model the effects of each message and the risk 

of overfitting models will increase when model coefficients are based on smaller datasets. 

For that reason, caution is warranted in interpreting findings from contexts with fewer 

observations (e.g., extreme temperatures on weekend days); predicted effects under those 

conditions will be more uncertain.

Second, these models are based on a limited number of people’s historical responses to 

messages in a finite range of environmental conditions and locations. More representative 

samples with respect to people, environmental conditions, and geographic locations may 

reveal even more heterogeneous responses. If future contexts differ from those tested or 

assumptions of stationarity are violated, decisions based on these models may not be 

optimal. Nesselroade and Molennar (2010) “conceive[d] of each person as a system of 

interacting dynamic processes, the unfolding of which produces an individual life trajectory 

in a high-dimensional psychological space” (p. 36). Assuming that people (i.e., systems) 

are constantly developing and adapting to environmental exposures and accumulated 

experiences (a core assumption of developmental system theory; Ford & Lerner, 1992), 

periodic model adaptations based on accumulating data may prove valuable in future work 

because people who learn can benefit from decision rules that learn and adapt with them.

These results provide an empirical strategy for iteratively-refining person-specific models. 

Such models can inform the design of person-specific decision rules but it is not 

yet clear whether person-specific decision rules are superior to simpler rules based on 

random selections or ad hoc decision parameters (with or without contextual information). 

Comparative effectiveness and cost-benefit studies are needed to answer those questions.

Conclusions

Digital messaging is an established tool for promoting physical activity (Smith et al., 2020). 

Historically, dosing parameters have been determined by experts’ domain knowledge or 

user preferences. Efforts to amplify effects using a range of personalization strategies have 
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not been successful (Armanasco et al., 2017). This study provided an approach for person­

specific dose-finding with a digital messaging intervention. This approach incorporates 

contextual data (recent behavior, day-of-week, weather conditions) and historical responses 

to different treatments (i.e., message types) to inform future decisions about treatment 

(i.e., whether or not to send a message and which message to send). Dose-finding is 

an important task for early-phase behavioral intervention development (Czajkowski et al., 

2015). The challenge of dose-finding for complex behaviors that are multiply-determined 

and possibly regulated idiographically is substantial. Similar to the generic model estimated 

in this study, this study provides a starting point. The next steps in developing this method 

involve translating the generic model into a warm-start controller and developing methods 

for periodically updating that decision rule based on incoming data. That work is underway.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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