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Abstract

Older adults in nursing homes (NHs) have increased frailty, medication, and antimicrobial exposures, all factors that are known to affect the 
composition of gut microbiota. Our objective was to define which factors have the greatest association with the NH resident gut microbiota, 
explore patterns of dysbiosis and compositional changes in gut microbiota over time in this environment. We collected serial stool samples from 
NH residents. Residents were assessed using the Mini Nutritional Assessment tool and Clinical Frailty Scale. Bacterial composition of resident 
stool samples was determined by metagenomic sequencing. We used mixed-effect random forest modeling to identify clinical covariates that 
associate with microbiota. We enrolled and followed 166 residents from 5 NHs collecting 512 stool samples and following 15 residents for 
> 1 year. Medications, particularly psychoactive and antihypertensive medications, had the greatest effect on the microbiota. Age and frailty 
also contributed, and were associated with increased and decreased diversity, respectively. The microbiota of residents who had lived in the 
NH for > 1 year were enriched in inflammatory and pathogenic species and reduced in anti-inflammatory and symbiotic species. We observed 
intraindividual stability of the microbiome among older adults who had lived in the NH already for >1 year followed with sample collections 
1 year apart. Older adult NH gut microbiome is heavily influenced by medications, age, and frailty. This microbiome is influenced by the length 
of NH residency with dysbiosis becoming evident at 12 months, however, after this point there is demonstrated relative stability over time.

Keywords:  Antibiotics, Frailty, Gut microbiome, Medications, Nursing home, Residents

As we understand how important the microbiome is toward 
maintaining health, it is important to understand the fac-
tors influencing the microbiome of older adults aged 65  years 
and older in the nursing home (NH). Factors that disrupt 
the microbiome are common in NHs, including high use of 
antimicrobials and more frequent hospitalizations (1). In NHs, 
multidrug-resistant infections are more common and NHs may 
serve as a reservoir for introducing drug-resistant pathogens 
into other health care settings (2). Antibiotic exposure is highly 
prevalent in the NH (3) and it rapidly and profoundly affects 

the gut microbiota, reducing overall diversity and shifting com-
position away from beneficial species (4). Antibiotics are not 
the only medication that influences microbiome composition 
as we now know many prescription drugs have a notable im-
pact on the overall architecture of the intestinal microbiome 
(5). Additionally, more than 75% of NH residents have at 
least 2 of the 10 most common chronic medical conditions (6). 
These medical conditions have strong associations with the 
gut microbiome composition, such as high blood pressure (7), 
Alzheimer’s disease (8), and diabetes (9).
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NH residents tend to be frailer than community-dwelling older 
adults and are exposed to many more medications. Polypharmacy, 
a condition in which a person takes 5 or more daily medications 
(10), is widespread within U.S. NHs (11). Polypharmacy is associ-
ated with a number of adverse health outcomes experienced by NH 
older adults such as falls, adverse drug reactions, increased length of 
hospital stays, and mortality (12). We now know that nonantibiotic, 
polypharmacy itself, independent of specific drug classes, has been 
shown to represent a determinant of gut microbiota composition 
that has detrimental clinical consequences and is associated with a 
reduction in microbiome diversity and gut dysbiosis (13).

Frailty is a major public health problem for an aging society 
and its prevalence and associations with gut dysbiosis (14) make 
it another critical factor among NH residents. Frailty is a quantifi-
able syndrome that encompasses loss of physical, psychological, and 
social abilities, and leaves one less able to recover from a stressful 
event, such as injury or illness. This multidimensional syndrome has 
losses in reserves of energy, physical ability, cognition, and health 
that leads to vulnerability (15). About half of all NH older adults are 
frail and upwards of 40% can be defined as pre-frail (16).

Given that dysbiosis of the gut microbiome intersects several 
critical issues facing NH older adults, we sought to gain a better 
understanding of how clinical factors contribute to the composition 
of the NH older adult microbiome. Accordingly, we followed a co-
hort of older adults from multiple NH facilities to investigate the 
influence of the following: (a) medical and demographic factors; (b) 
frailty and age-related factors on microbiome composition; and (c) 
the temporal stability of the older adult microbiome during NH resi-
dency. Our goal was to contribute to the understanding of the NH 
microbiome and highlight how the microbiome can serve as a poten-
tial therapeutic target to reduce disease burden among NH residents.

Method

Study Setting and Population
This prospective cohort study was approved by the institutional re-
view board at the University of Massachusetts Medical School. This 
cohort consists of NH residents ≥65 years of age who resided in 1 
of the 5 NH facilities located in central Massachusetts. We enrolled 
residents who had been residing at a NH facility and did not have 
any diarrheal illness or antimicrobial exposure within the preceding 
4 weeks. It is important to note that residents within each NH fa-
cility were provided the same daily foods to eat. No residents in this 
study suffered from dysphagia or had a feeding tube. Any residents 
with antimicrobial exposure or a diarrheal illness before the first 
sample collected through the final sample collected were excluded 
from this analysis. A  subset of willing participants were enrolled 
a second time 1 year after their initial stool sample was collected. 
These participants met the same criteria described above. This study 
was approved by the University of Massachusetts Medical School’s 
Institutional Review Board (IRB docket H00010892). All partici-
pants, or the participant’s legally authorized representative, gave in-
formed consent to participate in this study.

Data Collection
We conducted baseline and end-of-study medical record abstraction 
for factors associated with key study outcomes. These factors in-
cluded the following: age, nutritional status, comorbidities, medica-
tions, and frailty (17). Specifically, prior history of hospitalizations 
within 1 year prior to enrollment, and antibiotic exposures 6 months 

prior; daily and “as needed” (PRN) medications; polypharmacy de-
fined as 5 or more daily medications (10); and age, sex, race, and 
length of NH stay  were recorded. Resident age collapsed into 4 
groups—65–74, 75–84, 85–94, and ≥95  years. Comorbidity and 
frailty were assessed during baseline interviews with corroborating 
input from family or facility staff by trained research staff. We used 
the Charlson Comorbidity Index, a widely used instrument designed 
to measure the burden of medical diseases and predict mortality (18). 
Frailty was categorized according to the validated and widely util-
ized Canadian Study of Health and Aging’s 7-point Clinical Frailty 
Scale. This instrument has been previously applied to define signa-
tures of frailty in the gut microbiota (19). We assessed nutritional 
status using the Mini Nutritional Assessment (MNA) tool, which is 
used routinely in NH residents (20). Residents were categorized as 
normal, at risk, or malnourished based on the MNA survey adminis-
tered to the residents by trained research staff or the nurse caring for 
the resident if mentally impaired. Assessments were also made only 
at baseline and at the end of the study.

Sample Collection and Processing
We collected monthly stool samples from each resident with a goal of 
4 consecutive months. DNA was extracted from stool samples using 
the PowerMag Soil DNA Isolation Kit on an epMotion 5075 TMX 
liquid handling workstation according to manufacture protocols 
(MO BIO Laboratories, #27100-4-EP). Sequencing libraries were 
constructed using the Nextera XT DNA Library Prep Kit (Illumina, 
Inc., #FC-131–1096) and sequenced on a NextSeq 500 Sequencing 
System as 2 × 150 nucleotide paired-end reads.

Sequence Processing and Analysis
Shotgun metagenomic reads were first trimmed and quality fil-
tered to remove sequencing adapters and host contamination using 
Trimmomatic and Bowtie2, respectively, as part of the KneadData 
pipeline version 0.7.2 (https://huttenhower.sph.harvard.edu/
kneaddata/). Reads were then profiled for microbial taxonomic 
abundances using Metaphlan2 (21) (as in our previous work) (8,19).

Statistical and Computational Analysis
We performed traditional unsupervised correspondence analysis 
(nonmetric multidimensional scaling and unsupervised hierarchical 
clustering) to first determine sample similarity with respect to the clin-
ical covariates of interest. Permutation Multivariate Analysis of Variance 
(PERMANOVA) was performed to evaluate inter- and intraindividual 
variation in microbial abundance. To determine the contribution of 
each covariate to changes in microbiome composition, we performed 
mixed-effect random forest regression modeling in R.  Specifically, for 
every microbe, we predicted its relative abundance as a function of the 
available clinical covariates and using patient ID as random effect. We 
ran permutated importance analysis to determine the significance of as-
sociations between clinical covariates and microbial abundances. We 
deemed as significant microbiome–covariate associations with false dis-
covery rate (FDR) adjusted p-value less than .05. To determine the effect 
of repeated enrollment, we used mixed-effect random forest classification 
to predict enrollment window (first or second) as a function of species 
abundance. Again, permuted importance analysis was used to determine 
species whose abundance is significantly associated (FDR < 0.05) with 
classifying a sample according to enrollment. The R package ggplot2 was 
used for visualization of the relationship between clinical covariates and 
modeling-selected microbiome features. We want to note that our data set 
consists of repeated samples (eg, multiple samples belonging to the same 
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individuals), so application of any methods (including Spearman’s or 
Linear discriminant analysis Effect Size) would be a statistical mistake. In 
order to fully use the entire data sets and not having to average across pa-
tient samples, we need to use a mixed-effect modeling type of approach. 
We could not use linear mixed-effect models because of the proportional 
nature of the microbiome data (relative abundances). Furthermore, we 
need a method that can include data of different modalities. The advan-
tage of using mixed-effect random forest is that it is basically the only 
method that allows for longitudinal of repeated samples, does not care 
about the underlying distribution of the data (it is nonparametric), and 
allows for including covariates that are on different scales or are of dif-
ferent nature.

Results

NH Facilities and Prevalence of Polypharmacy
Over a 3-year time period, we collected 512 stool samples from 
166 older adults across 5 NH facilities with an average of 3.1 
stool samples per resident. The average age was 86.2  years (SD 
9.1) with 18.1% men. There were prevalent exposures within the 
preceding 6  months to both antibiotics (18.7%) and hospital ad-
missions (23.5%). Significant differences were observed in gender, 
polypharmacy, and clinical scores for medical comorbidities, frailty, 
and malnutrition across the 5 NH sites (Table 1).

Medication Exposure
Polypharmacy was prevalent with 70.5% of residents taking 5 or more 
daily medications. Approximately half of the cohort (43.4%) took 8 
or more daily medications and 87.3% reported at least 2 daily medi-
cations; only 6.6% reported no daily medications. The 5 most fre-
quently encountered medication classes were antidepressants, beta 
blockers, acid-reducing medications, statins, and calcium channel 
blockers (Supplementary Table 1). We did note significant differences 
in medications taken by residents dependent on site. Daily probiotic use 
(14%), however, was similar across all sites with Lactobacillus acidoph-
ilus being most prevalent. Hypertension (67.1%), hypercholesteremia 
(40.8%), COPD (11.0%), and mild cerebrovascular disease (10.4%) 
were the most prevalent medical conditions.

Microbiome Composition Correlates with Clinical 
Factors Including Age and Frailty
We sought to explain how microbiome composition varies with 
older adult covariates demographic, clinical, and medication data. 

Microbiome alpha diversity (determine as Shannon and Inverse 
Simpson diversity metrics) calculated from the metagenomic pro-
files of longitudinally collected samples were modeled using linear 
mixed-effects modeling, with clinical covariates as fixed effects 
and patient ID as random effect. Microbiome alpha diversity was 
negatively associated with frailty, and positively associated with 
age (after adjusting for sex, nutrition, location, time in the facility, 
polypharmacy, and 6-month history of antibiotic exposure; Table 2).

To determine associations between the relative abundance of 
each microbial species detected from the metagenomic sequencing 
and the clinical covariates, we performed mixed-effect random forest 
modeling (see Method). This method is agnostic to the distribution of 
the data and allows for assessment of predictive accuracy and identi-
fication of statistically significant associations through permutation 
analysis. Our results revealed a mix of medications and demographic, 
environmental, and medical conditions to be strong predictors of 
microbiome composition. Medications were the most prevalent 
predictors with 12 specific medications being significant (FDR ad-
justed p < .05). These medications, in order of strength of predicting 
variable, included angiotensin-converting enzyme (ACE) inhibitors, 
cholinesterase inhibitors, antidepressants, anticoagulation, serotonin 
reuptake inhibitors, atypical antipsychotics, statins, loop diuretics, 
gamma-aminobutyric acid analogs, thyroid replacement medica-
tions, beta 1 selective agents, and benzodiazepines. Also significant 
were hypertension, kidney disease, and cerebrovascular disease 
(medical conditions); age and gender (demographic); hospital ex-
posure (environmental); and frailty and malnutrition (Figure 1A). 

Table 1. Demographics and Clinical Scores by Nursing Home Site

Resident Characteristic*
Site 1  
n = 35

Site 2  
n = 20

Site 3  
n = 39

Site 4  
n = 51

Site 5  
n = 21 p Value

Age (mean [SD]) (years) 86.8 (8.3) 82 (9.3) 86.1 (8.4) 86.4 (10.8) 88.6 (5.7) .21
Male 0 (0.0) 4 (20.0) 15 (38.5) 8 (15.7) 3 (14.3) .001
Polypharmacy 19 (54.3) 14 (70.0) 31 (79.5) 32 (62.7) 21 (100) .003
Antibiotic exposure 6 (17.1) 6 (30.0) 3 (7.7) 9 (17.6) 7 (33.3) .10
Hosp Exp 7 (20.0) 3 (15.0) 7 (17.9) 11 (21.6) 4 (19.0) .98
Clinical Scores
CCI (mean [SD]) 0 (0.0) 0.1 (0.4) 1.6 (2.6) 0.5 (1.0) 2.7 (2.7) <.001
CFS (mean [SD]) 5.6 (1.0) 6.6 (1.1) 6.5 (0.9) 7.0 (0.6) 6.8 (1.0) <.001
MNA (mean [SD]) 1.6 (0.7) 2.2 (0.8) 2.2 (0.7) 2.3 (0.6) 2 (0.6) <.001

Notes: χ 2 test was used to compare categoric variables and analysis of variance for continuous variables. CCI = Charlson Comorbidity Index; CFS = Clinical 
Frailty Scale; Hosp Exp = hospital exposure past year; MNA = The Mini Nutritional Assessment; SD = standard deviation.

*Data are presented as the number (%), unless otherwise specified.

Table 2. Mixed-effects Modeling Using Shannon Index and Inverse 
Simpson Index with Clinical Covariates

Shannon Index Inverse Simpson

Covariate B Coefficient p Value B Coefficient p Value

Age* .0105449 .009 .086833 .022
Sex .1032911 .27 .7653592 .39
Frailty* −.0876286 .039 −.9267414 .020
Malnutrition −.0176967 .76 .0768242 .89
Polypharmacy −.0730231 .34 −.2927881 .68
Antibiotic exposure −.0413258 .63 −1.087216 .18
Time at facility −.0000411 .98 −.0033293 .79
Facility −.0659972 .50 −.3106582 .73
Floor .0292822 .42 .1522867 .64

Note: *Denote variables with statistical significance (p < .05).
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The 2 strongest predictors are ACE inhibitors used for the reduc-
tion of blood pressure, and cholinesterase inhibitors for the treat-
ment of Alzheimer’s and other neurological diseases. Only 10% of 
residents were taking either ACE or cholinesterase inhibitors but, 
notably, both of these medications predicted higher abundances 
of pathobionts such as Pseudomonas aeruginosa (22) associating 
with ACE inhibitors, and Bacteroides thetaiotaomicron (23) associ-
ating with cholinesterase inhibitors and also predicted higher abun-
dances of bacterial species that produce butyrate or are considered 
anti-inflammatory (ie, Faecalibacterium prausnitzii (24) with ACE 
inhibitors and Ruminococcus torques (25) with cholinesterase in-
hibitors; Supplementary Figure 1).

We noted similar patterns with the other medications, where 
for each medication, the model predicts a mixture of bacterial 
species with known beneficial and detrimental benefits to human 
health to be associated. Regarding demographics, both frailty 
and age were significant predictors of microbiome composition. 
Increasing frailty and age both associated with higher abundances 
of bacteria associated with disease and lower abundances of spe-
cies often referred to as symbiotic (see Supplementary Figure 2A 
for age and Supplementary Figure 2B for frailty). Increasing frailty 
had higher abundances of pathogens and inflammatory-associated 
microbiota such as Bacteroides dorei (26), and Flavonifractor 
plautii (27), and lower abundances of butyrate producing or-
ganisms such as Bacteroides vulgatus (28), Anaerostipes hadrus 
(29), and F prausnitzii (24). Among older residents’ higher abun-
dances of pathogens (Shigella species) (30) and inflammatory-
associated microbiota (Bacteroides eggerthii and B dorei) (26) 
and lower abundances of symbiotic microbiota (Bifidobacterium 
adolescentis and Eubacterium hallii) (31,32) was seen, however, 

conversely, higher abundances of the key butyrate producer F 
prausnitzii (24) were also seen in older residents.

After grouping medications according to indications for treat-
ment, we sought to determine the extent to which the relative influ-
ence on microbiome composition could be explained by treatment 
of medical conditions (Figure 1B). The relative abundance of species 
in the NH microbiome is over 50% (representing the number of spe-
cies in where a factor belonging to a certain group is predicted by 
the modeling to have significant association over the total number 
of modeled species) and is influenced by medications followed next 
by medical conditions (15.9%), demographics (9.1%; including age 
and gender), environment (9.8%), frailty (5.1%), and finally malnu-
trition (1.1%). Environmental factors included recent hospital ad-
missions, and antibiotic use along with location either by site (NH 
facility) or floor/wing. Interestingly, the floor/wing location within 
a NH influenced just over 2% (or 19% of the environmental vari-
ables) of the microbiome after adjusting for the other covariates, and 
which also included NH site. The site variable would correlate with 
the diet provided as all residents within a site eat the same meals. 
Among medication the psychoactive, antihypertensive, metabolic, 
and dementia medications are predicted to have the greatest influ-
ence on microbiome composition.

Microbiome Composition Changes Occur Over 
Length of Stay Within the NH
We explored the effect of the length of NH residency on microbiome 
composition. It has been previously shown that the NH microbiome 
differs from the microbiome of community-dwelling older 
adults; it takes more than 1  year before new NH residents adopt 
a NH microbiome (17). Using repeated-samples random forest 

Figure 1. Clinical and demographic variables that predict microbiome composition. Results from mixed-effect random forest modeling using all demographic 
and clinical variables (including each medication taken and clinical scoring systems for frailty, nutrition, and comorbidities) to predict species abundance in 
the gastrointestinal tract. (A) Ranking of forest predictors based on frequency of significance (# of times a predictor is found to be significantly associated with 
a microbe over the total number of modeled species). Significance was determined by running permutated importance analysis calculations and using an 
FDR adjusted p-value of .05. (B) Pie chart to illustrate the distribution of the clinical factors found by the modeling to be significantly associated with the NH 
microbiome. Drugs were grouped by treatment class. NH = nursing home. Full color version is available within the online issue.
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classification (8), we analyzed older adults with less than or greater 
than 1 year of NH residence. For older adults with residence >1 year, 
species associated with inflammation were increased in abundance 
(ie, B vulgatus and Veillonella parvula) (26,33) and species with 
anti-inflammatory and symbiotic relationships were decreased (ie, 
F prausnitzii and Eubacterium species) (24,34) (Figure 2). We also 
noted lower abundances of anti-inflammatory microbiota such as 
Ruminococcus bromii and Ruminococcus lactaris (35).

A secondary analysis, independent of results in Figure 2, was con-
ducted to assess changes in the microbiome within the first year of NH 
residence. Length of residence was binned as <1 month, 1–6 months, 
and >6  months. Similar patterns of increasing pathogenic species 
abundances were observed beginning at 1–6 months (eg, Bacteroides 
ovatus, Enterococcus faecalis, Haemophilus parainfluenzae, and 
Klebsiella pneumoniae) and decreasing anti-inflammatory species 
starting at 6 months (eg, F prausnitzii) (Supplementary Figure 3).

Resident’s Microbiome Is Relatively Stable Over 
Long Periods of Time
Out of the cohort, 15 older adults were followed over multiple 
years. Stool samples were first collected over a 3- to 4-month, first-
enrollment period and then, after a lapse of greater than 1  year, 

additional samples were collected in a second enrollment. Interval 
changes in their health status were noted using the same methods de-
scribed above. The average time between samplings was 14 months 
(447 days; SD 84)). Among these older adults, 5 did not have any 
changes in their health, 9 had medication changes, 3 became mal-
nourished, and 1 had worsening frailty (Supplementary Table 2).

We first explored beta-diversity by ordination analysis (multidi-
mensional scaling and redundancy analysis) using Jaccard distances 
for a measure of community species dissimilarity among the 15 par-
ticipants from first- and second-enrollment sampling. Microbiota 
compositional differences were greater between individuals than 
within individuals over the period of enrollments demonstrating 
fecal microbiota stability in NH residents (PERMANOVA—Jaccard 
distance p < .001; Figure 3). We then tested whether alpha diversity 
varied between first and second enrollments according to changes 
in frailty, nutrition and antibiotic exposure intervals, or addition of 
medication classes. Antibiotic exposure was the only variable asso-
ciated with decreased diversity (Shannon Index, b coef. −0.6488, 
p  =  .004; Inverse Simpson Index (b coef. −6.105988, p  =  .001). 
Interestingly, while the beta diversity analysis showed similarity be-
tween the 2-sampling periods in terms of broad community com-
position, a few species were found to be differential between the 
2 enrollment windows by mixed-effect random forest classification 

Figure 2. Species significantly associated with length of nursing home (NH) residence: Species level composition differs between older adults with less than, 
or greater than, 1 year NH residence. Data are presented as the mean among each residents’ average abundance with whiskers corresponding to the 95th 
percentiles. Mixed-effect random forest modeling was used to identify significant associations (FDR adjusted p < .05) using participants ID as a random effect 
to account for repeated sampling. Full color version is available within the online issue.
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modeling (Supplementary Figure 4). We could not associate these 
differences with changes in clinical covariates, suggesting either that 
the microbiome is resilient to short-term changes or there is not a 
specific healthy or dysbiotic pattern that emerges from these differ-
ences with the exception of antibiotic exposure. Of note, only one 
resident had worsening frailty limiting the analysis with this specific 
clinical covariate.

Discussion

The NH contains a vulnerable group of older adults, living in con-
fined communities, who are older, frailer, and have more comorbidities 
than older adults living in the community. In an attempt to better 
understand what factors influence the microbiome composition in 
NH older adults, we looked at demographic and clinical associations 
with the microbiome composition. We found that the high prevalence 
of psychoactive medications is strongly associated with microbiome 
composition and that other medications, such as those to treat hyper-
tension, and other variables such as age, gender, frailty, and environ-
mental factors all influenced microbiome composition. Interestingly, 
the length of NH residence correlated with increased abundances of 
pathogenic species and decreased abundances of anti-inflammatory or 
symbiotic bacterial species as early as 6 months after NH admission. 
Taken together, there appears to be a dysbiotic microbiome that de-
velops over time and is strongly influenced by not only the medica-
tions that the residents are exposed to but also the resident’s frailty, 
age, nutrition, and length of residence.

Among Older Adults Exposed to Many Medications, 
Certain Classes Had a Greater Impact on 
Microbiome Composition
Residents in our cohort had a high prevalence of polypharmacy with 
7 of 10 residents taking 5 or more daily medications. The prevalence 
of polypharmacy also varied significantly between NH sites, which has 
also been reported as typical of the NH environment (36). Medications 
with the strongest influence on microbiome composition were not the 
most commonly used. For example, the top 2 predictors of microbiome 
composition were medications used for the reduction of blood pressure 
(ACE inhibitors) and medications used for the treatment of Alzheimer’s 
disease (cholinesterase inhibitors) with only about 10% of the popula-
tion taking either of these medication classes. In general, medications 
predicted 60% of the microbiome composition; specific medications, 
such as psychoactive medications, antihypertensives, made up a large 
part of this group. It is important to note that this is taking into account 

the resident’s medical conditions, nutrition, and demographics into the 
analysis which includes the categorization of polypharmacy.

Our descriptive analysis demonstrates the importance of 
nonantibiotic medications in shaping the intestinal microbiome. 
Compared to daily medications, recent antibiotic exposure did 
not influence a significant amount of the microbiome with only 
about 1.5% of the composition associated with this exposure. 
Nonantibiotic medications have been associated with changes in 
microbiome composition and about 24% of marked drugs have 
been shown to inhibit at least one common intestinal microbiome 
bacterial strain in vitro (37). Many medications are well known 
to have specific effects on the microbiome composition. The best 
examples of this are antibiotic exposures, where there is a loss in 
diversity and shifts in taxonomy abundances (38). Other medica-
tions such as proton pump inhibitors (39), statins (40), nonsteroidal 
anti-inflammatory drugs (41), and atypical antipsychotics (42) have 
had their microbiome effects described, however generally in isola-
tion. It is uncommon that an older adult in NH care is not taking 
multiple daily medications. In fact, in less than 10% of our cohort, 
older adults were taking only one medication each day.

Increasing Age and Frailty Associate with 
Microbiome Composition
After medications and medical conditions, age and frailty make 
up a significant proportion associating with roughly 5% of the 
microbiome composition. Increasing frailty was associated with 
decreasing diversity, a finding that has been reported in older adults 
before however among a cohort with younger mean age of 63 years 
(range 42–86) (43). We also found that increasing frailty was asso-
ciated with a higher prevalence of pathogens and lower abundances 
of butyrate producing organisms. Frailty has been shown to asso-
ciate with a loss in diversity and community-associated microbiota 
(17,43). Frailty is a critical aging-related state marked by diminished 
physiological reserve and increased risk of adverse outcomes such as 
disability and death (44). Recent studies are beginning to suggest that 
the microbiome may play a role in the pathophysiology of frailty, 
however, evidence of the microbiome–frailty relationship remains 
limited (45). Frailty and sarcopenia has also shown associations with 
profiles of gut microbiota that link to distinct inflammatory biomol-
ecules (46). Here, we add more evidence of a link between frailty 
and a dysbiotic microbiome hallmarked by increased pathogens 
and a reduction in health-associated microbiota. A similar pattern is 
not seen when it comes to age. Among older residents’ higher abun-
dances of pathogens and inflammatory-associated microbiota such 
as Bacteroides eggerthii and B dorei (26), and lower abundances of 
symbiotic microbiota were seen. Conversely, however, higher abun-
dances of the key butyrate producer F prausnitzii (24) were also seen 
in older residents. Lower abundances of R. bromii with higher abun-
dances of butyrate producing organisms among older NH residents 
have been previously noted (19). Gut microbiome diversity is known 
to peak around 40 years of age and then decrease with significant 
loss of diversity among older adults (47). We noted increasing diver-
sity with age among NH residents. A possible explanation for this 
finding is that to survive to an older age a more diverse microbiome, 
which is more capable and resilient (48), can impart survival benefits 
to the older adult. This explanation also fits with F prausnitzii being 
more prevalent in older residents.

Among our residents, we found that the environment does play 
a role in the composition of the microbiome. Among health volun-
teers, environment has been shown to have a substantial role in 
shaping the microbiome (49). This is of critical importance when 

Figure 3. Microbiome composition differs between nursing home older adults 
irrespective of time of enrollment. Samples collected from the 15 individuals 
(color-coded) during initial enrollment (circles) and over 1 year later (triangles). 
Each individual is displayed with ellipses with a 95% confidence interval. 
Ordination analysis using multidimensional scaling (MDS) and distance-
based redundance (RDA) on the samples pairwise Jaccard distance is plotted.
Full color version is available within the online issue.
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considering how the microbiome might influence the spread of and 
infection from common pathogens, such as Clostridioides difficile 
(50), among older adults living together in the NH. After adjusting 
for all other clinical and demographic variables, the local environ-
ment, in the form of the floor/wing the resident lived, predicted 30% 
of the environmental category or 3% overall. Recent antibiotic ex-
posure and hospitalization also had similar predictive power and all 
3 were in the top 30 predictors of microbiome composition.

Longer Time Within the NH Environment Associated 
with Higher Abundances of Pathogens and Lower 
Abundances of Symbiotic Microbiota
The length of time an older adult lived within the NH environment 
did correlate with decreases in a several key microbiome species. 
First looking at the 1-year mark as a cutoff in categorizing residents 
we noted increased presence of bacterial species, among older adults 
living in the NH >1, year that cause local inflammation such as V 
parvula (33) or pathogenic species such as B vulgatus and B stercoris 
(26). We also noted lower abundances of anti-inflammatory micro-
biota such as R bromii and R lactaris (35), and key commensal spe-
cies including F prausnitzii (24) and Eubacterium species (34) being 
decreased in older adults living in the NH >1 year. We chose 1 year, a 
priori, to investigate microbiome-associated changes over time based 
off of previous investigations where it was shown that among resi-
dents living in a NH it took upwards of 1 year to have their gut 
microbiota profile be the furthest from community-dwelling partici-
pants (17). Given these findings, we wanted to see if there were dif-
ferences noted earlier than this 1-year point. Residents were further 
stratified into categories of < 1 month, 1–6 months, and >6 months 
with findings similar to the previous time analysis where there were 
increasing abundances of pathogenic species starting at 1–6 months 
and decreases in the anti-inflammatory microbiota species starting 
at 6 months. This analysis suggests that there is a distinct dysbiotic 
microbiome pattern that develops when an individual enters the NH 
starting before 1 year that is hallmarked with increasing pathogens 
and decreasing symbiotic species.

Microbiome Stability Demonstrated Over Longer 
Periods of Time
Among the residents we followed for >1 year between longitu-
dinal sampling periods, we noticed that there was not much dif-
ference in diversity or microbiome species abundances. Interval 
antibiotic exposure did associates with a reduction in diversity. 
This was not unexpected given antibiotics profound and rapid 
effect on the gut microbiota, with a loss of diversity (4). Older 
adults in the NH have been shown to have stability over short 
periods of time without any changes in health (19). Here, we 
demonstrate resilience in the microbiome over longer periods 
of time with changes in medications, although in a smaller co-
hort. We believe it takes longer exposure time for medication and 
health changes to impact the composition of the microbiome. 
We did note changes in key microbiome species (like members 
of the Eubacterium species) without any disenable patterns with 
interval medication or health changes.

Strengths and Limitations
This study had several strengths and limitations. One limitation 
of this study is that we had a different number of stool sam-
ples from each older adult and each older adult participated for 

different lengths of time. We accounted for this imbalance in our 
statistical approach by adjusting for each individual. A subset of 
individuals also participated for over 1 year. These older adults 
allowed us to investigate the gut microbiome composition and 
changes over longer periods of time in this group. This is one of 
the largest longitudinal cohorts of NH older adults reporting 
on gut microbiome composition. That being said, this study is 
still limited in the number of residents enrolled. A larger cohort 
would help us take a deeper look at the multiple levels of data 
and better explore other classes of medications used less fre-
quently by NH older adults. There are potential confounding 
variables, specifically classes of medications the residents were 
taking (such as immunosuppressants) that were not evaluated in 
this cohort due to the small number of residents on these drugs. 
Men made up 18% of the study population which is lower than 
national averages at roughly one third of the NH population. 
Finally, the amount of exercise or cognitive measurements, both 
known to associate with microbiome composition, for each par-
ticipant that was enrolled was not recorded.

Conclusions

Older adults living within a NH have a gut microbiome that is 
not only heavily influenced by the medications they are exposed to 
but also their age, frailty status, and location they are living. Their 
microbiome also changes over time after admittance to the facility 
demonstrating a likely time-dependent dysbiosis. Additionally, the 
NH microbiome appears stable but susceptible to antibiotic ex-
posure. Our findings help to better describe the NH microbiome and 
offer a starting point from which to manipulate the gut microbiome 
in an attempt to improve older adult health and reduce disease 
burden.
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