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C A N C E R

Copy-scAT: Deconvoluting single-cell chromatin 
accessibility of genetic subclones in cancer
Ana Nikolic1,2,3, Divya Singhal1,2,3, Katrina Ellestad1,2,3, Michael Johnston1,2,3, Yaoqing Shen4,5, 
Aaron Gillmor1,2,3, Sorana Morrissy1,2,3, J. Gregory Cairncross1,6, Steven Jones4,5, 
Mathieu Lupien7,8,9, Jennifer A. Chan1,2,6, Paola Neri1,6, Nizar Bahlis1,6, Marco Gallo1,2,3*

Single-cell epigenomic assays have tremendous potential to illuminate mechanisms of transcriptional control in 
functionally diverse cancer cell populations. However, application of these techniques to clinical tumor specimens 
has been hampered by the current inability to distinguish malignant from nonmalignant cells, which potently 
confounds data analysis and interpretation. Here, we describe Copy-scAT, an R package that uses single-cell 
epigenomic data to infer copy number variants (CNVs) that define cancer cells. Copy-scAT enables studies of sub-
clonal chromatin dynamics in complex tumors like glioblastoma. By deploying Copy-scAT, we uncovered potent 
influences of genetics on chromatin accessibility profiles in individual subclones. Consequently, some genetic 
subclones were predisposed to acquire stem-like or more differentiated molecular phenotypes, reminiscent of 
developmental paradigms. Copy-scAT is ideal for studies of the relationships between genetics and epigenetics 
in malignancies with high levels of intratumoral heterogeneity and to investigate how cancer cells interface with 
their microenvironment.

INTRODUCTION
Single-cell genomic technologies have made enormous contributions 
to the deconvolution of complex cellular systems, including cancer (1). 
Single-cell RNA sequencing (scRNA-seq), particularly, has been 
widely used to understand the implications of intratumoral tran-
scriptional heterogeneity for tumor growth, response to therapy, and 
patient prognosis (2–6). This field has greatly benefited from an 
emerging ecosystem of computational tools that have enabled com-
plex analyses of scRNA data. Because copy number variants (CNVs) 
mostly accrue in malignant cells and are rare in nonmalignant 
tissues, computational platforms that use scRNA data to call CNVs 
have resulted in improved understanding of the behavior of genetic 
subclones in tumors (7–9).

On the other hand, the application of single-cell epigenomic 
techniques, including the assay for transposase accessible chromatin 
(scATAC) (10, 11), to study cancer has been slowed by computa-
tional bottlenecks. For instance, unlike scRNA-seq, now, no dedi-
cated tool exists to call CNVs using scATAC data. This technical gap 
has slowed the use of scATAC to study clinical tumor specimens, 
which often are surgical resections that include both malignant and 
nonmalignant cells. Inability to deconvolute these cell populations 
after the generation of scATAC libraries would confound downstream 
analyses and interpretation of this data type.

Here, we describe Copy-scAT [copy number inference using 
scATAC sequencing (scATAC-seq) data], a new computational tool 

that uses scATAC datasets to call CNVs at the single-cell level. Using 
scATAC datasets from adult glioblastoma (aGBM), pediatric GBM 
(pGBM), and multiple myeloma (MM), we demonstrate the effective-
ness of Copy-scAT in calling (i) focal amplifications and (ii) chromo-
some arm-level gains and losses. At the most basic level, Copy-scAT 
can therefore discriminate between malignant and nonmalignant cells 
in scATAC datasets based on the presence or absence, respectively, 
of CNVs. This distinction is fundamental to ensure that downstream 
analyses include only the appropriate tumor or microenvironment 
cell populations. Furthermore, application of Copy-scAT allows the 
relationship between genetic and epigenetic differences to be investi-
gated within individual subclones. In this regard, we show that cells 
that share a given CNV tend to cluster together in scATAC experi-
ments, suggesting that genetics may impart information that results 
in the emergence of specific epigenetic profiles. We illustrate this 
principle by providing examples of coexisting genetic subclones with 
stem-like or more differentiated molecular profiles in GBM.

RESULTS
Design and implementation of copy-scAT
We designed Copy-scAT, an R package that uses scATAC-seq in-
formation to infer copy number alterations. Copy-scAT uses frag-
ment files generated by cellranger-atac (10x Genomics) as input to 
generate chromatin accessibility pileups, keeping only barcodes with 
a minimum number of fragments (defaulting to 5000 fragments). It 
then generates a pileup of total coverage (number of reads × read 
lengths) over bins of determined length (1 Mbp as default) (Fig. 1A). 
Binned read counts then undergo linear normalization over the 
total signal in each cell to account for differences in read depth, 
and chromosomal bins that consist predominantly of zeros (at least 
80% zero values) are discarded from further analysis. All param-
eters, including reference genome, bin size, and minimum length 
cutoff, are user-customizable. Copy-scAT then implements differ-
ent algorithms to detect focal amplifications and larger-scale copy 
number variation.
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To call focal amplifications (Fig. 1B), Copy-scAT generates a 
linear scaled profile of density over normalized 1-Mbp bins along 
each chromosome on a single-cell basis, centering on the median 
and scaling using the range. Copy-scAT then uses changepoint 
analysis using mean and variance (see Materials and Methods) (12) 
to identify segments of abnormally high signal (default threshold 
uses z score > 5) along each chromosome in each single cell. Opti-
mization of settings shows that this particular threshold filters out 
most spurious calls, and the use of mean variance for determination 
of changepoint improves the detection of consensus regions be-
cause of lesser effects of low-coverage and inaccessible regions (fig. S1). 
These calls are then pooled together to generate consensus regions 
of amplification, a strategy that could enable identification of puta-
tive double minutes and extrachromosomal DNA amplifications. 

Each cell is then scored as positive or negative for each amplified 
genomic region.

For larger copy number alterations, Copy-scAT pools the bins 
further at the chromosome arm level using a trimmed mean (keeping 
all bins between the 50th and 75th percentiles as default) while 
normalizing the data on the basis of length of CpG islands contained 
in each bin (Fig. 1C). Data are then scaled for each chromosome 
arm compared to a pseudodiploid control (expected signal distribu-
tion for a diploid genotype) that is modeled for each sample, and 
cluster assignments are generated using Gaussian decomposition. 
Cluster assignments are then normalized to get an estimate of copy 
number for each cell (Fig. 1D). These assignments can be optionally 
smoothed using alternative clustering information (Louvain cluster-
ing by default, although other clustering methods such as k-means 
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Fig. 1. Copy-scAT workflow. (A) Copy-scAT accepts barcode-fragment matrices generated by Cell Ranger (10x Genomics) as input.(B) Large peaks in normalized coverage 
matrices can be used to infer focal CNVs. ecDNA, extrachromosomal DNA. (C) Normalized matrices can be used to infer segmental and chromosome arm-level CNVs. 
(D) Example of chromosome arm-level CNV (chromosome 10p loss) called by Copy-scAT. (E) Consensus clustering is used to finalize cell assignment.
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may also be used) to generate consensus genotypes for each cluster 
of cells, improving accuracy for cells with sparse coverage (Fig. 1E). 
For full details regarding the execution of Copy-scAT, see Materials 
and Methods. A step-by-step tutorial for Copy-scAT is available on 
GitHub (see Materials and Methods).

Copy-scAT effectively calls CNVs in diverse malignancies
We have tested the ability of Copy-scAT to use scATAC data to call 
CNVs with three different approaches and with different tumor types. 
First, we benchmarked Copy-scAT against CNV calls made with 
whole-genome sequencing (WGS) data for aGBM surgical resections 
(n = 4 samples, 4878 cells). This approach consisted in isolating 
nuclei from cryopreserved aGBM samples, mixing nuclei in suspen-
sion, and then using these nuclei for either scATAC or WGS library 
construction (Fig. 2A). This was meant to ensure similar represen-
tation of genetic subclones, which are usually regionally contiguous 
in this solid tumor, in both scATAC and WGS libraries. Confusion 
matrices were generated to compare chromosome arm-level gains, 
chromosome arm-level losses, and focal amplifications inferred by 
Copy-scAT, WGS, or both (Fig. 2, B to D). Percentages were deter-
mined as number of chromosome arms with an alteration over all 
chrosomome arms in all samples (see Materials and Methods). 
Second, we benchmarked Copy-scAT against CNV calls made using 
pGBM surgical resections (n = 5 longitudinally collected samples 
from three different patients, 10,574 cells). In this case, scATAC and 
WGS libraries were generated from separate geographical regions of 
the same tumor (Fig. 2, E to G). Third, we benchmarked Copy-scAT 
against CNV calls made with the single-cell CNV (scCNV) assay 
(10x Genomics) using MM clinical samples (n = 10 samples, 44,161 cells) 
(Fig. 2, H to J, and fig. S4). Overall, we observed that Copy-scAT 
correctly inferred all or most of the CNVs that were called with WGS 
(Fig. 2, A to G, and figs. S2 and S3) or scCNV data (Fig. 2, H to J, 
and fig. S4). In total, we profiled 59,613 cells from 19 malignancies 
from 17 patients and were able to infer CNV status for a total of 
52,123 cells (table S1). On average, we were able to call CNVs for 
86.49% of cells in each sample (range, 81.77 to 93.35%) (table S1).

For chromosome arm-level CNV gains, precision was moderate, 
averaging 0.55 over all samples (range, from 0.47 in pGBM to 
0.57 in myeloma), and recall was very good (average, 0.84; range, 
0.77 from MM to 1.0 in aGBM) (table S2). Accuracy was approxi-
mately 0.84 (range, 0.82 to 0.87), assuming WGS as gold standard, 
suggesting that we were able to retrieve most of the copy number 
gains detected by WGS or scCNV analysis. For chromosome 
arm-level losses, precision was again moderate (0.53; range, 0.43 to 
0.72 for different sample types), recall was 0.84 (range, 0.66 to 0.75 for 
different sample types), and accuracy was 0.79 (range, 0.72 to 1.0 for 
different sample types) (table S2). The sensitivity and specificity of 
focal amplifications were excellent, with perfect concordance between 
WGS and scATAC; however, no amplifications were detected in the 
profiled pGBM and MM samples, so the number of alterations de-
tected overall was much smaller (table S2).

The variation observed may reflect technical differences between 
the strategies used for benchmarking. The recall and accuracy were 
slightly lower in the MM samples, but this may, in part, be due to 
the relatively lower number of reads per cell for these samples, leading 
to greater noise, and the relative paucity of normal cells compared 
to brain tumors (fig. S5). As expected, the calls of Copy-scAT for 
aGBM were the most accurate, likely because scATAC and WGS 
datasets were generated by relatively homogeneous starting material, 

as described above. Because of its design, it is also possible that 
Copy-scAT is more sensitive at inferring CNVs that occur in rela-
tively rare subclones compared to WGS, potentially explaining (in 
addition to true false positives) why the precision metrics are lower 
than recall and accuracy for our tool, as the number of CNVs in-
ferred by Copy-scAT is often higher than the number of inferences 
made with WGS.

Copy number calls made with Copy-scAT can be used to visualize 
genetic heterogeneity in clinical samples. As illustrative examples, 
raw heatmaps of imputed copy number for aGBM samples show 
evidence of interpatient and intratumoral heterogeneity (Fig. 2K). 
Some of the most common CNVs inferred by Copy-scAT in these 
samples, particularly chromosome 7 gains and chromosome 10 losses, 
are hallmarks of aGBM. Overall, our results showcase the ability of 
Copy-scAT to use scATAC data to infer CNVs.

scATAC data can be used to distinguish malignant 
from nonmalignant cells
Tumor cells often harbor CNVs, and we reasoned that the use of 
Copy-scAT should enable the use of scATAC data to infer CNVs 
and therefore distinguish between malignant and nonmalignant cells. 
To test this hypothesis, we overlayed CNVs called by Copy-scAT 
onto scATAC datasets displayed in uniform manifold approxima-
tion and projection (UMAP) plots. This exercise led to the identifi-
cation of cells that were clearly positive for multiple CNVs typical of 
GBM and others that appeared to have a normal genome (Fig. 3, A to C). 
Globally, both copy number alterations and amplifications showed 
strong concordance within UMAP-defined clusters, even before 
smoothing, in keeping with a strong delineation of subclones, with 
minimal changes after smoothing (figs. S6 and S7). As an illustrative 
example, we found that the aGBM sample CGY4349 was composed 
of discrete cell populations with chromosome 7 gain (Fig. 3, A and B), 
chromosome 10p deletion (Fig. 3C), and along with focal amplifica-
tions at the MDM4 (Fig. 3D), PDGFRA (Fig. 3E), and EGFR (Fig. 3F) 
loci. Copy-scAT results suggest specific lineage relationships between 
subclones. For instance, chromosome 7 amplifications are clonal in 
this sample (Fig. 3, A and B), whereas the chromosome 10 deletion 
is subclonal (Fig. 3C). In addition, our computational tool predicts 
that PDGFRA (Fig. 3E) and EGFR (Fig. 3F) focal amplifications 
are mutually exclusive, a phenomenon that has been reported for 
aGBM (13).

Together, these results illustrate one specific population of cells 
(circled in black in Fig. 3B) that harbors several CNVs and are 
therefore putative cancer cells. At the same time, we also identified 
cells (labeled in gray in Fig. 3B) that did not appear to have any 
CNVs and are therefore likely to be nonneoplastic cells from the 
tumor microenvironment. Equivalent results were obtained for MM 
(fig. S5, G to I) and pGBM samples (fig. S8). The CNV− cells often 
appeared in multiple scATAC clusters, suggesting the presence of 
multiple distinct nonneoplastic cell clusters. To validate our cell 
assignments with an orthogonal method, we performed differential 
DNA recognition motif analysis for individual cell populations 
identified by Copy-scAT to look for differentially accessible tran-
scription factor (TF) motifs associated with lineage specification. 
Differential motif analysis with ChromVAR confirmed high scores 
for neural progenitor cell–associated motifs, including ASCL1 in 
CNV+ cells (Fig. 3G), while the putative nonneoplastic clusters 
showed increased occupancy at DNA recognition motifs associated 
with TFs associated with the hematopoietic lineages, such as IKZF1 
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(Fig. 3H). Another CNV− cluster showed enrichment of FOXG1 
binding motifs in accessible chromatin, in keeping with a non-
neoplastic neural cell identity (Fig. 3I). Using this approach, it was 
possible to discriminate between malignant and microenvironmental 
cells in all tumor samples analyzed (figs. S9 to S11). Clustering 
based on motif analysis (such as by ChromVAR) is another method 
for potentially distinguishing tumor from nontumor cells, and we 
wondered whether this would be sufficient for cell assignment. We 

therefore performed ChromVAR analysis followed by k-means clus-
tering on our aGBM scATAC samples and compared the results to 
those obtained by Copy-scAT (fig. S12). While clustering based on 
motifs clearly delineated the more divergent hematopoietic infiltrat-
ing cells from the nontumor cells, this method was unable to distin-
guish between nonneoplastic brain cell types and GBM tumor cells, 
which have more similar accessibility profiles (fig. S12). Moreover, 
motif analysis is also dependent on defining a priori the motifs that 
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would distinguish a neoplastic from a nonneoplastic cell type, which 
is a nontrivial task especially for GBM. Copy-scAT therefore is a 
useful approach to distinguish malignant from nonmalignant cells 
and to infer lineage relationships between genetic subclones that 
coexist in a tumor.

Subclonal genetics is associated with chromatin accessibility 
profiles in aGBM
We noticed that in most tumors that we analyzed, cells harboring a 
given CNV had a tendency to cluster together (Fig. 3, A to F). Indi-
vidual clusters were defined by the presence of specific CNVs 
(Fig. 4, A to C). This was an unexpected observation that made us 
question whether clustering of scATAC data reflects the global 
patterns of chromatin accessibility. One possible explanation for this 
observation could be that chromosomal regions affected by a CNV 
display imbalances in the fragment depth distribution of scATAC 
datasets and that these patterns have a dominant effect on cluster 
assignment. Most scATAC-seq workflows rely on some variant of 
term frequency–inverse document frequency (TF-IDF) normaliza-
tion rather than feature scaling, and this may amplify the effects of 
CNV-driven DNA content imbalances. For instance, it is possible 
that focal amplifications of the PDGFRA locus result in increased 

frequency of transposition events that are mapped to this site. A dom-
inant effect of chromatin accessibility at this amplified locus could 
result in PDGFRA-amplified cells clustering together in UMAP rep-
resentations of scATAC data (Fig. 4, D and E). We found that com-
pared to a random selection of peaks, the chromosomes that carried 
CNVs had significantly different numbers of peaks ranked as highly 
variant than chromosomes that did not have CNVs, leading to a 
markedly uneven distribution of top peaks (P < 2.2 × 10–16, chi-square 
test; fig. S13). This was not seen in putative nonneoplastic cells, 
which had relatively even differentially accessible fragment distribu-
tion patterns (P = 0.05472, chi-square test; fig. S13). To test whether 
CNVs affect the clustering of scATAC data points, we removed all 
peaks mapping to chromosomes predicted to harbor CNVs by 
Copy-scAT and, lastly, reclustered all cells in each sample (Fig. 4F). 
We found that although removing chromosomes with CNVs from 
our analyses changed the overall cluster structure of a sample 
(Fig. 4G), PDGFRA-amplified cells still clustered close to each other 
(Fig. 4H). Our results indicate that clustering after CNV removal is 
more granular but overall stable, with moderate cluster concordance 
[adjusted mutual information (AMI) 0.634] (Fig. 4I). In this case, 
PDGFRA-amplified cells were localized to a single cluster before 
removing chromosomes affected by CNVs. Following removal of 
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CNV+ chromosomes and reclustering, most PDGFRA-amplified cells 
still clustered together, with only a few cells merging into a cluster 
that included both amplified and nonamplified cells. Comparing the 
most variable peaks after chromosome CNV removal showed a dis-
tribution closer to normal, supporting the marked effect of the CNVs 
on the identification of variant peaks (P = 2.418 × 10–8, fig. S13C). 
These data indicate that genetic subclones may have characteristic 
patterns of chromatin accessibility and that a cell’s genetic background 
may influence its likelihood of attaining specific epigenetic states.

Genetic events predispose subclones to the acquisition 
of developmental chromatin states
We further explored the notion that CNVs may shape chromatin 
accessibility profiles and its possible implications for cell fate deter-
mination. As an illustrative example, we focused on an aGBM sample 
(CGY4218) where CNVs at chromosome 1p characterized three ge-
netic subclones, as determined with Copy-scAT: (i) a subclone with 

two copies of chromosome 1p, (ii) a subclone with loss of 1p, and 
(iii) a subclone with gain of 1p (Fig. 5A).

We were interested in determining whether the major genetic 
subclones in this tumor had similar cycling properties. Unlike 
scRNA-seq, we found that it is not possible to use scATAC profiles 
at cell cycle genes to determine whether a cell is proliferating. We 
reasoned that cells that are actively going through cell division have 
to replicate their DNA. Given that cancer cells have numerous CNVs 
on autosomes and could lead to noisy data, we decided to use 
Copy-scAT to identify cells that have doubled the number of their 
X chromosomes and defined them as actively cycling cells (Fig. 5B). 
To validate this approach, we determined the number of cells with 
double the number of expected X chromosomes—i.e., putative 
cycling cells—in previously published scATAC datasets for mouse 
brain and peripheral blood mononuclear cells (PBMCs). We hypoth-
esized that we should be able to identify cycling cells in fetal mouse 
brain but not in PBMCs. We detected numerous cycling cells 
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Fig. 4. Subclonal genetics influences clustering of scATAC-seq data. (A to C) CNVs in aGBM CGY4218 segregate within specific scATAC clusters. (D and E) PDGFRA-
amplified cells cluster together in aGBM CGY4349. (F) Diagram summarizing our strategy to remove CNVs from clustering of scATAC data. All chromosomes or regions 
with putative CNVs were removed from downstream analyses, and cells were reclustered. (G) Reclustering of (D) following removal of chromosomes and regions affected 
by CNVs in CGY4349. (H) Distribution of PDGFRA-amplified cells following reclustering. (I) Cluster assignments of cells in CGY4349 (aGBM specimen) before and after 
removal of CNV-containing regions (purple, PDGFRA-amplified cells).



Nikolic et al., Sci. Adv. 2021; 7 : eabg6045     13 October 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 11

(with twice the expected number of X chromosomes) in fetal mouse 
brain but not in PBMCs (fig. S14). Actively dividing cells can there-
fore be identified by inferring doubling of X chromosome number 
from baseline using scATAC data. The inferred cyling versus non-
cycling status was overlaid onto the UMAP plot, as shown above 
(Fig. 5C). We used scATAC data to arrange cells from this tumor 

along pseudotime with the package STREAM (Fig. 5D) (14) and then 
superimposed cell cycle status determined with our X chromosome 
doubling method (Fig. 5E). The results show that cells along branch 
2, which is strongly enriched for cells with chromosome 1p gains, 
are also the most proliferative (Fig. 5, D and E. When we quantify 
the number of cycling cells grouped based on their 1p status, we see 
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an enrichment in cycling cells in the 1p gain subclone, with approx-
imately 25% of cells actively cycling, in comparison to less than 10% 
of those with 1p loss and less than 2% of those with two copies of 1p 
(P = 6.509 × 10−4, chi-square test; Fig. 5F and fig. S15). Similar re-
sults were noted when the data were analyzed by STREAM branch, 
with an enrichment of cycling cells in branch 2 (approximately 25% 
cycling cells; P = 7.776 × 10−14, chi-square test; fig. S15). These data 
therefore indicate functional differences between cells with gain or 
loss of chromosome 1p.

We then used ChromVAR (15) and STREAM-ATAC to calcu-
late scores for TF binding motifs that are associated with neuro-
developmental processes. This analysis revealed that motifs bound 
by TFs that are associated with stem-like phenotypes, including 
OLIG2 and HOXA2, are enriched in accessible chromatin regions 
in cells that have one copy of chromosome 1p (Fig. 5G). Motifs 
bound by TFs associated with progenitor (Fig. 5H) and differentiated 
states (Fig. 5I) were enriched in the branch with more cells showing 
gain of chromosome 1p. This was associated with a significant shift 
in the overall distribution of enrichment of these motifs in cells 
along the different branches of the trajectory (Fig. 5, J to L). A 
distribution of genetic subclones along developmental chromatin 
accessibility states was observed in other tumor samples that we 
studied (figs. S16 to S18). Overall, the data support the notion that 
tumor cells may sample a discrete number of chromatin states, but 
their transition probabilities differ based on genotype. Consequently, 
chromatin states associated with each genetic subclone could 
manifest as different functional properties, here demonstrated at 
the level of cell proliferation and stemness profiles. The use of 
Copy-scAT therefore allows testing of hypotheses on the association 
between subclonal CNVs and cell behavior, which is relevant for 
many cancer types.

To test whether the association between CNVs and chromatin 
profiles extended beyond chromosome 1p status, we investigated 
other genetic subclones. We focused on subclones that harbored 
EGFR- or PDGFRA-amplified cells because these focal amplifica-
tions are mutually exclusive and therefore constitute well-defined 
subclonal compartments, as shown above (Fig. 3, E and F). We 
found that epigenetic differences within EGFR-amplified cells and 
PDGFRA-amplified cells in one of our aGBM samples extended 
beyond the amplified segments and imparted distinct global epi-
genetic profiles. When we examined differentially enriched TF 
motifs in accessible chromatin in CGY4349 cells that were ampli-
fied for EGFR and PDGFRA, we found that, as described previously 
(5), the PDGFRA-amplified cells showed increased occupancy at 
proneural motifs such as OLIG2, ASCL1, and NEUROD1, while the 
EGFR-amplified cells exhibited enrichment for motifs of the RFX 
family and the AP-1 family (FOS and JUN) (table S3). Together, 
our results illustrate the principle that genetic subclones can have 
unique accessible chromatin profiles that are associated with down-
stream functional properties.

DISCUSSION
Here, we describe Copy-scAT, a computational tool dedicated to 
inferring CNVs using scATAC data. Copy-scAT resolves a compu-
tational bottleneck that has restricted the application of single-cell 
epigenomic techniques to the study of clinical tumor samples, which 
are often mixtures of malignant and nonmalignant cells. The pres-
ence of nonmalignant cells can severely confound the analyses of 

these samples and downstream data interpretation. Cell admixture 
is a particular problem for scATAC data because of the inherent 
sparsity of these datasets and because they do not provide direct 
information on the expression status of cell lineage markers that 
could be used to solve cellular identities. For tumor types that harbor 
CNVs, Copy-scAT provides a simple way of solving this problem. 
However, a limitation of Copy-scAT is that it cannot be used with 
malignancies that are driven primarily by single nucleotide variants 
and have no or rare CNVs.

It is important to note that Copy-scAT enables users to perform 
analyses on both malignant and nonmalignant cells from a tumor 
sample, because cell barcodes associated with either the presence or 
absence of CNVs can be selected for downstream analyses. Imple-
mentation of Copy-scAT will therefore be beneficial to groups interested 
in defining the epigenomes of both tumor cells and their microen-
vironment. Because chromatin accessibility datasets provide infor-
mation on mechanisms of transcriptional regulation by distal and 
proximal enhancer and super enhancer elements, Copy-scAT could 
be useful in clarifying epigenetic mechanisms involved in tumor 
immune suppression and T cell exhaustion, for instance. Copy-scAT 
also allows scATAC studies of unsorted frozen banked cancer spec-
imens (see Materials and Methods), because it requires no prior 
knowledge of cell type composition.

We show that the underlying CNV architecture of tumor cells 
plays a significant role in clustering of scATAC data, a problem that 
can be amplified by the use of TF-IDF algorithms for normalization. 
These effects are less pronounced when clustering is based on motif 
activity scores (e.g., ChromVAR), likely as this incorporates data from 
multiple chromosomes, thus dampening the effect of variation at 
any one specific locus. Further studies are needed to identify the 
optimal way to address the effects of CNVs in downstream analyses 
of scATAC datasets as CNVs may represent a significant confounder 
and potentially mask significant biological relationships.

Copy-scAT can be used to shed new light on how genetics and 
epigenetics interface in cancer. Our data expand on previous reports 
of parallel evolution of genetic and DNA methylation states in gliomas 
(16). Here, we show that genetic subclones tend to have unique 
chromatin accessibility landscapes that are associated with differential 
DNA recognition motif usage and downstream functional properties. 
Consequently, some genetic subclones have greater proportions of 
stem-like cells, and others appear more differentiated and have 
diverse proliferative capacities. This is likely because specific genetic 
alterations (for instance, focal amplification of EGFR or PGDFRA) 
could result in downstream increased activity of specific TFs, which 
then contribute to the transcriptional output of that subclone. Our 
findings complement the observed high levels of intratumoral tran-
scriptional heterogeneity in GBM (5, 17) by suggesting that sub-
clonal genetic alterations predispose a cell to populating particular 
gene regulatory states. This is in keeping with recent transcriptomics 
studies that have suggested that in IDH wild-type GBM, the pres-
ence of specific genetic alterations is associated with defined tran-
scriptional states (5, 18). Future work will be required to determine 
whether CNVs (i) prime cells to acquire specific chromatin accessi-
bility states or (ii) have roles in stabilizing chromatin states of 
genetic subclones.

Copy-scAT will enable future studies of subclonal chromatin 
dynamics in complex tumor types and may be an important tool to 
better understand the functional relationships between subclones, 
their microenvironment, and therapy response.



Nikolic et al., Sci. Adv. 2021; 7 : eabg6045     13 October 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 11

MATERIALS AND METHODS
Ethics and consent statement
All samples were collected and used for research with appropriate 
informed consent and with approval by the Health Research Ethics 
Board of Alberta.

scATAC-seq sample processing
GBM samples were either frozen surgical resections (pGBM) or cells 
dissociated from fresh surgical specimens and cryopreserved (aGBM). 
Samples were dissociated in a 1.5-ml microcentrfuge tube, using a 
wide-bore P1000 pipette followed by a narrow bore P1000 pipette in 
nuclear resuspension buffer [10 mM tris-HCl, 10 mM NaCl, 3 mM 
MgCl2, 0.1% IGEPAL, 0.1% Tween 20, 0.01% digitonin, and 1% bovine 
serum albumin (BSA) in phosphate-buffered saline (PBS)], then 
vortexed briefly, chilled on ice for 10 min, then pipetted again, and 
spun at 4°C at 500g for 5 min. This step was repeated, and the sample 
was then resuspended in Tween 20 wash buffer (10 mM tris-HCl, 
10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL, 0.1% Tween 20, and 
1% BSA in PBS) and then strained through a 35-m cell strainer 
fluorescence-activated cell sorting tube (Thermo Fisher Scientific, 
08-771-23) to remove debris. Nuclei were then quantified by trypan 
blue on the Countess II (Invitrogen), spun down at 500g at 4°C for 
5 min, and resuspended in the nuclear isolation buffer (10x Genomics), 
and the rest of the scATAC was performed as per the 10x Genomics 
protocol. MM samples were from bone marrow aspirates collected 
from patients; tumor cells were isolated from mononuclear cell 
fractions through Ficoll gradients coupled with magnetic bead sorting 
of CD138+ cells. scATAC libraries were prepared from GBM and 
MM samples using a Chromium Controller (10x Genomics). Libraries 
were sequenced on NextSeq 500 or Novaseq 6000 instruments (Illumina) 
at the Centre for Health Genomics and Informatics (CHGI; University 
of Calgary) using the recommended settings.

scATAC-seq initial data analysis
The raw sequencing data were demultiplexed using cellranger-atac 
mkfastq (Cell Ranger ATAC, version 1.1.0, 10x Genomics). 
scATAC-seq reads were aligned to the hg38 reference genome 
(GRCh38, version 1.1.0, 10x Genomics) and quantified using 
cellranger-atac count function with default parameters (Cell Ranger 
ATAC, version 1.1.0, 10x Genomics).

scCNV analysis
Fragment pileup and normalization
The fragment file was processed, and signal was binned into bins of 
a preset size (default 1 Mb) across the hg38 chromosomes to generate 
a genome-wide read-depth map. Only barcodes with a minimum of 
5000 reads were retained, to remove spurious barcodes. This flat-
tened barcode-fragment matrix pileup was cleaned by removal of 
genomic intervals that were uninformative (greater than 80% zeros) 
and barcodes with greater than a certain number of zero intervals. 
Cells passing this first filter were normalized with counts per million 
(cpm) normalization using cpm in the edgeR package (19).
Chromosome arm CNV analysis
The normalized barcode-fragment matrix was collapsed to the 
chromosome arm level, using chromosome arm information from 
the UCSC University of California Santa Cruz  (UCSC table: cytoBand), 
centromeres were removed, and signal in each bin was normalized 
using the number of base pairs in CpG islands in the interval using 
the UCSC CpG islands table (UCSC table: cpgIslandExtUnmasked). 

The signal was then summarized using a quantile-trimmed-mean 
(between the 50th and 80th quantiles). Only chromosome arms with 
a minimum trimmed mean signal were kept for analysis.

The chromosome arm signal matrix is mixed with a generated 
set proportion of pseudodiploid control cells, defined using the mean 
of chromosome segment medians with a defined SD. This cell-signal 
matrix is then scaled across each chromosome arm and centered on 
the median signal of all chromosomes. Each chromosome arm seg-
ment is then analyzed using Gaussian decomposition with Mclust 
(20). The subsequent clusters are filtered on the basis of z scores and 
mixing proportions, and redundant clusters are combined. These 
z scores are then translated into estimated copy numbers for each 
segment for each barcode. The barcode CNV assignments can be 
optionally used to assign consensus CNVs to clusters generated in 
other software packages such as Loupe or Seurat/Signac.

Clusters for smoothing were generated by loading the data into 
Signac 1.0.0 (21). Datasets were quality filtered, keeping cells con-
taining at least 3000 peak region fragments, greater than 15% of 
reads in peaks, and lowmapq < 30,000. These were then normalized 
using TF-IDF, and latent semantic analysis was used for dimensionality 
reduction by SVD (singular value decomposition), followed by UMAP 
using dimensions 2:50, and nearest-neighbor clustering (using di-
mensions 2:50 and k value of 21). Smoothing was performed using 
Copy-scAT with a boost value of 0 (taking an average of the imputed 
chromosome value for the cluster followed by rounding to get a 
consensus value).
Detection of amplifications
The normalized barcode-fragment matrix was scaled, and mean-
variance changepoint analysis using the changepoint package was 
performed for each cell and each chromosome to identify areas of 
abnormally high signal (z score greater than 5) (22). The consensus 
coordinates of each amplification region were generated across all 
cells, and only abnormalities affecting a minimum number of cells 
were kept for analysis.

scATAC trajectory analysis
STREAM-ATAC and STREAM (23) were used to generate pseudo-
time trajectories on the basis of motif occupancy profiles generated 
using ChromVAR (24) with the JASPAR 2018 motif database (25). 
Dimensionality reduction was performed using the top 20 compo-
nents and 50 neighbors, and an initial elastic graph was generated 
on the two-dimensional UMAP projection using 10 clusters, using 
the K-means method with n_neighbors = 30. An elastic principal 
graph was constructed using the parameters epg_alpha = 0.02, 
epg_mu = 0.05, epg_lambda = 0.02, and epg_trimmingradius = 1.2, 
with branch extension using “QuantDists.” Trees were rooted using the 
branch with highest motif activities for OLIG2 and ETV motifs as root.

Whole-genome sequencing
DNA was extracted from residual nuclei from the same samples and 
tissue fragments used for scATAC-seq of aGBM samples using the 
Qiagen DNEasy Blood and Tissue DNA Extraction Kit (QIAGEN, 
no. 69504). Libraries were prepared using the NEBNext Ultra II DNA 
Library Prep Kit (no. E7645) and sequenced on the Novaseq 6000 
(Illumina) at the CHGI (University of Calgary) in paired-end mode.

Whole-genome data processing
Genome data were aligned to the hg38 assembly using bwa mem 
(bwa 0.7.17) (26). SAMtools was used to extract high-quality reads 
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(Q > 30), and Picard tools (Broad Institute) was used to remove 
duplicates (27).

Whole-genome SNV and CNV detection
Gatk mutect2 (Broad Institute) was run on the filtered data to detect 
SNVs with low stringency using the following settings: --disable-
read-filter MateOnSameContigOrNoMappedMateReadFilter. CNVkit 
was subsequently used to call CNVs using the following parame-
ters: --filter cn -m clonal –purity 0.7 (28). Adjacent segments were 
further combined and averaged using bedtools (29).

Data visualization and clustering
Data were visualized, and UMAP plots were generated using Seurat 
3.0.0 and Signac 1.0.0 (21, 30) and Cell Loupe version 4.0.0.

Statistical analysis
Between-group differences in discrete values (e.g., chromosome peaks 
and branch assignments) were calculated using the chi-square test. 
Differences in nonparametric distributions (motif accessibility in 
clusters) were quantified using the Kruskal-Wallis test.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abg6045

View/request a protocol for this paper from Bio-protocol.
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