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Abstract

The unconventional T cell compartment encompasses a variety of cell subsets that straddle the line 

between innate and adaptive immunity, often reside at mucosal surfaces and can recognize a wide 

range of non-polymorphic ligands. Recent advances have highlighted the role of unconventional 

T cells in tissue homeostasis and disease. In this Review, we recast unconventional T cell subsets 

according to the class of ligand that they recognize; their expression of semi-invariant or diverse T 

cell receptors; the structural features that underlie ligand recognition; their acquisition of effector 

functions in the thymus or periphery; and their distinct functional properties. Unconventional T 

cells follow specific selection rules and are poised to recognize self or evolutionarily conserved 

microbial antigens. We discuss these features from an evolutionary perspective to provide insights 

into the development and function of unconventional T cells. Finally, we elaborate on the 
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functional redundancy of unconventional T cells and their relationship to subsets of innate 

and adaptive lymphoid cells, and propose that the unconventional T cell compartment has a 

critical role in our survival by expanding and complementing the role of the conventional T cell 

compartment in protective immunity, tissue healing and barrier function.

The selection through evolution of a system as complex as T cell immunity and its 

requirement for survival leaves no doubt about its role and importance in vertebrates. 

Conventional T cells, which are the central actors of adaptive immunity, target and clear 

infectious non-self. Whereas conventional T cells primarily recognize specific peptides that 

are presented by the classical polymorphic major histocompatibility complex (MHC) class 

I and class II molecules, the unconventional T cell compartment encompasses subsets of 

T cells that cover the sensing of a diverse range of self and non-self molecules. These 

include lipids sensed by natural killer T (NKT) cells, CD1a-, CD1b- or CD1c-restricted 

T cells and T cell receptor (TCR)γδ T cells; metabolites sensed by mucosal-associated 

invariant T (MAIT) cells and TCRγδ T cells; peptides sensed by H2-M3-restricted T 

cells, Qa-1-restricted T cells, HLA-E-restricted T cells and TCRαβ CD8αα intraepithelial 

T lymphocytes (IELs); and self-surface proteins sensed by various subsets of TCRγδ T 

cells. Numerous previous reviews have focused on TCRαβ1–11 and TCRγδ unconventional 

T cells12,13. Because of its highly redundant nature and the difficulty of demonstrating 

the requirement for any specific unconventional T cell subset, it is essential to discuss 

the unconventional T cell compartment as a whole with its unique features and functions. 

Why vertebrates have also evolved an unconventional T cell compartment, and what the 

importance of this compartment is in health and disease, remain highly debated questions in 

biology.

In this Review, we will attempt to provide order to a complex unconventional T cell 

compartment, while drawing comparisons with the more prominent conventional T cell 

compartment. We will discuss unconventional T cells with regard to their abundance, 

their niches and their stability, and will position them in terms of where they fit in an 

immune response, with an emphasis on human immunity. For example, for TCRγδ T cells 

we will focus on the butyrophilin (BTN)- and butyrophilin-like (BTNL)-reactive subsets. 

Finally, we will discuss the evolution and timescale of unconventional T cells relative 

to adaptive immunity, emphasize the value of redundancy as revealed by their level of 

genetic conservation across individuals, but also highlight aspects of these T cells that are 

indispensable to survival.

Classifying unconventional T cells

Class of ligand

The central requirement for a functional immune response is the ability to respond to 

foreign agents that breach the barriers of the host. Similar to conventional T cells, 

some unconventional T cell subsets also engage in non-self recognition. For instance, 

unconventional HLA-E-restricted T cells in humans14 recognize foreign peptides15. 

However, non-self recognition by unconventional T cells extends beyond peptides, and 

includes the recognition of canonical non-self molecules that are present across bacterial 
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species, including foreign lipid moieties16–18, bacteria-derived vitamin B metabolites19,20, 

bacteria-derived formylated peptides21,22 and phosphoantigens23. Therefore, one can think 

of the antigens driving these unconventional cells as a form of microbial extended self.

The same set of machinery that facilitates the recognition of non-self is also used for the 

recognition of self. CD1 molecules can load self-lipids and CD1a autoreactive T cells have 

been characterized in human skin24,25. Fetal Vγ9Vδ2 T cells take on an effector profile26, 

suggesting that the recognition of self phosphoantigens is a key part of their biology. 

Although HLA-E can present foreign peptides in the context of certain viral infections14,27, 

under homeostatic conditions it actually serves to present peptides derived from MHC class 

I leader sequences28 to primarily regulate T cells29 and natural killer (NK) cells30 through 

the engagement of NKG2–CD94 receptors. However, the potential role of T cells with 

specificity for HLA-E in immunity remains poorly understood31. The recognition of self 

is of course not reserved to unconventional T cells, as regulatory T cells are known to 

recognize self-peptides32.

Moreover, the unconventional T cell compartment can recognize non-polymorphic ligands 

that have no capacity to present antigens. This is particularly true for the TCRγδ T cell 

compartment—for example, the biology of a subset of mouse skin-resident TCRγδ T cells 

depends on recognition of SKINT-1 (ref.33), and the biology of a subset of intraepithelial 

intestine-resident cells depends on the molecules BTNL1 and BTNL6 (hereafter, BTNL1/6) 

in mice34 or the human equivalents BTNL3 and BTNL8 (hereafter, BTNL3/8) in the colon34 

and small intestine35. TCRγδ T cells can recognize other non-antigen-presenting molecules 

such as MICA36, ULBP437, T1038 and T2239, but the biological implications of these 

interactions are less clear than those of SKINT-1 and the BTNLs.

Thus, the unconventional T cell compartment as a whole is capable of surveillance through 

the TCR at all levels of cellular immunity—via the recognition of non-self- and self-derived 

antigens as well as non-antigen-presenting self-ligands—akin to how innate immunity 

operates.

T cell receptors

Unconventional T cells can be classified into three pools on the basis of their TCR usage 

and diversity. The first pool is characterized by semi-invariant TCR usage and includes the 

most-characterized unconventional T cell subset—the type I NKT cell—which expresses 

an invariant Vα14-Jα18 (TRAV11, TRAJ18) and Vα24-Jα18 (TRAV10, TRAJ18) TCR 

α-chain in mice and in humans, respectively40, to recognize CD1d loaded with the 

prototypical lipid antigen α-galactosylceramide4,41. Similarly, MAIT cells express an 

invariant Vα19-Jα33 (TRAV1–2, TRAJ33)42 and Vα7.2-Jα33–20-12 (TRAV1–2, TRAJ33, 

TRAJ12, TRAJ20)43 TCR α-chain in mice and humans, respectively, to recognize the 

vitamin B precursor 5-OP-RU loaded on MHC class I-related protein (MR1)19,44. For both 

of these unconventional T cell subsets, whereas the use of the TCR α-chain is largely 

fixed, that of the TCR β-chain is variable but constrained. Similarly, germline-encoded 

mycolyl-reactive (GEM) T cells express an invariant TRAV1–2 and TRAJ9 TCR α-chain 

to sense mycobacterial mycolates loaded on human CD1b45,46. Notably, TCRγδ T cell 

subsets also tend to be characterized by their limited TRGV and TRDV gene-segment use, 
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and this is reflected in their ligand specificities; for example, Vγ5 TCRs are restricted to 

SKINT-133, and TCRs that use the Vγ chains Vγ7 in mice and Vγ4 in humans are restricted 

to BTNL1/6 and BTNL3/8, respectively34,35. However, these TCRγδ T cell subsets exhibit 

a high CDR3 diversity35,47. Given this conserved restriction on TCR–ligand pairs, it is likely 

that TCRs and their ligands coevolved over time48.

The second pool of unconventional T cells is characterized by diverse TCR usage with 

regard to both TCR gene-segment use and CDR3 sequence, and includes subsets such 

as H2-M3-restricted T cells49, HLA-E-restricted T cells50 and TCRαβ CD8αα IELs that 

recognize class I and II molecules51,52 and non-classical MHC class I molecules53. Of 

note, this second pool is tailored—similarly to conventional T cells—to the recognition of 

peptides.

Finally, the third pool of unconventional T cells is characterized by T cells with diverse 

TCRs that can bind CD1 and MR1. This pool includes type II NKT cells1, MR1-restricted T 

cells54 and TCRγδ T cells55–57. The presence of such cells is probably the consequence of 

the diversity present within the naive TCR repertoire, as well as the diversity of antigens that 

such ligands can present, which allows for naive T cell clones being selected in the periphery 

by these monomorphic MHC class I-like molecules.

Modes of ligand recognition

Since the pioneering studies detailing the first αβTCR–peptide–MHC-Ia structures 25 

years ago58,59, we have learned a lot about the molecular basis that underpins αβTCR 

engagement. Numerous structural studies have shown that αβTCRs can recognize peptide–

MHC-Ia complexes in various docking modes, mostly with a canonical docking polarity60 

(Fig. 1a)—albeit with two notable exceptions61,62. Nevertheless, αβTCRs have been 

universally shown to simultaneously co-recognize the peptide and MHC63, which represents 

a central tenet of the MHC-restricted T cell response.

With regard to unconventional TCRs, whether they would adopt the general principles 

of TCR–peptide–MHC recognition was unknown. The MHC fold has shown remarkable 

plasticity, having adapted to present lipid- and metabolite-based antigens (by the CD1 family 

and by MR1, respectively)64. Moreover, whereas MHC-Ia is highly polymorphic, MHC-Ib, 

CD1 and MR1 show extremely limited polymorphism, yet represent targets for αβTCR 

and γδTCR recognition65. Although MHC-Ib molecules are considered primarily a ligand 

for NK cells66, they can also be recognized by TCRαβ T cells, in which the αβTCR 

can bind peptide–MHC-Ib in a similar manner to TCR–peptide–MHC-Ia binding67 (Fig. 

1a). The first insight into how unconventional TCR recognition differs from conventional 

TCRs came from the structure of the type I NKT TCR–CD1d–lipid complex68,69. In this 

structure, the type I NKT TCR was perched towards the extreme end of the CD1d antigen­

binding cleft, adopting a parallel docking mode. The TCR–MR1–metabolite recognition of 

MAIT cells was more analogous to TCR–peptide–MHC-I recognition. The invariant TCR 

α-chain bias observed in type I NKT cells and MAIT cells was attributable to specificity 

contacts with CD1d–lipid and MR1–metabolite, respectively68,70,71 (Fig. 1a), indicating that 

germline-encoded recognition is a common feature of type I NKT and MAIT cells—an 
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observation echoed by GEM TCR recognition of a mycobacterial antigen presented by 

CD1b46 (Fig. 1b).

In comparison to MAIT cells and type I NKT cells, a more diverse unconventional TCR 

repertoire directed against MR1 and CD1 has been observed, which has manifested in 

more-varied docking strategies atop their respective antigen-presenting molecules, with 

many features analogous to that of conventional TCR–peptide–MHC recognition72–74 (Fig. 

1a). Some CD1 family members and MR1 also represent ligands for γδTCRs. γδTCR 

recognition of CD1d–lipid demonstrated how the γδTCR bound the CD1d molecule and 

co-recognized the lipid55,56 (Fig. 1c), whereas a subset of γδTCRs was shown to bind 

‘down under’ the antigen-binding platform of MR1, and thereby not interact with the 

metabolite-based antigen57 (Fig. 1c). This break of the TCR co-recognition paradigm also 

appears as a feature of autoreactive αβTCRs towards CD1a and CD1c, whereby the αβTCR 

sat atop the antigen-binding platforms but nevertheless, via distinct mechanisms, did not 

contact the lipid25,75 (Fig. 1b). Thus, for some unconventional TCRs, a distinguishing 

feature is the lack of requirement for the co-recognition of antigen and antigen-presenting 

molecule, which raises questions relating to thymic selection, specificity of response and 

whether such features could be exploited for therapeutic purposes.

Development and gain of effector programs

Conventional T cell development takes place in the thymus, in which cells are positively 

selected on self-peptide–MHC complexes, whereas the acquisition of effector programs 

occurs in the periphery on foreign-peptide–MHC complexes. The unconventional T cell 

compartment does not fit into this paradigm. By focusing on where and how a given T cell 

subset acquires its effector program, we can divide unconventional T cells into three groups 

(Fig. 2).

The first group is characterized by cells that are selected in the thymus and acquire 

effector programs as a consequence of recognition of their ligand(s) in the thymus. 

This includes type I NKT cells and MAIT cells, which undergo positive selection on 

haematopoietic cells76,77, and dendritic epidermal T cells (DETCs), which are selected 

on thymic epithelial cells33. The acquisition of effector programs in the thymus for NKT 

and MAIT cells requires the transcription factor PLZF (encoded by Zbtb16 in mice)78,79, 

expression of the ligand on double-positive thymocytes76,77 and co-signals provided by 

signalling lymphocytic activation molecule (SLAM)-associated protein (SAP)80. Similarly, 

H2-M3-restricted T cells that acquire effector programs in the thymus are selected on 

haematopoietic cells81 and require SAP82. Finally, unconventional mouse TCRαβ CD8αα 
IELs also acquire effector programs in the thymus through selection on a diverse set 

of classical and non-classical MHC molecules53,83, and do not require PLZF for their 

development78. Notably, although expression of the ligand in the periphery is not required 

for the expansion and effector function of NKT cells84, it is required in mice for 

unconventional TCRαβ CD8αα IELs85 and probably MAIT cells86. Acquisition of effector 

functions in the thymus and the hardwiring for particular functional outputs has led this 

group of unconventional T cells to be dubbed ‘preset’ T cells that are able to colonize tissues 

early in life and respond rapidly to stimuli.
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The second group consists of cells that are unique to the unconventional T cell compartment. 

These cells exit the thymus in a naive state but acquire effector programs early in life in 

tissues that express cognate self-ligands. This has been best described for the mouse Vγ7 

subset, which acquires a unique effector profile within the first weeks of life once it engages 

the self-ligand BTNL1/6 in the intestinal epithelium34. In humans this is associated with 

the acquisition of a unique NK-cell-like program, which endows Vγ4 T cells with specific 

innate properties35.

The third group fits more in line with classical T cells in which effector programs are 

acquired in the periphery in response to engagement with cognate foreign antigen. This 

includes HLA-E- and Qa-1-restricted T cells87,88 and may include subsets of CD1- and 

MR1-reactive T cells that exhibit diverse TCR usage1,54.

Tissue-specific niches and stability

A defining feature of the majority of unconventional T cells is their intimate relationship and 

localization within tissues, especially mucosal sites. As was detailed above, for SKINT-1­

reactive DETCs33,89 and BTNL-reactive TCRγδ T cell subsets34,35, expression of their 

selecting ligand determines their enrichment in the skin and in the intestine, respectively. 

Studies in mice have shown that NKT cells and MAIT cells exhibit enrichment in tissues 

such as the liver90,91, and in particular for MAIT cells in the skin86. This is presumably due 

to the enrichment of lipid and metabolite antigens at mucosal sites where bacteria interface 

with the host.

Space in tissues is limited and as a host ages, exposure to insults leads to increased 

occupation by adaptive tissue-resident lymphocytes92,93. Therefore, it is unsurprising that 

the niches that unconventional T cell subsets occupy exhibit temporal restrictions. This has 

been shown both for MAIT cells in the skin86 and for BTNL1/6-reactive TCRγδ T cells in 

the intestine34, whereby exposure to cognate ligand within the first weeks of life is required 

for T cell expansions and the establishment of sizeable tissue-resident niches in mice. Of 

note, the size of the type I NKT cell niche in the colonic lamina propria is limited by 

microbial signals such that germ-free mice exhibit expansions of these cells, which can only 

be normalized by colonization with microbiota early (and not late) in life94.

Another critical question is the stability of the unconventional T cell niche with age and in 

conditions of inflammation, and whether it requires the ongoing expression of ligands. NKT 

cells, MAIT cells and BTNL3/8-reactive TCRγδ T cells can all be found in healthy adult 

tissues35,95,96, which highlights the stability and longevity of these compartments. However, 

closer inspection in the context of specific acute or chronic perturbations to these niches 

reveals that in the context of acute viral infection, skin-resident DETCs are locally displaced 

at the site of infection by conventional tissue-resident CD8 T cells generated against the 

virus97. Furthermore, in the context of chronic inflammation associated with coeliac disease, 

loss of BTNL3/8 expression in the small intestine and an expansion of TCRγδ T cells with 

new specificity and function is associated with a permanent displacement of Vγ4 BTNL3/8­

reactive TCRγδ IELs35. Together, these examples illustrate the complexity of lymphocyte–

tissue dynamics and how cross-talk and competition between different unconventional T cell 

subsets ultimately shapes specific niches.
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Preset functional niche

The unconventional T cell compartment as a whole covers the full spectrum of 

T cell effector responses including chemokine-driven immune cell recruitment35,98,99, 

helper cytokine responses4,100, cytotoxic responses4,35,100,101 and wound healing 

responses35,49,86,99,102.

It is not so much the nature of the effector function mediated by unconventional T cells that 

sets them apart from the adaptive T cell compartment, but the nature of the ligands that drive 

their activation, their effector status at homeostasis and their ability to colonize tissues and 

respond to insults early in life (Fig. 3). The conventional T cell compartment, by generating 

antigen-specific ‘adaptive’ memory responses against pathogens, is best suited for sterilizing 

adaptive immunity, because of both its exquisite specificity and adaptability (covering 

all classes of microorganisms). However, this capacity is also intrinsically linked to the 

requirement for a T cell of a given specificity to undergo massive expansion. By contrast, the 

majority of unconventional T cell subsets exist as pre-expanded populations at steady state8 

(Fig. 3), that recognize conserved microbial antigens19,21,22,86, constitutively expressed 

self-ligands such as BTNL3/834,35 or stress-induced self-ligands such as MICA36,103, which 

can further facilitate the establishment and maintenance of homeostasis.

The engagement at steady state by self-ligands and microbial extended-self-ligands has two 

major consequences. First, unconventional T cells—unlike conventional T cells that only 

exert effector functions at the time their TCR is engaged by a specific foreign microbial 

antigen—have the capacity to mediate functions at homeostasis that are important for the 

initiation and amplification of protective immune responses17,18,104–106, as well as for tissue 

healing13,49,86,102,107. A role for TCRγδ T cells in wound healing in mice107 and humans102 

was proposed early on before the tissue-resident T cell field had gained traction. This has 

been more recently highlighted in two mouse models of wound healing that showed that 

wounds heal faster in mice that establish skin-resident commensal-specific MAIT cell86 and 

H2-M3-restricted T cell responses49 before tissue injury. Second, unconventional T cells 

are expanded at homeostasis, colonize tissues early in life and have the capacity to respond 

to innate immune signals; they can therefore have a key role in the protection of tissues 

against pathogens (Fig. 3). Although tissue-resident conventional CD8 T cells are also 

critically regulated by innate signals108, the inherent capability of innate-like T lymphocytes 

to respond to alarmins and stress ligands without requiring strong TCR engagement (Fig. 

3) allows them not only to respond rapidly, but also to instruct the adaptive immune 

system as to the health status of the tissue. This role is certainly critical in the context 

of viral infections associated with the downregulation of MHC class I molecules109. The 

prominent role of innate signals alone or in combination with the TCR in the switch to 

protective functions and the activation of tissue-resident MAIT cells110,111, NKT cells112,113 

and TCRγδ T cells114,115 has been demonstrated in mice and humans (Fig. 3). Similarly, 

in humans, BTNL-reactive TCRγδ T cells35 and Vδ1 TCRγδ T cells present at tumoral 

sites116 were shown to require IL-15 and/or the engagement of activating NK receptors 

to exert their full cytolytic potential. Finally, the role for innate-like T lymphocytes in the 

initiation of adaptive immunity and its amplification is illustrated by the adjuvant role that 

NKT cells can have by initiating a high-speed communication network between the innate 
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and the adaptive immune system117. Together, the unique development, expansion and 

restriction of unconventional T cells endows them with the capacity to colonize tissues early 

in life; form a first line of defence against pathogens before adaptive tissue-resident T cells 

colonize tissues; and exert important homeostatic, innate, protective and healing functions 

at tissue sites. Their functional properties and conservation across individuals has also made 

them an attractive tool for immunotherapy, especially in the treatment of cancer118,119.

Evolution and redundancy

Perspective on evolution

Unconventional T cell immunity is generally thought of as the primitive form of 

conventional ‘adaptive’ T cell immunity. A common argument presented is that limited 

gene diversity existed initially in the TCR locus and this limited diversity was best suited 

for the recognition of a limited set of non-polymorphic MHC-like molecules120. Under 

this premise, the unconventional T cell compartment was insufficient and thus the adaptive 

immune system that encompasses conventional MHC-Ia-restricted T cells evolved to support 

it. This is certainly a plausible scenario, but here we would like to entertain the alternative 

possibility whereby conventional T cell immunity evolved first and was later supplemented 

at different moments over the course of evolution by a variety of unconventional T cell 

compartments. This occurred, we suggest, because the addition of unconventional T cell 

compartments added both resilience—by providing the means to ensure early-life protective 

immunity, tissue homeostasis and barrier function—and robustness, by informing and 

amplifying the adaptive immune response.

The first argument can be made by studying the occurrence of conventional versus 

unconventional T cell immunity across species. To our knowledge, no species has been 

studied to date that has evidence of unconventional T cell immunity in the absence of 

conventional T cell immunity in terms of both ligands and TCRs, meaning that MHC and 

MHC-like molecules are always found together and semi-invariant TCRs are not found in 

the absence of diverse TCRs. There are mammalian species that lack MR1 and CD1d and 

which therefore lack MAIT and NKT cells120–122, and the self-ligand SKINT-1 that selects 

the TCRγδ T cell subset of DETCs in mice is not well-conserved123. When comparing 

mice and humans, subsets such as H2-M3-restricted T cells in mice are absent in humans, 

whose genomes do not contain the H2-M3 gene124, whereas humans have CD1a-, CD1b- 

and CD1c-restricted T cell subsets that are absent in mice48,65,125. Thus, it is possible 

that each species evolved or maintained the ligands required for the selection of particular 

unconventional T cells on the basis of the pressures imparted by their unique lifestyle.

In addition to the evidence provided at the species level, another approach to discussing 

the origins of unconventional T cell immunity is to consider the nature of the antigens that 

are recognized. Notably, unconventional T cell subsets such as NKT, MAIT and H2-M3­

restricted T cells are all geared towards the recognition of conserved bacterial products, and 

have a blind spot for the direct recognition of virus-derived antigens. Although there are 

studies that implicate these subsets in antiviral responses106,126, the evolutionary benefit is 

more likely to arise from the recognition of universal bacterial products—which in some 

cases go as far as to guide their development, as in the case of MAIT cells127. Such a 
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recognition could provide the host with the ability to gauge the overall bacterial load at 

mucosal surfaces and provide broad protective immunity early in life. However, no single 

unconventional T cell subset is able on its own to ensure effective protective immunity 

against a variety of pathogens, and adaptive immunity was shown to be required for survival 

in a pathogen-rich environment128. Indeed, a system favouring the broad recognition of 

protein-derived peptides would thus have been the more suitable first choice as it would 

allow the host to respond to all classes of pathogens, including bacteria, viruses, fungi, 

helminths, parasites and protozoans. In this framework, conventional T cell immunity would 

have evolved first to ensure a broad coverage of classes of pathogens, before focusing on 

supplementing mucosal barriers and innate immunity in an effort to maintain the optimal 

homeostatic relationship with the microbiota.

Framing redundancy within T cells

The majority of studies in animal models that have attempted to demonstrate a critical role 

for a given unconventional T cell subset in protective immunity have failed or suggested 

it using contrived systems. An alternative approach to gain insights into the requirement 

for the unconventional T cell compartment is to take a human genetics approach129,130 

and query how constrained deleterious mutations are in genes that encompass the building 

blocks of all T cell responses (Fig. 4a). In healthy individuals, loss-of-function mutations are 

found in CD1d, MR1131 and BTNL3/8, but also, strikingly, in classical MHC molecules 

such as HLA-A and HLA-B (Fig. 4a), suggesting that for both unconventional and 

conventional T cells there is a substantial degree of redundancy when considering a T cell 

subset with a given ligand specificity. This observation probably reflects the notion of a 

layered immune system, whereby the same effector functions can be attained through both 

unconventional and conventional T cells and therefore the loss of any individual component 

might be tolerated (Fig. 4b). By contrast, null mutations in ZAP70, encoding a signalling 

molecule required for the differentiation and activation of all T cell subsets, are very rare 

(Fig. 4a). Other genes that are intolerant to loss-of-function mutations encode proteins that 

are shared not only by all T cell subsets but also by non-T cell subsets. This can be observed 

at the level of cell programming; for example, for transcription factors such as TBX21 

that are associated with T cell differentiation, and effector molecules such as interferon-γ 
(IFNγ), which are relevant for both conventional and unconventional T cells as well as 

innate lymphoid cells. Notably, for effector molecules involved in type 2 immunity, in which 

IL-4, IL-5 and IL-13 may be able to compensate for one another, loss-of-function mutations 

are more common (Fig. 4a). The tissue-repair-associated molecule amphiregulin exhibits a 

strong selective constraint (Fig. 4a), which is particularly interesting when considering that 

unconventional T cells may be best suited for wound healing in tissues as described above.

To formally quantify the levels of selective constraint in unconventional T cells, we 

analysed whether null mutations were allowed for ZBTB16 (also known as PLZF) and 

HIVEP3, which encode two critical regulators for NKT and MAIT cell differentiation78 

and or expansion132; PLZF also has a role in the development of innate lymphoid 

cells133. Strikingly, in contrast to MR1 and CD1D, there is evidence for a strong selection 

constraint for PLZF and HIVEP3, suggesting that although NKT and MAIT cells may 

be dispensable individually, the loss of all PLZF- and HIVEP3-dependent unconventional 
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T cell subsets may not be, as this would result in the loss of a functional niche that 

recognizes ‘microbial extended self’. Although we cannot formally eliminate that the lack 

of these transcription factors may have a critical non-immunological biological role, the 

strong selection constraint seen in humans and the observation that mice can reproduce and 

survive in the absence of these transcription factors provide evidence that contradict the 

notion that the unconventional T cell compartment is dispensable. Using approaches that can 

target multiple unconventional T cells simultaneously would help to ascertain to what extent 

redundancy exists within the adaptive and unconventional T cell compartments, and at what 

levels.

An unexpected observation is the constraint on loss-of-function mutations in HLA-E (Fig. 

4a). Many viral infections result in the downregulation of MHC class I as a means to 

subvert conventional T cell responses109. In such settings, the leader peptide classically 

loaded on HLA-E can be substituted with virus-derived peptides to generate virus-specific 

T cells14 that provide the immune system with a solution to the riddle of the virus-mediated 

downregulation of MHC class I. This would be an example of a case in which HLA-E­

restricted T cells are not redundant in the presence of conventional T cell immunity.

There is also some value in approaching the discussion of redundancy from the perspective 

of how many different unconventional T cells can recognize the same pathogen. An 

example is Mycobacterium tuberculosis, for which a variety of unconventional T cell 

subsets have been associated with the response, including CD1-restricted T cells45, HLA-E­

restricted T cells134, Vγ9/Vδ2 γδ T cells135 and MAIT cells136. Given the broad array 

of unconventional T cells that are able to sense Mycobacterium tuberculosis—many with 

overlapping effector functions—it is unsurprising that in isolation each might not be 

essential for survival. Yet, the synergy between them is likely to provide the host with the 

best chance of fighting the infection, which is compatible with the high level of conservation 

of these molecules across species.

In summary, if the full spectrum of subsets were truly redundant it would be unlikely that 

such a diversity would have been conserved over time137. Moreover, there is an inherent 

advantage in being able to sample pathogens in many distinct ways and/or to survey and 

respond to internal changes, especially when considering that pathogens are also constantly 

evolving to subvert immunity.

Conclusion and future perspectives

Unconventional T cells can engage a broad spectrum of molecules that span peptides, lipid 

moieties, metabolites and phosphoantigens, and this recognition has been divided up across 

a multitude of cell subsets.

Many questions remain when thinking about individual unconventional T cell subsets. Why 

did we evolve so many? Why did mammals develop a T cell subset that can recognize 

vitamin B2 metabolites in particular, and what other metabolite-sensing T cell subsets exist? 

Why was the adaptive immune T cell response selected on the basis of peptide recognition 

and not that of lipids or sugars? Was it because the key driving force was the need for 
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protection against viruses? There is a clear case for unconventional T cells regulating the 

response to bacteria through the recognition of canonical antigens. Is this system in place 

to enable tissues to sense alterations in the intestinal or skin microbiota? Is there such a 

system in place to target fungi, protozoa, parasites and helminths, or to recognize toxins 

and allergens? Finally, does displacement of unconventional T cell subsets by chronic 

inflammation contribute to dysfunctional protective and anti-tumoral immune responses in 

tissues?

Most importantly, we should not think of unconventional T cells as a rudimentary attempt 

at adaptive immunity. Instead, they offer unique additions to the mosaic that is the 

immune system. Whereas conventional T cells have a critical role in sterilizing immunity, 

unconventional T cell subsets are well-suited for local responses, as they seed and mature 

with tissues from early in life and are more adapted to promote homeostasis and tissue 

healing. It is also more cost-effective for the host to rely as much as possible on preset 

defences rather than having to call on de novo conventional T cell responses constantly. 

Their role may be especially critical early in life, under periods of extended stress such as 

nutrient deprivation, and during chronic inflammation and ongoing infection to protect from 

additional insults. It also remains unclear how all the different arms of T cell immunity work 

together during the course of an infection and in different tissues. Future studies may want 

to consider looking at common hubs and targeting several unconventional T cell subsets 

simultaneously, through the deletion of PLZF, for example. Overall, a more systems-based 

approach that considers redundancy and the kinetics of immune responses, as well as niche 

formation and stability, will be necessary to truly appreciate the role and complexity of 

unconventional T cells and their relationship to adaptive immunity. Redundancy, rather than 

pointing to the trifling nature of these cells, may actually point to their importance in the 

defence and preservation of tissues.
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Fig. 1 |. Comparison of TCR docking modes.
Experimentally determined TCR-binding modes are shown as cartoon representations for 

a selection of MHC class I or class I-like antigen-presenting molecules. In each panel the 

MHC-I subunit or equivalent is coloured as follows: light grey (HLA-A2), white (HLA-E), 

dark grey (MR1), light blue (CD1a), steel (CD1b), light pink (CD1c) or blue-white (CD1d). 

The respective antigens are coloured pink and associated β2-microglobulin orange; the 

interacting TCR subunits are coloured either blue (α-subunit) and green (β-subunit) or 

purple (δ-subunit) and lemon (γ-subunit). Below each structure is a surface representation 

of the antigen-presenting MHC-I molecules coloured according to their TCR subunit­

recognition surfaces. a, Conventional versus unconventional ligand recognition. From left 

to right: a tumour-associated MART-peptide antigen in complex with HLA-A2 or HLA-E in 

complex with an αβTCR67,138; MR1-presenting vitamin metabolites recognized by a MAIT 

TCR70, a diverse αβTCR74 and CD1d in complex with type I139 and type II72 NKT TCRs. 

b, Breaking the TCR co-recognition paradigm. From left to right: an autoreactive αβTCR in 

complex with a self-lipid presented by CD1a25; CD1b in complex with a mycobacterial lipid 

recognized by a GEM TCR46; and an autoreactive TCR recognizing CD1c75. c, Redundancy 
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of ligand recognition by alternative unconventional T cell subsets. The diversity of γδTCR 

recognition is shown with a CD1d-reactive γδTCR using a relatively standard docking 

mode55 (left) or the more radical recognition of the underside of MR1 (right)57.
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Fig. 2 |. Classification of non-classical T cells on the basis of central or peripheral development.
Unconventional T cells can be broadly separated into three groups largely based on their 

selection and differentiation patterns and how that affects their acquisition of effector 

programs. Group I unconventional T cells, which are classified by their acquisition of 

effector functions in the thymus, include NKT, MAIT and H2-M3-restricted T cells, and 

DETCs. Uniquely for NKT, MAIT and H2-M3-restricted T cells, this process takes place 

on double-positive thymocytes and requires the SAP pathway. These cells ultimately seed 

tissues such as the skin and liver, in which they exert their effector functions. Group II 

unconventional T cells include BTNL-reactive TCRγδ T cells, which leave the thymus naive 

and acquire effector functions in the periphery on tissue-specific self-ligands. Finally, group 

III unconventional T cells follow the conventional T cell path by leaving the thymus naive 

and only acquire effector functions once they encounter their cognate foreign antigen in the 

periphery. Grey cells represent naive T cells; different coloured cells represent effector T 

cells.
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Fig. 3 |. Functional niche of unconventional T cells.
The T cell compartment is shown on a gradient from conventional T cells (right) to 

unconventional T cell subsets (left) according to the classifiers in bold. Classical adaptive 

T cells occupy a specific niche in terms of the antigenic universe they recognize (that 

is, MHC–peptide complexes), and they colonize tissues as tissue-resident memory T cells 

(TRM) only after being activated and having expanded in peripheral lymph nodes in response 

to an infection. By contrast, unconventional T cells recognize a broad spectrum of antigens 

ranging from self-molecules, to microbial extended self and non-self, to formylated peptides 

and to peptides. The clonal size at homeostasis for unconventional T cell subsets like NKT, 

MAIT and BTNL-reactive TCRγδ T cells is large, as these cells expand in tissues early 

in life and in the case of NKT and MAIT cells can occupy multiple tissues. The role of 

innate immune signals versus TCR-mediated signals varies in the activation of the different 

unconventional T cell subsets; innate signals have a more critical role in the innate-like 

unconventional T cells that expand and acquire an effector phenotype either in response 

to self in the periphery (BTNL-reactive TCRγδ T cells) or in the thymus during their 

development (MR1-, CD1d- and H2-M3-restricted T cells) than in HLA-E-restricted T 
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cells that become activated in the periphery, similarly to conventional T cells. Of note, 

tissue-resident memory T cells also acquire the ability to respond to innate signals after 

establishing residence in tissues and are distinct in that regard from circulating memory 

and effector memory T cells. Finally, the unconventional T cell compartment constitutes a 

primary line of defence and also has an important role in tissue homeostasis and healing.
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Fig. 4 |. Conservation and redundancy within the T cell compartment.
a, The selective constraint score shown (filled circles) is the ratio of the observed versus the 

expected (o/e) number of loss-of-function variants in that gene in the general population. 

The o/e metric comes with a 90% confidence interval, which is shown by the dashed lines. 

When a gene has a low o/e value, it is under stronger selection against loss-of-function 

mutations than a gene with a higher value. Genes were grouped into five major biological 

groups on the basis of their function and ranked from the most selectively constrained to 

the least constrained. The scores were obtained from the Genome Aggregation Database 

(gnomAD, v.2.1.1) and are based on sequencing data from 25,748 exome sequences and 
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15,708 whole-genome sequences from unrelated individuals. b, This figure shows that 

ZAP70 has a central role in the signalling hub of all T cells and, using MAIT and NKT 

cells as an example of unconventional T cell subsets, illustrates the multifaceted nature of 

the immune system that has evolved to have multiple conventional and unconventional T cell 

subsets that mediate the same key effector functions. Although there is redundancy at this 

functional level, these T cell subsets have different modes of recognition and are regulated 

by different stimuli, thereby increasing the robustness and resilience of the immune system. 

This property of the immune system also underlies the difficulty of showing a requirement 

for any given unconventional T cell subset. TH1, T helper 1 cell; TH2, T helper 2 cell; TH17, 

T helper 17 cell.
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