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Abstract

Invasive fungal infections have escalated from a rare curiosity to a major cause of human mortality 

around the globe. This is in part due to a scarcity in the number of antifungal drugs available 

to combat mycotic disease, making the discovery of novel bioactive compounds and determining 

their mode of action of utmost importance. The development and application of chemical genomic 

assays using the model yeast Saccharomyces cerevisiae has provided powerful methods to identify 

the mechanism of action of diverse molecules in a living cell. Furthermore, complementary 

assays are continually being developed in fungal pathogens, most notably Candida albicans and 

Cryptococcus neoformans, to elucidate compound mechanism of action directly in the pathogen 

of interest. Collectively, the suite of chemical genetic assays that have been developed in multiple 

fungal species enables the identification of candidate drug target genes, as well as genes involved 

in buffering drug target pathways, and genes involved in general cellular responses to small 

molecules. In this review, we examine current yeast chemical genomic assays and highlight how 

such resources provide powerful tools that can be utilized to bolster the antifungal pipeline.
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Introduction

Fungal diseases are ubiquitous in nature, threatening biodiversity and world food supplies, 

as well as accounting for billions of human infections each year in both developing 

and developed nations.1 Over the past several decades, advances in modern medicine 

that rely heavily on the use of immunosuppressive drugs, including chemotherapy and 

transplantation surgery, as well as infections with HIV, have dramatically increased the 

number of individuals with compromised immunity. While most individuals suffering from 

mycotic infection experience relatively benign superficial symptoms, immunocompromised 
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individuals are highly susceptible to invasive infections that ravage crucial tissues and 

organs.1,2 These infections have notoriously poor clinical outcomes, where mortality 

rates often exceed 50% even with therapeutic intervention.1 Furthermore, invasive fungal 

infections incur the majority of the $7.2 billion in fungal-associated direct medical costs 

in the United States alone, despite comprising fewer than 1% of relevant hospital visits.3 

These considerable health and economic burdens are likely gross underestimates due to 

inadequate diagnostics and an absence of mycological surveillance.1 In conjunction with 

lax antifungal stewardship that applies unnecessary selective pressure on fungal populations, 

it is not surprising that we are bearing witness to ever-increasing levels of drug resistance 

across established and emerging fungal pathogens.4–7

Over 90% of fungal-related mortality is attributable to opportunistic Candida, Cryptococcus, 

and Aspergillus species.1 Candida albicans is a commensal member of the human 

microbiota, but is also a primary causative agent of life-threatening bloodstream 

infections.8,9 In addition, the unprecedented, global rise of non-albicans Candida species 

with problematic levels of intrinsic and acquired drug resistance is deeply concerning. 

Since its sudden global emergence in 2009, Candida auris has been implicated in numerous 

nosocomial outbreaks, with 93% of C. auris clinical isolates exhibiting resistance to the 

most widely deployed antifungal class, the azoles, and 4% of strains being recalcitrant to 

all available antifungal classes.6,10 Similarly, high levels of antifungal resistance have been 

documented for Candida glabrata, which currently represents the second most commonly 

isolated Candida species in the United States and Europe.11,12 Cryptococcosis often 

manifests as devastating central nervous system infections in immunocompromised patients 

and has associated mortality rates approaching 70% in endemic regions.13 Cryptococcus 
neoformans and Cryptococcus gattii are the predominant culprits, with C. gatti also capable 

of causing disease in immuno-competent hosts.14,15 Lastly, Aspergillus fumigatus has a 

universal environmental presence and is responsible for over 200,000 reported invasive 

infections annually with burgeoning azole resistance reported.1,16

Currently, there are only three major classes of clinically used antifungal drugs to 

treat systemic infection, which interfere with just two central fungal processes (Fig. 

1).11,17 Azoles are the most widely deployed antifungals owing to their broad-spectrum 

activity, favorable safety profile, and oral bioavailability.18,19 They target lanosterol 14-

α-demethylase, diverting ergosterol biosynthesis toward the production of a toxic sterol 

intermediate that exerts a severe cell membrane stress, blocking further cell growth and 

division (Fig. 1B).18,19 Unfortunately, their fungistatic action and widespread, prophylactic 

use in both medicine and agriculture poses strong directional selection pressure for the 

evolution of resistance.4,7,16 Polyenes, such as amphotericin B, directly bind and remove 

ergosterol from the cell membrane acting as a sterol sponge (Fig. 1B).20 Although 

acquired resistance in clinically relevant contexts remains rare,4,7,21 polyenes are instead 

associated with undesirable host nephrotoxicity. Thus, amphotericin B is usually deployed 

as a last resort therapy against cryptococcal meningitis22 and multidrug-resistant Candida 
infections.23 Finally, the echinocandins are the only novel drug class approved for clinical 

application in the past two decades.11 They noncompetitively inhibit 1,3-β-D-glucan 

synthase, depriving the fungal cell wall of an integral polymeric component, leading to 

the induction of cell wall stress and eventually cellular death (Fig. 1B).4,7
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The stagnant discovery of novel antifungal compounds over the past several decades can be 

attributed to a variety of factors. First and foremost, the number of fungal-specific cellular 

pathways that can be therapeutically targeted is restricted due to the eukaryotic similarities 

between fungi and humans, compared with more evolutionarily distant microbes, such as 

bacteria.18,19 In addition, an estimated 80% of molecules with published fungicidal activity 

are not pursued due to inherent unsuitable properties, namely promiscuous functionality, 

as well as a lack of whole-cell bioactivity due to difficulties with permeating across the 

fungal cell wall and membrane.18,24 Poor target specificity and lack of whole-cell bioactivity 

also contribute to high attrition rates during pre-clinical development. Finally, the scientific 

complexities of antifungal development are exacerbated by a chronic dearth of research 

initiatives and resource investment. Yet, despite these challenges, scientific advancements 

have offered great hope for the discovery and development of novel antifungal agents. 

Phenotype-based identification of bioactive molecules, which prioritizes potent activity 

within the context of intact fungal cells, can now be coupled with a vast array of functional 

genomics resources to enable subsequent target deconvolution.25–28 In this review, we 

explore current chemical-genomic approaches developed for Saccharomyces cerevisiae, as 

well as those resources available in clinically important fungal pathogens, emphasizing their 

potential to revitalize antifungal drug discovery.

The power of yeast genetics

Since its genome sequence was assembled almost 25 years ago,29 S. cerevisiae has prevailed 

as the de facto eukaryotic model system, guiding our understanding of the eukaryotic cell 

and serving as an invaluable resource of genomic tools and reagents. Systematic genetic and 

phenotypic analyses in this species were enabled by a consortium of scientific laboratories 

that developed a comprehensive collection of deletion mutants, where each of the ~6000 

yeast open reading frames was replaced with a kanMX dominant, drug-resistance marker.30 

This strategy also encompassed the inclusion of strain-specific molecular sequences: two 

unique 20 base-pair oligonucleotides that are flanked by universal priming sequences. These 

strain-specific barcodes surround each kanMX drug-resistance marker and serve as a unique 

molecular identifier for each strain in the S. cerevisiae genome.31 This systematic endeavor 

defined the set of ~1000 S. cerevisiae genes essential for viability in laboratory growth 

conditions and generated a set of ~5000 viable haploid deletion mutants.30,32 Notably, the 

essential gene set is not only contingent on standard growth conditions but also strain 

background, which has implications for drug development and how researchers might 

select potential drug targets. Importantly, this strategy motivated several other laboratories 

to develop additional genome-wide tools to enable proteomic studies, such as the yeast 

comprehensive temperature-sensitive mutant collection,33,34 the yeast titratable-promoter 

collection of essential genes,35,36 the tandem affinity purification (TAP-tagged) collection,37 

the GFP (green fluorescent protein) collection,38 and genome-scale two-hybrid resources.39 

More recently, complementary strain collections were constructed in which subsets of the 

~1000 essential yeast genes were individually altered to produce conditional or hypomorphic 

alleles with the potential to be assayed at a semipermissive state, enabling systematic 

analysis of essential genes.40 Collectively, these mutant collections have enabled the 
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development and application of high-throughput methodologies that have revealed incredible 

complexities inherent of eukaryotic biological systems.

The functional redundancy and extensive buffering within the eukaryotic cell became 

evident once it was revealed that only ~17% of genes in the S. cerevisiae genome 

are essential under standard laboratory conditions.30 For decades prior, geneticists had 

investigated relationships between gene pairs, mapping out genetic interactions on a case

by-case basis. A genetic interaction between two genes is observed when a phenotype 

caused by a mutation in one gene depends on a mutation in another gene such that the 

combined effect deviates from expectation based on the individual effects, with synthetic 

lethality representing the extreme case of a negative genetic interaction (Fig. 2A and 

B).41–43 For example, one of the first examples of synthetic lethality was described with 

loss-of-function mutant alleles of both TUB1 and TUB3, both of which encode α-tubulin.44 

With the completion of the yeast deletion collection, researchers began systematically 

mapping all genetic interactions in S. cerevisiae. To do so, synthetic genetic array (SGA) 

was developed as an automated method that combined arrays of gene deletion mutants with 

robotic manipulation for high-throughput construction of combinations of mutant alleles 

and identification of genetic interactions.45 In its first two applications, SGA methodology 

crossed at first eight followed by ~130 gene-specific query mutant strains to the ~5000 

haploid deletion mutants resulting in complex networks of thousands of synthetic lethal 

or synthetic sick interactions.45,46 Recently, the combination of SGA with a genome-scale 

colony size-scoring methodology enabled the assessment of growth defects associated with 

approximately 18 million yeast gene deletion pairs. These large-scale studies measured the 

fitness of single and double mutants to identify nearly 550,000 negative genetic interactions 

and 350,000 positive genetic interactions, enabling the assembly of the first complete 

genetic interaction network for any organism.40,47

The mapping of genetic interactions in S. cerevisiae highlighted several critical observations 

with important implications for the development of novel antifungal therapies.45,47 While 

only ~1000 genes in S. cerevisiae are essential for viability,30 the identification of 550,000 

negative genetic interactions between gene deletion pairs40,47 suggests the potential for 

combatting fungal infections may come from targeting multiple cellular nodes that together 

result in a lethal or sick phenotype (Fig. 2B).18,48 For example, in S. cerevisiae, FKS1 
and its paralog FKS2 encode the biosynthetic enzyme for (1,3)-β-D-glucan synthesis and 

the molecular target of the echinocandins. While FKS1 and FKS2 are synthetic lethal, 

in keeping with echinocandin efficacy, FKS1 is also synthetic lethal with CHS3, a chitin 

synthase required for the synthesis of the cell wall component chitin,47 and inhibitors of 

chitin synthases, such as nikkomycin, are synergistic with caspofungin against numerous 

fungal pathogens.49,50 While this example highlights genetic interactions as determinants 

of the efficacy of compound combinations, the complexities of chemical action and genetic 

network density may preclude the prediction of synergism on a genome-wide scale.51 Thus, 

additional factors must be employed in order to identify effective antifungal combinations.
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Chemical genomics in S. cerevisiae

The creation of the yeast deletion collection with strain-specific molecular barcodes enables 

the quantification of individual strains in a mixed population.31,52 Consequently, this 

approach has been widely used over the past two decades to investigate interactions 

between genes and small molecules.32,53–56 Such chemical-genetic assays are based on 

the concept that modifying the expression of a compound target (or the expression of 

other factors involved in a process that is targeted by the compound) alters the amount 

of compound required to effectively inhibit that target (see Figs. 3 and 4 below). This 

principle has been exploited at genome scale, allowing unbiased screening to determine 

a molecule’s mode-of-action in whole yeast cells. Benefits of the pooled chemogenomic 

format include the consumption of relatively little compound, which may be a limiting factor 

in terms of quantity and expense; the efficiency of processing pooled samples compared 

with profiling thousands of individual mutants; as well as the minimization of technical 

variation.26,27,52,57,58 To further enhance the utility of this approach, a set of donor strains, 

called Barcoders, was constructed that allows unique barcode sequences to be transferred 

to any S. cerevisiae strain collection in a rapid and cost-effective manner, enabling the 

application of parallel pooled approaches to a wide variety of complex bioassays.59

Haploinsufficiency, homozygous, and haploid deletion profiling

Haploinsufficiency profiling (HIP) operates under the principle that deletion of one copy 

of a target gene in a diploid organism confers hypersensitivity to chemical inhibition.60 

Drug-induced loss of activity of the remaining gene product emulates a complete gene 

deletion and is exhibited as a quantifiable growth defect.55 This is particularly true when 

the compound target is an essential (or highly critical) gene. In this case, the heterozygous 

strain likely shows no growth defect in untreated conditions but becomes inviable and drops 

out of a population in the presence of the compound that has effectively inhibited the 

function of the remaining target protein. HIP enables all deletion strains in the S. cerevisiase 
genome to be pooled together in order to determine competitive growth differences in 

a single genome-wide experiment by quantification of the barcodes traditionally through 

microarray and currently via high-throughput sequencing (Fig. 3).26,55,60 This experimental 

approach provides a relative rank order of hypersensitive mutants, as well as information as 

to the genes whose perturbation is associated with significant phenotypic effects.55 Initial 

applications of HIP proved the accuracy of the experimental approach, as mutants of genes 

encoding well-characterized targets of antimicrobial agents were readily identified as the 

most sensitive from the pool of ~6000 heterozygous deletion strains.55,60,61 In addition, 

heterozygous deletion mutants in gene encoding products that belonged to related signaling 

or metabolic pathways, or factors that reduced compound availability, were often shown 

to be hypersensitive.26,55 For example, S. cerevisiae pooled screening with methotrexate 

identified hypersensitive mutants, including for the reported drug target dihydrofolate 

reductase gene, DFR1, as well as FOL1 and FOL2, which encode upstream components 

in the folic acid biosynthetic pathway.55 The utility of HIP in uncovering novel mechanisms 

of action for countless small molecules has been repeatedly demonstrated, including two 

independent studies that implicated ribosomal RNA processing as the mechanism of 

5-fluorouracil,55,61 an antitumoural agent widely considered to act via inhibition of the 
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DNA synthesis enzyme thymidylate synthetase.62 Furthermore, HIP identified new chemical 

probes targeting septin, actin, and tubulin,56 as well as numerous alternative eukaryotic 

targets for diverse psychoactive drugs.63

While these examples highlight the potential of HIP in uncovering the mechanism of 

small molecules, not all genes display haploinsufficiency and increased sensitivity upon 

a 50% reduction of dosage. Furthermore, gene expression in select heterozygous deletion 

mutants may in fact be greater than the expected 50% due to transcriptional upregulation, 

which can compensate for reduced copy number.64 The decreased abundance by mRNA 

perturbation (DAmP) strategy is an alternative to HIP that uses antibiotic resistance cassettes 

to systematically disrupt the 3′-untranslated region of essential genes in haploid yeast, 

destabilizing the corresponding transcripts to an estimated 10% of wild-type expression.65,66 

This methodology was used to generate a barcoded collection encompassing ~1400 strains, 

including approximately 90% of all essential genes.59,65,66 This analogous approach is 

preferable to simply elevating drug concentrations in heterozygous deletion mutants, which 

may cause loss of target specificity and thus generalized cellular toxicity.26,55

Homozygous deletion profiling (HOP) or haploid deletion profiling (HAP) is conceptually 

and experimentally similar to HIP but employs full deletion of nonessential genes in 

either diploid (HOP) or haploid (HAP) S. cerevisiae strains (Fig. 3). These approaches 

provide complementary and powerful assays in order to probe the mechanism of action 

of compounds that lack an essential protein target, and instead target cellular factors, such 

as DNA or lipids, or for those compounds that have redundant protein targets.26,67 For 

example, HIP of the DNA-intercalating agent cisplatin proved unsuccessful at identifying 

a putative target as there was no single protein in the cell for which genetic reduction 

would confer sensitivity to a compound that binds DNA. However, parallel HOP analysis 

uncovered numerous DNA repair factors, supporting DNA itself as the target.55 Although 

these approaches can be performed in either haploid or diploid gene deletion libraries, 

diploid strains present the advantage of being less impacted by secondary-site mutations, 

which have the potential to confound data interpretation.53 HOP/HAP also allows for the 

identification of genes in target-related pathways or detoxification processes, including 

metabolism and efflux, which buffer the cellular response to chemical stress.26,64,68 Whereas 

HIP analysis often produces fewer than 10 genes of interest, HOP/HAP assays commonly 

identify in the tens-to-hundreds of significantly hypersensitive mutants.

The complementary application of these chemical-genetic approaches has proved invaluable 

to deciphering the mode of action of bioactive agents in the context of a living eukaryotic 

cell. One of the first large-scale chemogenomic screening efforts performed 1144 full

genome HIP experiments and 418 HOP experiments.54 This study revealed a phenotype 

for 97% of genes in S. cerevisiae, suggesting that virtually the entire yeast genome is 

conditionally essential and therefore accessible to inhibition with small molecules;54 this is 

a critical observation considering the difficulty in identifying novel single-agent antifungals. 

A more recent large-scale analysis profiled 3250 small molecules and identified 317 

compounds that specifically targeted the function of 121 genes. This work suggested that 

the cellular response to small molecules is limited by a network of 45 major chemogenomic 

signatures, and coupled such cellular processes to specific chemical moieties.56 Finally, 
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recent advances in chemical-genetic screening platforms coupled with comprehensive 

sequence databases have further expanded our ability to profile compounds in a rapid and 

systematic manner, such that 13,524 molecules were investigated in a single study.69 This 

was achieved by using a diagnostic set of viable yeast gene deletion mutants spanning 

all major biological processes in a drug-sensitized genetic background, coupled with a 

highly multiplexed (768-plex) barcode sequencing protocol. For data analysis, the authors 

also generated a computational platform to functionally annotate compounds to specific 

biological processes and pathways.69–71

With recent technological advances that have enabled large-scale data generation, 

sophisticated computational platforms have proven imperative for the analysis of complex 

chemical–genetic interactions. Correlations between distinct chemical-genetic fitness 

profiles can be used for “guilt-by-association” to infer the mode of action of novel 

compounds, as compounds exhibiting similar chemical–genetic interactions tend to target 

similar processes (Fig. 2C).56,67,69,72 Likewise, the phenotypes of uncharacterized targets 

with known small molecules can glean insight into their biological roles. To make these 

comparisons, chemical-genetic profiles can be mapped onto the global genetic interaction 

profile similarity network.47 Many of these genetic, chemical, and chemical–genetic 

relationships can be explored using online resources, such as the publicly accessible HIP

HOP chemogenomics database56 and the MOSAIC database.69,71

Multicopy suppression profiling

Multicopy suppression profiling (MSP) is an orthogonal gene dosage–based approach built 

upon the concept that target gene overexpression enables increased tolerance to drug 

exposure (Fig. 4).53 Traditional suppressor screens based on such ideology have been 

employed for decades. Such studies typically use a high-copy plasmid library carrying 

randomly generated yeast genomic inserts to identify genes that, when overexpressed, 

confer resistance. Notably, these screens involve cumbersome plating techniques and clone 

characterization where plasmids are isolated from resistant colonies and sequenced in 

order to identify the gene(s) responsible for conferring the resistance phenotype. This 

approach was employed to identify the target of tunicamycin as Alg7.73 With the creation 

of advanced functional genomic resources, this approach was adapted in order to culture 

pools of strains in liquid medium in a manner analogous to the HIP assay.53 One of the 

first examples of MSP being employed in a pooled manner involved a high-copy plasmid 

collection containing yeast genomic DNA fragments with genes expressed from native 

promoters (Table 1). This library was screened in whole cells at high concentrations of 

compounds that inhibited a wild-type control by approximately 90%. Under such conditions, 

only one or a few resistant strains were selected from the population.68 Plasmids were 

then isolated from resistant cells, inserts were amplified by PCR and hybridized to a 

microarray carrying probes complementary to each yeast open reading frame in order to 

determine gene abundance in compound-treated relative to an untreated control pool.53 

This approach correctly identified Dfr1, Erg11, and Tor1 as the targets of methotrexate, 

fluconazole, and rapamycin, respectively.53 Similarly, the Yeast Genome Tiling collection 

contains overlapping fragments of the yeast genome, which are each approximately 10 kb in 

size, cloned into high-copy vectors (Table 1).74 The ends of each insert of this library have 
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been sequenced, and the plasmids organized in a tiling fashion across the yeast genome, 

ensuring near-saturation (97.2%) coverage of the yeast genome. In both examples, each 

insert contains multiple genes, and thus once a fragment that confers resistance is identified, 

the specific gene target must be cloned and its effect on the resistance confirmed.

Several alternative libraries offer advantages over the traditional randomly generated yeast 

genomic inserts collections described above. Two such resources consist of thousands of 

yeast strains, each carrying a vector harboring a single yeast open reading frame under 

the expression of the GAL1 promoter (Table 1).75,76 A proof-of-principle experiment with 

one of these inducible collections successfully identified vectors carrying TOR1 as the 

target of rapamycin.75 Finally, the generation of the molecular barcoded yeast (MoBY) 

ORF collection, which comprises over 90% of the yeast genome, was completed in order 

to further enhance the utility and efficiency of this experimental approach (Table 1).77 

The MoBY ORF library is constructed with a centromere-based vector where each gene 

is tagged with two unique DNA barcodes, similar to the yeast deletion collection.77 Once 

pools of strains are cultured in the presence of compound, resistant strains are identified 

by amplifying the strain-specific barcodes and employing microarrays or high-throughput 

sequencing for strain identification (Fig. 4). This approach has been successful at predicting 

the mode-of-action of multiple molecules.77 For example, chitosan oligosaccharide was 

known to exert fungal cell membrane stress, similar to the azoles and polyenes.78 

However, the MoBY-ORF collection determined that overexpression of the Ras superfamily 

GTPase ARL1 confers resistance to chitosan oligosaccharide, highlighting a previously 

unappreciated cellular target.79

An additional application of the MoBY-ORF library is the identification of recessive 

genes responsible for drug resistance (Fig. 4).77 After a recessive drug-resistant mutant 

is identified, it can be transformed with the MoBY-ORF collection and complementation 

by one or more wild-type alleles from the collection that restores drug sensitivity, enables 

the identification of the gene harboring the recessive resistance mutation.77 This assay 

enables the identification of drug targets in cases where the compound must interact with 

another protein to become toxic. Complementation of recessive drug-resistant alleles can 

also be used to systematically uncover general and specific resistance mechanisms. For 

example, this approach was employed to further define the mechanism of action of the 

natural product theopalauamide.77 Theopalauamide-resistant mutants were transformed with 

the MoBY-ORF collection, and the clone harboring MVD1, a gene encoding an essential 

enzyme in an early step of the ergosterol biosynthesis pathway, was observed to restore drug 

sensitivity.77 The theopalauamide-resistant strain was confirmed to contain a single amino 

acid substitution within the active site of Mvd1 and subsequent analyses indicated that 

theopalauamide binds to ergosterol, defining a novel class of sterol-binding compounds.77

As is the case with all experimental approaches, MSP has certain limitations. For 

example, overexpression of a target gene may not impart an observable drug resistance 

phenotype if the encoded protein product resides within a larger complex with distinct 

stoichiometric requirements.26,68 Increased dosage of certain genes may also itself 

interfere with cellular fitness, as an estimated 15% of yeast protein-coding genes are 

deleterious upon overexpression.76 The use of centromere-based vectors for the MoBY-ORF 
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collection minimizes overexpression-induced toxicity; however, it is certainly a limitation 

for other overexpression collections. In addition, an exceptionally sensitive drug target 

expressed at wild-type levels could mask the suppressor effects of another less sensitive 

overexpressed target, which would therefore escape detection.60 Finally, drug pumps or 

other indirect targets may dominate in the set of strains resistant to compound. Creating 

similar overexpression libraries in diverse drug pump-deficient mutants can alleviate this 

challenge.68

Variomics

Several years ago, an alternative to gene dosage–based approaches was reported for the 

systematic discovery of drug target genes, as well as resistance genes, in S. cerevisiae.80 

This experimental approach involved a genome-wide compendium of mutant libraries 

constructed by high complexity random mutagenesis. The allelic variants are carried on low

copy centromeric plasmids, with 5847 available sets representing 90% of the S. cerevisiae 
genome.80 Each variomic library contains >2.0 × 105 independent alleles, including both 

single and multiple mutated variants, to ensure high genetic diversity to maximize the 

likelihood of mutations spanning all encoded amino acid residues.80 Similar to deletion 

and overexpression profiling, pooled yeast growth and variant allele quantification through 

high-throughput barcode sequencing are performed with follow-up validation of individual 

resistant mutants. This variomics tool was first tested against rapamycin, validating its 

known target genes FPR1, TOR1, and TOR2, as well as the previously described resistance 

gene NPR1.80 Notably, the TOR1 and TOR2 resistance alleles all incorporated mutations 

within their known drug-binding domain.80 Both heterozygous and haploid variomic 

libraries have been constructed to determine if different types of mutations are able to confer 

resistance when the genetic background contains a wild-type copy of the desired allele. 

It was observed that haploid variomic pools tend to contain less genetic diversity at later 

time points during selection, given that any resistant mutations must also retain viability.81 

By contrast, variomic libraries expressed in heterozygous deletion mutants can in principle 

achieve separation-of-function. This library enabled the identification of dfr1 hypomorphic 

alleles in the diploid state, which modulate methotrexate resistance, as well as previously 

characterized dominant dfr1 mutations in the haploid background.81

A strength of the variomics approach is that it defines key amino acid residues modulating 

compound interactions and selectivity, providing further resolution into drug–target 

engagement. As well, mutant allele preconstruction obviates the reliance on spontaneous 

mutation rates, which can otherwise be inconsistent. However, spontaneous resistant mutants 

may still emerge during selection, leading to false positives and demanding functional 

validation.80 Finally, variomics-based analysis is unable to delineate resistance mechanisms 

that involve multiple genes.80

Ultimately, the complementary approaches highlighted above are best applied in parallel 

to present a more powerful strategy to elucidate compound mode of action. Congruent 

results lend higher confidence to target identification. For instance, mutants of the targets 

of fluconazole, rapamycin, and methotrexate, although consistently hypersensitive in HIP 
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assays with the cognate inhibitor, are also not always the most hypersensitive strains, but the 

corresponding target genes also confer resistance when overexpressed in MSP analysis.53

Chemical genomics in fungal pathogens

While the direct extension of findings from S. cerevisiae chemical-genetic analyses to 

pathogenic species, like C. albicans, has been fairly successful in determining the mode 

of action of antifungal molecules, significant limitations regarding genetic comparisons 

have also arisen due to phylogenetic divergence.82 In particular, fungal pathogens harbor 

mechanisms and pathways required for virulence that either do not exist in the model 

yeast or have been substantially repurposed over evolutionary time.83 Moreover, the list of 

probable drug targets in fungal pathogens is predicted to be even greater than the druggable 

S. cerevisiae genome.84,85 Thus, the ability to dissect virulence attributes and drug responses 

in these organisms in a comprehensive manner requires the development of genetic 

resources directly in the fungal pathogens. Fortunately, recent advances in the generation 

of functional genomic tools in pathogenic fungi have enabled experimentation in the 

pathogens of interest.82,83,86,87 Despite the challenges of genetic intractability and cryptic 

life cycles, the availability of complete or draft genome sequences in pathogenic fungal 

species,88–90 coupled with advances in genetic manipulation,91–93 has enabled progress with 

the production of comprehensive mutant collections and permitted the systematic discovery 

of compound–target connections.

Chemical genomics in Candida

Thus far, the most comprehensive chemical-genetic resources among pathogenic fungi 

have been generated for C. albicans. Two primary functional genomics tools have been 

instrumental in advancing our understanding of gene function in this species. First, the 

C. albicans double barcoded (DBC) heterozygous deletion library covers ~90% of the 

C. albicans genome.82 Similar to the S. cerevisiae heterozygous deletion collection, the 

DBC library also includes strain-specific molecular sequences that are flanked by universal 

priming sequences. These strain-specific barcodes surround a HIS3 auxotrophic marker 

and serve as unique molecular identifiers for each strain in the C. albicans genome.82 

Second, building upon the DBC collection, a library of C. albicans mutants was generated 

to facilitate large-scale functional analysis of its genome. To do so, a gene replacement 

and conditional expression (GRACE) strategy was employed where a heterozygous deletion 

mutant was transformed such that the expression of the remaining allele was conditionally 

controlled by replacing the native promoter with a tetracycline-repressible promoter.86 This 

GRACE collection currently consists of ~2400 mutants representing approximately ~40% 

of the C. albicans genome. Furthermore, this methodology has enabled a direct comparison 

of phenotypes under nonrepressing and repressing conditions in order to define those genes 

essential for C. albicans growth under laboratory conditions, as well as in vivo.86,94 Defining 

the compendium of essential genes in C. albicans is imperative to the elucidation of novel 

antifungal targets.

Additional genomic resources have expanded the repertoire of experimental approaches 

to interrogate gene function in C. albicans. The transposon insertion-based TagModule 
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collection is another open-access, barcoded set of heterozygous deletion mutants, which 

comprises 59% of predicted C. albicans open reading frames.95 This collection was 

used to identify novel regulators of filamentous growth and new genes involved in 

essential processes, as well as verify the target of brefeldin A as Sec7.95 This TagModule 

toolkit is universal, meaning that it can be applied to diverse microorganisms to support 

antimicrobial research. As well, a barcoded homozygous deletion library spanning 11% of 

annotated C. albicans coding genes was generated in order to profile genes important for 

growth, morphogenesis, virulence, and commensalism.96,97 Several resources have also been 

developed for focused gene overexpression studies in C. albicans,98,99 albeit with limited 

application outside of functional annotation of specific genetic networks.

In comparison, there is a dearth of existing genetic tools in non-albicans Candida species. 

The haploid genomes of C. glabrata and C. auris are refractory to HIP, though a barcoded 

deletion mutant library covering 12% of the C. glabrata genome was recently employed 

to identify genes that influence azole and echinocandin susceptibility.100 Likewise, recent 

completion of annotated C. auris genome assemblies101 and advances in CRISPR-Cas9 

technology, particularly the use of RNA-Cas9 complexes for expression-free gene editing 

systems in C. glabrata and C. auris,91 can be envisioned as guiding large-scale loss-of

function mutant collections and drug target determination in the near future.

Chemical genomics in Cryptococcus

Genetic tool development for C. neoformans can be considered arduous, in large part due 

to inefficient transformation that is achieved by either electroporation or the bombardment 

of DNA-coated particles (biolistic transformation), low homologous recombination rates, 

as well as complex genomic structural features.90,102,103 However, the development of 

cloning-free fusion PCR methods for the addition of long homology arms for gene 

targeting, optimization of transformation parameters, the development of multiple dominant 

drug-selectable marker systems, and the optimization of rapid screening for genotyping 

transformants made it feasible to construct large numbers of gene deletions in C. 
neoformans.104 Specifically, an open-access library of 1201 signature-tagged deletion 

mutants, biased for genes lacking S. cerevisiae orthologs, was constructed.105 Each 

deletion mutant harbored one of 48 DNA oligonucletoide barcodes that enabled quantitative 

detection of each mutant in a pooled sample.104,105 Furthermore, this collection along with 

another barcoded gene deletion library105 that together encompassed 1448 gene knockouts, 

was used to generate a chemogenomic atlas where each homozygous deletion mutant 

was cultured in the presence of one of 439 small molecules.87 Eighty-three percent of 

the mutants were found to be associated with chemical phenotypes (either hypersensitive 

or resistant), and each compound induced one or more genetic responses. Importantly, 

a comparison of these results with large-scale studies in S. cerevisiae54,67 highlighted 

that chemical-genetic profiles from C. neoformans were largely distinct from those in S. 
cerevisiae, emphasizing the relevance of pathogen-focused studies.87 In particular, chemical

genetic screens with this deletion mutant collection were pivotal in determining that the 

azole synergizing agent dicyclomine increases cell permeability and decreases nutrient 

uptake in C. neoformans.106 Additional gene deletion collections have also been generated 

for functional genomic profiling, including a 322 signature-tagged gene deletion collection 
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encompassing 155 putative transcription factor genes, as well as 264 signature-tagged 

gene deletion mutants for 129 putative kinases.107,108 These collections were profiled 

to unveil key regulators of virulence and drug resistance in order to map potential 

anticryptococcal targets to be exploited for therapeutic development. Finally, the genome 

editing strategy transient CRISPR-Cas9 coupled with electroporation system (TRACE) was 

recently developed that dramatically improves the efficiency of targeted mutagenesis in 

the Cryptococcus genome,109,110 thus providing great promise for the generation of future 

mutant collections in this species.

Chemical genomics in Aspergillus

The major obstacles to targeted genetic manipulation in A. fumigatus are poor homologous 

recombination and prolific genetic exchange via vegetative cell fusion.111 To date, 

systematic mutant collections for chemical-genetic fitness profiling are lacking; however, 

the outlook is bright with improvements in gene deletion and overexpression methods. 

Transposon insertion mutagenesis, as well as parasexual genetics, has been deployed to 

identify essential A. fumigatus genes.112,113 Moreover, a conditional promoter replacement 

strategy was implemented to distinguish and prioritize essential and putative antifungal 

drug target genes among 54 genes with essential C. albicans or S. cerevisiae orthologs.114 

This included the generation of a conditional ALG7 mutant, which was confirmed to elicit 

specific hypersensitivity to its known inhibitor tunicamycin, upon genetic depletion in a 

whole cell.114 More recently, a study demonstrating minimal induced cell fusion under 

controlled culture conditions served as proof-of-principle for barcode-free, high-throughput, 

competitive fitness profiling in A. fumigatus.115 A mini-library of 46 heterozygous 

deletion strains of known drug target genes and/or essential genes was created by a rapid 

allelic replacement technique, with cyp51A and arf2 mutants rediscovered as the only 

significantly hypersensitive outliers for their cognate inhibitors itraconazole and brefeldin 

A, respectively.115 In addition, multiple groups have recently reported advances with 

CRISPR-Cas9 to promote homologous recombination for targeted gene disruption and loss

of-function studies in Aspergillus species.92,116,117

Characterization of novel antifungals using chemical genomics

With the vast array of functional genomics resources available in S. cerevisiae, C. albicans, 

and C. neoformans, it is not surprising that the application of chemical-genomic approaches 

for antifungal mode of action analysis is expanding. For example, the natural product 

parnafungin was shown to display potent and broad spectrum activity against diverse fungal 

pathogens by inhibiting fungal poly(A) polymerase,118 and the antifungal plant defensin, 

RsAFP2, was demonstrated through HIP to target the C. albicans glucosylceramides, 

key components of the fungal cell wall.119 Similar research identified structurally related 

synthetic molecules that induced hypersensitivity in an OLE1 heterozygous mutant, 

implicating the biosynthesis of unsaturated fatty acids as a potential antifungal target.120 

In addition, synthetic compounds with antifungal activity against C. neoformans were 

shown to target sphingolipid biosynthesis using S. cerevisiae HIP-HOP to elucidate 

mode of action.121 Finally, recent studies unveiled great potential of targeting either 

glycosylphosphatidylinositol precursor biosynthesis,122 or the fungal casein kinase Yck2,123 
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through their use of C. albicans HIP to identify the mechanism of action of novel bioactive 

compounds.

In addition to the examples highlighted above, several studies have also leveraged 

high-throughput approaches to determine the cellular targets of diverse compounds that 

display antifungal activity. Two such studies performed high-throughput screens to identify 

antifungal potentiators and then characterized the mode of action of top candidates using S. 
cerevisiase chemical genomic resources, implicating effects on membrane permeability or 

sphingolipid metabolism.124,125 Furthermore, efforts from industry to screen ~1800 natural 

product extracts identified and characterized a number of natural products with antifungal 

activity, including: yefafungin, which targets the fungal-specific translation initiation factor 

YEF3; campafungin, predicted to inhibit adenylate cyclase activity and/or cAMP regulation; 

and fellutamides C and D, which were predicted to inhibit the fungal proteasome.126

One final alternative application of fungal chemical genomic resources to combat fungal 

infection is to identify genes and genetic networks important for fungal virulence and 

identify virulence factors targeted by novel small molecules. Targeting fungal virulence 

provides a complementary approach to the development of antifungal agents, as the goal 

is to occlude the ability of a microbe to cause harm to its host. Targeting virulence factors 

offers many benefits, including expanding the repertoire of antifungal targets, minimizing 

effects on the host myco-biome, and reducing selection pressure for the evolution of drug 

resistance.127,128 One such virulence trait in C. albicans is the ability to transition between 

yeast and filamentous morphologies. This developmental transition is not only imperative 

for the establishment of systemic infection,96,129 but is also required for the formation of 

drug-resistant biofilms on surfaces, such as medical devices.130 Chemical-genetic resources 

in fungal pathogens can aid in elucidating novel virulence pathways that can be targeted 

by small molecules, as well as identify the precise virulence factor(s) that are targeted by 

such compounds. For example, one such study employed the C. albicans GRACE collection 

to identify 102 negative morphogenetic regulators and 872 positive regulators, implicating 

ergosterol biosynthesis and N-linked glycosylation in morphogenesis.94 Another study using 

the GRACE library implicated the Arp2/3 complex in C. albicans adherence and biofilm 

formation, due to its role in modulating cell surface hydrophobicity and remodeling of 

chitin and β-glucans in the fungal cell wall.131 Finally, an approach combining genome

wide C. albicans transcriptional analysis and mining S. cerevisiae chemical genomic data 

successfully pinpointed inhibition of the mitochondrial retrograde response via MGE1 as 

the probable mechanism of niclosamide, a repurposed antihelmintic agent that disrupts C. 
albicans filamentation and biofilm formation.132

Concluding thoughts: steady steps forward on the long road ahead

This review has highlighted the tremendous progress that has been made over the past 

few decades in the development of functional genomic resources that have advanced 

our understanding of how small molecules impact the fungal cell. While several hurdles 

remain to translate what we as a community have learned into development of the next 

antifungal drug that can be deployed in the clinic, the diverse array of cellular targets 

identified provides hope that there remains a plethora of cellular targets to be exploited 
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to combat mycotic disease with much needed single agent and combination therapy 

treatments. The continued expansion of chemical genetic resources in diverse fungal 

pathogens will greatly empower inference of mode of action and resistance mechanisms 

for novel candidate antifungals. Likewise, elucidation of pathogen-specific drug–target pairs 

will further empower structure–activity relationship analysis and optimization of more 

species-selective and effective analogs. Beyond human health applications, chemical genetic 

approaches are also being implemented directly in fungal plant pathogens for agricultural 

fungicide development, which is similarly facing unprecedented resistance pressures.133 

Overall, although the generation of functional genomic resources in diverse fungal species 

requires substantial investment of time and resources, it is exquisitely clear that these 

advances will catalyze the development of much-needed antifungal drugs.
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Figure 1. 
Timeline of antifungal discovery, and antifungal drug mechanisms of action. (A) The clinical 

introduction of antifungal agents belonging to the three major clinically used classes: 

polyenes, azoles, and echinocandins. (B) The mechanisms of action of antifungal drugs. 

Azoles exert fungistatic activity by inhibiting lanosterol 14-α-demethylase (encoded by 

ERG11), which leads to a block in ergosterol synthesis and the accumulation of toxic 

sterol intermediates, produced by Erg3 (left panel). Polyenes act as a fungicidal “sterol 

sponge” by forming extra-membranous aggregates that extract ergosterol from lipid bilayers 

(middle panel). Fungal cell walls are composed of (1,3)-β-D-glucan covalently linked to 

(1,6)-β-D-glucan, as well as chitin and mannan. Echinocandins prevent the synthesis of 

(1,3)-β-D-glucan by inhibiting the (1,3)-β-D-glucan synthase (encoded by FKS1 in C. 
albicans and by both FKS1 and FKS2 in S. cerevisiae); this results in a loss of cell wall 

integrity (right panel). Adapted, with permission, from Ref 134.
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Figure 2. 
Application of genetic–genetic and chemical–genetic interactions for compound to target 

annotation. (A) A genetic interaction between two genes is observed when a phenotype 

caused by a mutation in one gene is exacerbated by a mutation in another gene. A negative 

genetic interaction occurs if the observed fitness of the double mutant is less than the double 

mutant fitness expected from a multiplicative model. A positive genetic interaction occurs if 

the observed fitness of the double mutant is greater than the double mutant fitness expected 

from a multiplicative model. (B) Mutations in genes residing in parallel pathways typically 

culminate in a negative genetic–genetic interaction (green box). Genetic inhibition of one 

pathway combined with pharmacological inhibition of a parallel pathway typically results 

in a negative chemical–genetic interaction (yellow box). (C) Comparing genetic–genetic 

and chemical–genetic interaction profiles can facilitate functional interpretation of chemical

genetic screening data for a given compound.
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Figure 3. 
Reduced gene dosage chemical-genomic assays. Haploinsufficiency profiling (HIP), 

homozygous deletion profiling (HOP), and haploid deletion profiling (HAP) operate under a 

common principle. HIP employs heterozygous deletion mutants of essential or nonessential 

genes in a diploid for reduced gene dosage. HOP utilizes homozygous deletion mutants in 

a diploid parent and HAP utilizes haploid deletion mutants generated in a haploid parent 

to abolish the expression of nonessential genes. Individual strains within each genome-wide 

library are tagged with two unique DNA barcodes, upstream and downstream (BC1 and 

BC2), that permit simultaneous analysis within a single pool. Deletion libraries are grown 

Xue et al. Page 23

Ann N Y Acad Sci. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



competitively in the absence and presence of a compound of interest. Genomic DNA is 

isolated after a duration of pooled growth, and PCR amplification of strain-identifying 

barcodes is performed using universal primers for the upstream or downstream barcodes. 

High-throughput barcode sequencing and normalization to the untreated pool is used to 

quantify strain representation.
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Figure 4. 
Multicopy suppression profiling. The MoBY ORF library is constructed such that each 

gene is tagged with two unique DNA barcodes, similar to the yeast deletion collection. 

This collection can be transformed into a wild-type strain (left panel) or a haploid drug

resistant strain that harbors a recessive mutation (right panel). The resulting pools can be 

grown with a compound of choice. Plasmid DNA is isolated. Strain-specific barcodes are 

amplified using plasmid primers that flank each insert. High-throughput barcode sequencing 

and normalization to the untreated pool is used to determine strain representation. In a 

wild-type background, increased expression of a compound’s target gene typically confers 
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enhanced fitness in the presence of the compound relative to other genes. In a drug-resistant 

background that contains a recessive resistance mutation, a plasmid with significantly 

reduced barcode counts identifies the gene that harbors the mutation responsible for 

resistance to the compound of interest.
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