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Abstract

We present a general mathematical framework for trajectory stratification for simulating rare

events. Trajectory stratification involves decomposing trajectories of the underlying process into

fragments limited to restricted regions of state space (strata), computing averages over the

distributions of the trajectory fragments within the strata with minimal communication between

them, and combining those averages with appropriate weights to yield averages with respect to the

original underlying process. Our framework reveals the full generality and flexibility of trajectory

stratification, and it illuminates a common mathematical structure shared by existing algorithms

for sampling rare events. We demonstrate the power of the framework by defining strata in terms

of both points in time and path-dependent variables for efficiently estimating averages that were

not previously tractable.

I. INTRODUCTION

Computer simulation is a powerful tool for the study of physical processes. Specifically,

stochastic simulation methods have broad applicability in modeling physical systems in a

variety of fields including chemistry, physics, climate science, engineering, and economics

[1, 2]. In many practical applications, the statistical properties of the process of interest are

approximated by averages over many independent realizations of trajectories of the process,

or, in the case of ergodic properties, by averages taken over a single very long trajectory of

the process. However, for many systems, the most interesting events occur infrequently and

are therefore very difficult to observe by direct numerical integration of the equations

governing the dynamics. For example, in chemistry, the conformational changes responsible

for the function of many molecules and, in climate science, extreme events like severe

droughts and violent hurricanes, occur on timescales orders of magnitude longer than the

timestep for numerical integration. This basic observation has motivated the development of

numerous techniques aimed at enhancing the sampling of rare events of interest without
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sacrificing statistical fidelity (see [3] for an account within the context of molecular

simulation).

In this article, we depart from standard enhanced sampling approaches and develop a general

mathematical and computational framework for the estimation of statistical averages

involving rare trajectories of stochastic processes. Our approach can be viewed as a form of

stratified sampling, long a cornerstone of experimental design in statistics (e.g., [4]). In

stratified sampling, a population is divided into subgroups (strata), averages within those

strata are computed separately, and then averages over the entire state space are assembled

as weighted sums of the strata averages. Stratification also has a long history in computer

simulations of condensed-phase systems as umbrella sampling (US) [3, 5–8]. The key idea

behind any stratified sampling strategy is that, when the strata are chosen appropriately, their

statistics can be obtained accurately with relatively low effort and combined to estimate the

average of interest with (much) less overall effort than directly sampling the stochastic

process to the same statistical precision. Here we show that the trajectories of an arbitrary

discrete-time Markov process (including many dynamics with memory, so long as they can

be written as a suitable mapping) can also be stratified: they can be decomposed into

fragments restricted to regions of trajectory space (strata), averages over the distributions of

trajectory fragments within the strata can be computed with limited communication between

them, and those averages can be combined in a weighted fashion to yield a very broad range

of statistics that characterize the dynamics.

These basic features are at the core of the existing nonequilibrium umbrella sampling

(NEUS) method [9–11], which forms the starting point for our development. NEUS was

originally introduced to estimate stationary averages with respect to a given, possibly

irreversible, stochastic process [9]. Starting in [10, 11] it was observed that the general

NEUS approach was applicable to certain dynamic averages as well. The basic NEUS

approach has been been applied and further developed in subsequent articles [12–15] and in

the Exact Milestoning scheme [16], which was derived from the Milestoning method [17]

but is very similar in structure to NEUS. At its most basic level, NEUS relies on duplication

of states in rarely visited regions of space and subsequent forward evolution of the

duplicated states. In this way it is similar to a long list of so-called “trajectory splitting”

techniques [18–26] that are also able to compute averages of dynamic quantities. Like

NEUS, splitting techniques also often involve a decomposition of state space into regions.

Unlike NEUS however, in most splitting techniques bias is removed through the use of a

separate weight factor for each individual sample (rather than for an entire region), and the

computational effort expended in each region is not controlled directly. What makes the

NEUS method unique among splitting techniques is that it is also a trajectory stratification

strategy.

Our goal in this article is to provide a clear and general mathematical framework for

trajectory stratification that builds upon the NEUS method. In the process we clearly

delineate the range of statistics that can be estimated by NEUS, including more general

quantities than previously computed. Our analysis of the underlying mathematical structure

of US [27, 28] has already facilitated the derivation of a central limit theorem for US and a

detailed understanding of its error properties. Here, our framework reveals unanticipated
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connections between the equilibrium and nonequilibrium US methods and places the

nonequilibrium algorithm within the well-studied family of stochastic approximation

methods [29]. The analysis leads to a practical scheme that departs dramatically from

currently available alternatives. We demonstrate the use of trajectory stratification to

compute a hitting time distribution as well as to compute the expectation of a path-

dependent functional that gives the relative normalization constants for two arbitrary, user-

specified un-normalized probability densities.

II. A UNIFIED FRAMEWORK

In this section we present a framework that reveals the unified structure underlying umbrella

sampling in both the equilibrium and nonequilibrium case. In Section II A, we review the

equilibrium approach [27, 28] to introduce terminology and the central eigenproblem in a

context where the analogies to traditional umbrella sampling descriptions [3, 5–8] are

readily apparent. In Section II B, we present the nonequilibrium version of the algorithm and

show how this interpretation results in a flexible scheme for computing dynamic averages.

As for its equilibrium counterpart, an eigenproblem lies at the core of the nonequilibrium

method. This eigenproblem however, involves a matrix that depends on the desired

eigenvector, introducing the need for a self-consistent iteration. In Section III, we give a

precise description of the fixed-point problem solved by this iteration and show that the

algorithm is an example of a stochastic approximation strategy [29]. In Section IV we

specialize our development to the context of steady-state averages that motivated the original

development of NEUS [9].

A. Averages with Respect to a Specified Density

Our presentation in this section follows [27]. We view umbrella sampling as a method to

compute averages of the form

∫
x ∈ ℝd f (x)π(dx), (1)

where π is a known probability distribution and d is the dimension of the underlying system

(e.g., the total number of position coordinates for all atoms in a molecular system). For

example, π might be the canonical distribution, π(dx) ∝ e−βV (x)dx where V is a potential

energy function, β is an inverse temperature, and f might be 1 on some set A and 0

elsewhere. In this case, −β−1 log ∫ f(x)π(dx) can be regarded as the free energy of the set A.

Note that in our notation π is a probability measure on ℝd and dx is an infinitesimal volume

element in ℝd. If the distribution π has a density function p(x) then π(A) = ∫x∈A p(x)dx and,

in particular, π(dx) = p(x)dx. This more general notation is useful when we move to our

description of the nonequilibrium umbrella sampling scheme. As an aid to the reader, we

choose to introduce it in the simpler setting of this section.

Consistent with traditional implementations of US [3, 6], we divide the computation of the

average in (1) into a series of averages over local subsets of space. More precisely, instead of

directly computing averages with respect to π, we compute averages with respect to n
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probability distributions, πj, each of which concentrates probability in a restricted region of

space (relative to π itself) with the goal of eliminating or reducing barriers to efficient

sampling associated with π. So that general averages with respect to π can be assembled,

the πj satisfy π = ∑ j = 1
n z jπ j for a set of weights zj to be defined in a moment.

To obtain the restricted distributions πj we can set

π j(dx) =
ψ j(x)π(dx)

∫
y ∈ ℝdψ j(y)π(dy) , (2)

where the ψj are non-negative user defined functions satisfying ∑ j = 1
n ψ j(x) = 1 for all x (this

last requirement is relaxed in [27]). For example, one might choose

ψ j(x) = 1A j
(x)/∑𝓁 = 1

n 1A𝓁
(x), where the Aj are a collection of sets covering the space to be

sampled, and, for any set Aj, the function 1A j
(x) is 1 if x ∈ Aj and 0 otherwise.

Note that π = ∑ j = 1
n z jπ j  is satisfied with

z j = ∫
x ∈ ℝdψ j(x)π(dx) (3)

and that the average (1) with respect to π can be reconstructed using the equation

∫
x ∈ ℝd f (x)π(dx) = ∑

j = 1

n
z j f j, (4)

with

f j = ∫
x ∈ ℝd f (x)π j(dx) . (5)

Here zj is the statistical weight associated with each distribution πj and 〈f〉j are the averages

of the observable f against πj. From (4) we see that if we can sample from the πj and

compute the zj then we can compute averages with respect to π. Since πj is known explicitly

in this case, it can be sampled by standard means (e.g., Langevin dynamics or Metropolis

Monte Carlo [3]).

Our key observation underpinning the equilibrium umbrella sampling method is that the zj

themselves are functions of averages with respect to the local distributions πj:

z j = ∑
i = 1

n
ziFi j and ∑

j = 1

n
z j = 1, (6)

where
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Fi j = ∫
x ∈ ℝdψ j(x)πi(dx) . (7)

The matrix F is stochastic (i.e., has non-negative entries with rows that sum to 1) and (6),

which is written in matrix-vector form as

zTF = zT and ∑
j = 1

n
z j = 1, (8)

is an eigenproblem that can be solved easily for the vector z.

We now have a stratification scheme for computing the target average in (1) by sampling

from the distributions πj. Operationally, the main steps are as follows.

1. Assemble F defined in (7) (or the alternative in Appendix A below) and 〈f〉j

defined in (5) by sampling from πj defined in (2).

2. Solve the eigenvector equation (8) for z defined in (3).

3. Compute the desired expectation via (4).

The efficiency of this equilibrium US scheme has been analyzed in detail elsewhere [27, 28].

Roughly, the benefit of US is due to the facts that averages with respect to the πj are often

sufficient to solve for all desired quantities, and one can choose ψj so that averages with

respect to the πj converge much more quickly than averages with respect to π itself. It is this

basic philosophy that we extend in Section II B to the computation of dynamic averages.

B. Averages with Respect to a Given Markov Process

The mathematical description of the nonequilibrium umbrella sampling scheme that follows

reveals how the stratification strategy developed for the equilibrium case in Section II A can

be extended to compute nearly arbitrary dynamic statistics. Our interest in this section is

computing averages over trajectories of some specified Markov process, X(t). This process

can be time-inhomogenous, i.e., given the value of X(t), the distribution of X(t+1) can depend

on the value of t. We compute averages of trajectories evolved up to a first exit time of the

process (t,X(t)) from a user specified set of times and positions, D—i.e., trajectories

terminate when they first leave the set D. We consider averages over trajectories of X(t) run

until time

τ = min t > 0: t, X(t) ∉ D (9)

for a set D ∈ ℕ × ℝd. In the first numerical example in Section V, D is a set of times and

positions for which we would like to compute an escape probability. In the second numerical

example, D restricts only the times over which we simulate. The averages are of the form

E ∑
t = 0

τ − 1
f t, X(t) . (10)
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We note that the average in (10) is not completely general, in order to streamline the

developments below. Without any modification, we can compute averages similar to (10) but

with the argument (t,X(t)) in the definitions of τ and f replaced by (t,X(t−1),X(t)). On the other

hand, expectations with (t,X(t)) replaced by (t,X(t−m),…,X(t−1),X(t)) for m ≥ 2 cannot be

obtained immediately. These and many more general expectations can, however, be

accommodated by applying the algorithm to an enlarged process (e.g., (t,X(t−m) ,

… ,X(t−1),X(t))) at the cost of storing copies of the enlarged process. For many expectations,

this cost is quite manageable. Finally, we require that E[τ] < ∞. The limit τ → ∞ is

considered in Section IV.

Below we show that expectations of time-dependent functions can be decomposed as a

weighted sum of expectations computed over restricted subsets of the full space and, in turn,

how the statistical weights can be computed as expectations over these subsets, mirroring the

basic structure of the equilibrium scheme described in Section II A. However, as we discuss

in Section III, the algorithm for computing these local expectations departs significantly

from the equilibrium case because their form is not known a priori in the nonequilibrium

setting.

1. The Index Process—The US scheme in Section II A used the basis functions ψj to

stratify the sampling of the distribution π by decomposing averages with respect to π into

averages with respect to the more easily sampled πj. To arrive at an analogous partitioning

of state space for the nonequilibrium case, we introduce an index process J(t) that takes

values in {1,2, … , n} and (roughly) labels the point (t,X(t)) in time and space, ℕ × ℝd. Our

objective is to generate fragments of trajectories of X(t) consistent with specific values of J(t)

thereby breaking the coupled process (X(t), J(t)) into separate regions corresponding to a

given value of J(t) (see panel A of Figure 1).

The idea of discretizing a process X(t) according to the value of some user-specified index

process is not new in computational statistical mechanics. For example, in our notation,

given a partition of state space A1,A2,…,An, the Milestoning procedure [17] and some

Markov State Modeling procedures [30] correspond to an index process that marks the pairs

of sets (Ai,Aj) for i ≠ j between which X(t) last transitioned. In the Milestoning method, the

pairs of sets are considered unordered, so that a transition from Aj to Ai immediately

following a transition from Ai to Aj does not correspond to a change in J(t), and J(t) can

assume n = m
2  distinct values. The original presentation of NEUS on the other hand

corresponds to a process J(t) which marks the index of the set Aj containing X(t). For

accurate results, the Milestoning procedure requires that the index process J(t) itself be

Markovian. Even under the best circumstances, that assumption is only expected to hold

approximately. It is not required by the NEUS algorithm. Our presentation below reveals the

full flexibility in the choice of J(t) within NEUS. That flexibility is essential in the

generalized setting of this article.

In the developments below we require that J(t) is chosen so that the joint process (X(t), J(t)) is

Markovian. This assumption allows that trajectories can be continued beyond a single

transition event (before τ) without additional information about the history of X(t) or J(t). We
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do not assume that J(t) alone is Markovian and in general it is not. Our assumption implies

no practical restriction on the underlying Markov process X(t). When X(t) is non-Markovian,

additional variables can often be appended to X(t) to yield a new Markov process to which

the developments below can be applied. A version of this idea is applied in Section V C

where we append a variable representing a nonequilibrium work to an underlying Markov

process.

2. The Eigenproblem—Given a specific choice of index process J(t), the nonequilibrium

umbrella sampling algorithm stratifies trajectories of X(t) according to their corresponding

values of J(t). That is, for each possible value of the index process, NEUS generates

segments of trajectories of X(t) between the times that J(t) transitions to and from J = j. To

make this idea more precise, we need to carefully describe the distribution sampled by these

trajectory fragments:

π j(t, dx) =
P t < τ, X(t) ∈ dx, J(t) = j

z j
, (11)

where

z j = ∑
t = 0

∞
P t < τ, J(t) = j . (12)

For each j, πj is the distribution of time and position pairs (t,X(t)) conditioned on J(t) = j and t
< τ. We call the πj restricted distributions. We have reused the notations πj and zj from our

account of the equilibrium umbrella sampling scheme to emphasize the analogous roles

played by those objects in both sections. Note that here we are treating time as an additional

random variable. Also note that in these definitions as well as in the formulas below, P and

E represent probabilities and expectations with respect to the original, unbiased X(t) and J(t).

We assume that zj > 0 for all j since we can remove the index j from consideration if zj = 0.

The zj are all finite because ∑ j = 1
n z j = E[τ], which we assume is finite.

Observe that

E ∑
t = 0

τ − 1
f t, X(t) = ∑

t = 0

∞
E f t, X(t) , t < τ

= ∑
j = 1

n
∑
t = 0

∞ ∫
x ∈ ℝd f (t, x)

× P t < τ, X(t) ∈ dx, J(t) = j

= ∑
j = 1

n
z j f j,

(13)

where
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f j = ∑
t = 0

∞ ∫
x ∈ ℝd f (t, x)π j(t, dx) . (14)

Thus we have a decomposition of (10) analogous to the decomposition of (1) in (4). Also as

in the equilibrium case, the zj can be computed from averages with respect to the πj. To see

this, observe that for any t we can write

∑
i = 1

n
P t + 1 < τ, J(t + 1) = j, J(t) = i

= P t + 1 < τ, J(t + 1) = j .
(15)

Summing this expression over t we obtain

∑
i = 1

n
∑
t = 0

∞
P t + 1 < τ, J(t + 1) = j, J(t) = i

= ∑
t = 0

∞
P t < τ, J(t) = j − P J(0) = j .

(16)

These expressions are all bounded by E[τ] and are therefore finite. Expression (16) can be

rewritten as an affine eigenequation

zTG + aT = zT, (17)

where z is defined in (12),

Gi j =
∑t = 0

∞ P t + 1 < τ, J(t + 1) = j, J(t) = i
zi

, (18)

and

a j = P J(0) = j . (19)

Equation (17) is the analog of (8) in Section II A. Here, the matrix element Gij stores the

expected number of transitions from J = i to J = j, normalized by the expected number of

time steps with J = i. Note that the matrix G is substochastic; that is, it has non-negative

entries and rows that sum to a number less than or equal to one.

To complete the analogy with the umbrella sampling scheme described in Section II A, we

need to show that the elements of the matrix G are expressible as expectations over the πj.

Indeed,
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Gi j = 1
zi
∫

x ∈ ℝd ∑
t = 0

∞
Pt, x, i t + 1 < τ, J(t + 1) = j

× P t < τ, X(t) ∈ dx, J(t) = i

= ∑
t − 0

∞ ∫
x ∈ ℝdPt, x, i t + 1 < τ, J(t + 1) = j πi(t, dx)

(20)

where Pt,x,i is used to denote probabilities with respect to X initialized at time and position

(t,x) and conditioned on J(t) = i and t < τ. Note that in the first line we have appealed to the

Markovian assumption on (X(t), J(t)). Had we instead assumed that J(t) alone was Markovian,

we could have ignored the x dependence in (20).

Just as for the umbrella sampling algorithm described in Section II A, we arrive at a

procedure for computing (10) via stratification:

1. Assemble Gij defined in (18) and 〈f〉j defined in (14) by sampling from the πj

defined in (11).

2. Solve the affine eigenvector equation (17) for z defined in (12).

3. Compute

E ∑
t = 0

τ − 1
f t, X(t) = ∑

j = 1

n
z j f j (21)

via (13).

Relative to the scheme in Section II A, sampling the restricted distributions πj requires a

more complicated procedure. This is the subject of Section III. In Section III, instead of G,

we choose to work with the matrix

Gi j =
∑𝓁 = 0

∞ P S(𝓁 + 1) < τ, J
S(𝓁 + 1)

= j, J
S(𝓁)

= i

∑𝓁 = 0
∞ P J

S(𝓁)
= j, S(𝓁) < τ

, (22)

where

S(𝓁) = min s > S(𝓁 − 1):J(s) ≠ J
S(𝓁 − 1)

(23)

is the time of the ℓth change in the value of J(t) for a given realization of the coupled process

(X(t), J(t)). Likewise, instead of z, we choose to work with the weights
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z j = ∑
𝓁 = 0

∞
P J

S(𝓁)
= j, S(𝓁) < τ . (24)

We show in Appendix B that G is related to G by the identity

Gi j =
Gi j/ 1 − Gii , j ≠ i

0, j = i,
(25)

and that z is related to z by

z j = z j 1 − G j j . (26)

Therefore, knowledge of G implies knowledge of G and z, and the algorithm detailed in the

next section could also be expressed in terms of G and z at the cost of additional factors of

1–Gjj in several formulas. Moreover, identities (17), (25), and (26) imply

zT = zTG + aT; (27)

that is, z and G solve the same affine eigenproblem as z and G. We emphasize G and z over

G and z only to simplify the presentation and interpretation of the algorithm in Section III.

To give an appealing intuitive interpretation of G, we note that for i ≠ j,

ziGi j = ziGi j

= ∑
𝓁 = 0

∞
P S(𝓁 + 1) < τ, J

S(𝓁 + 1)
= j, J

S(𝓁)
= i .

(28)

We refer to this quantity as the net probability flux from J = i to J = j; it is the expected

number of transitions of the process J(t) from J = i to J = j before time τ. The matrix G stores

the relative probabilities of transitions to different values of J before time τ and z j is the

expected number of transitions into J = j before time τ.

Finally, we remark that rapid convergence of the scheme in practice rests upon the choice of

J(t). Roughly, one should choose the index process so that the variations in estimates of the

required averages with respect to the πj (e.g., estimates of the Gij) are small. In practice, this

requires that transitions between values of J(t) are frequent, which is the analog of selecting

the biases in equilibrium US to limit the range of the free energy over each subset of state

space (see [27, 28]). In Section V we describe this and other important implementation

details in the context of particular applications.
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III. A GENERAL NEUS FIXED-POINT ITERATION

In this section we present a detailed algorithm for computing (10) by the stratification

approach outlined in Section II B. To accomplish this one must be able to generate samples

from the restricted distributions πj(t, dx). In NEUS, the restricted distributions are sampled

by introducing a set of Markov processes

𝒴 j
(r) = T j

(r), Y j
(r), I j

(r)
(29)

called excursions whose values are triples of a time T j
(r), a position Y j

(r), and a value of the

index process I j
(r). To avoid confusion, we consistently use the variable r for the time

associated with an excursion 𝒴 j
(r) and the variable t for the time associated with the process

(t,X(t), J(t)).

Roughly speaking, each excursion is a finite segment of a trajectory of the process (t, X(t),

J(t)) with J = j. These segments are stopped either on reaching time τ or at the first time

when J ≠ j. To be precise, excursions are generated as follows:

1. Draw an initial time and position pair T j
(0), Y j

(0)  from the distribution π j(s, dy)

specified below or from an estimate of that distribution. Set 𝒴 j
(0) = T j

(0), Y j
(0), j .

2. Set T j
(r + 1) = T j

(r) + 1, and generate Y j
(r + 1), I j

(r + 1)  from the distribution of

X
T j

(r + 1)
, J

T j
(r + 1)

 conditioned on X
T j

(r)
= Y j

(r) and J
T j

(r)
= j.

3. Stop on reaching time τ or when J ≠ j. That is, stop when r reaches

ρ j = min r ≥ 0: I j
(r) ≠ j or  T j

(r), Y j
(r) ∉ D . (30)

The excursions 𝒴 j
(r) are illustrated in Figure 1 for a particular choice of index process.

For the excursions 𝒴 j
(r) to sample the restricted distribution πj(t, dx), we must take the initial

distribution π j(s, dy) to be the distribution of times s and positions y at which the process

(t,X(t),J(t)) transitions from a state J(s−1) = i with i ≠ j to state J(s) = j (see Section III A and

Appendix C). We call these distributions the flux distributions.

In general, the flux distributions π j(s, dy) are not known a priori and must be computed

approximately. In the NEUS algorithm, we begin with estimates of the flux distributions and

the matrix G. We then compute excursions initialized from these estimates of the flux

distributions. From the excursions and the current estimate of G, we compute statistics which

are used to improve the estimates of both the flux distributions and G. Thus, NEUS is an

iteration designed to produce successively better estimates of the flux distributions and G
simultaneously.
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In Section III B, we derive a fixed-point equation solved by G and the flux distributions, and

we motivate NEUS as a self-consistent iteration for solving this equation. In Section III C,

we describe the complete NEUS algorithm in detail and interpret it as a stochastic

approximation algorithm [29] for solving the fixed-point equation derived in Section III B.

In the Supplementary Material, we analyze a simple four-site Markov model to clearly

illustrate the structure of this self-consistent iteration and the terminology of the framework.

A. The Flux Distributions

Before deriving the fixed-point problem and the corresponding stochastic approximation

algorithm, we define the flux distributions π j(s, dy) precisely. We let

π j(s, dy)

=
∑𝓁 = 0

∞ P S(𝓁) = s, s < τ, X(s) ∈ dy, J(s) = j
z j

(31)

be the distribution of time and position pairs S(𝓁), X
S(𝓁)

 conditioned on J
S(𝓁)

= j. With

this definition of π j(s, dy), an excursion 𝒴 j
(r) samples the restricted distribution πj(t,dx) in the

sense that

π j(t, dx)

=
z j
z j

P t < ρ j + T j
(0), Y j

t − T j
(0)

∈ dx

=
z j
z j

∑
s = 0

t ∫
y ∈ ℝdPs, y, j t < σ(s) ∧ τ, X(t) ∈ dx π j(s, dy),

(32)

where

σ(s) = min r > s:J(r) ≠ J(s) (33)

and ρj is defined in (30). We prove (32) in Appendix C.

Given (32), we may express any average over πj as an average over π j. For example,

Gi j = ∑
s = 0

∞ ∫
y ∈ ℝdPs, y, i J(σ(s)) = j, σ(s) < τ πi(s, dy) . (34)

Moreover, from (13), we can express general averages as
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E ∑
t = 0

τ − 1
f t, X(t) = ∑

j = 1

n
z j f j, (35)

where

f j = ∑
s = 0

∞ ∫
y ∈ ℝd ∑

t = s

∞ ∫
x ∈ ℝd f (t, x)

× Ps, y, j t < σ(s) ∧ τ, X(t) ∈ dx π j(s, dy) .
(36)

We use these facts in our interpretation of the NEUS algorithm in Section III B.

Instead of working directly with the flux distributions, we find it convenient to express both

the fixed-point problem and the algorithm in terms of the probability distribution of time and

position pairs (t, X(t)) conditioned on observing a transition from J = i to J = j at time t, i.e.,

in terms of

γi j(s, dy)

= 1
ziGi j

× ∑
𝓁 = 0

∞
P s = S(l + 1) < τ, J

S(l)
= i, J(s) = j, X(s) ∈ dy

= 1
Gi j

∑
r = 0

∞ ∫
w ∈ ℝdPr, w, i

s = σ(r), s < τ, X(s) ∈ dy, J(s) = j × πi(r, dw)

(37)

which is defined only for s > 0. To simplify notation, we let γ denote the set of all

conditional distributions γij. Recall from (28) that ziGi j is the net probability flux from J = i

to J = j. The following simple but key identity relates γ to the flux distributions π j:

π j(s, dy) = 1
z j

∑
i ≠ j

ziGi jγi j(s, dy),  if s > 0

a jP X(0) ∈ dy ∣ J(0) = j if s = 0.
(38)

The s > 0 term is the contribution from transitions into state J = j from the neighboring state

J = i, and the s = 0 term accounts for the initial t = 0 contribution of the underlying process

when J = j. We emphasize that both the fixed-point problem and the iteration that we define

below could be expressed in terms of the flux distributions π j instead of γ. We choose to

express them in terms of γ because the resulting formalism more naturally captures the

implementation of the method used to generate our numerical results in Section V.
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B. The Fixed-Point Problem

We now derive the fixed-point problem. Our goal is to find an expression of the form

(𝒢(G, γ), Γ(G, γ)) = (G, γ) (39)

that characterizes the desired matrix G and collection of probability measures γ as the fixed-

point of a pair of maps 𝒢(G, γ) and Γ(G, γ) that take as arguments approximations G of G and

γ of γ and return, respectively, a new substochastic matrix and a new collection of

probability measures.

To this end, we define a function mapping G and γ to an approximation of the flux

distribution π j. We denote this function by the corresponding capital letter Π j. Based on (27)

and (38), we define

Π j(s, dy; G, γ)

= 1
z j

∑
i ≠ j

ziGi jγi j(s, dy) if s > 0,

a jP X(0) ∈ dy ∣ J(0) = j  if s = 0,

(40)

where z solves the equation zT = zTG + aT. The matrices G that we consider are strictly

substochastic. We assume that G is also irreducible, in which case the solution z exists and is

unique. To motivate the definition above, we observe that for the exact values G and γ,

π j(s, dy) = Π j(s, dy; G, γ) by (38). Moreover, given G and samples from γ, one can generate

samples from Π j(s, dy; G, γ); see Section III C. This is crucial in developing a practical

algorithm to solve the fixed-point problem.

At this point we are ready to define the functions 𝒢 and Γ appearing in (39) above. For a

substochastic matrix G and a collection of probability distributions γ = γi j , define the

substochastic matrix

𝒢i j(G, γ)

= ∑
s = 0

∞ ∫
y ∈ ℝdPs, y, i J(σ(s)) = j, σ(s) < τ Πi(s, dy; G, γ)

(41)

and the collection of probability distributions

Γi j(s, dy; G, γ) ∝ ∑
r = 0

∞ ∫
w ∈ ℝdPr, w, i s = σ(r), s < τ, X(s) ∈ dy, J(s) = j Πi(r, dw;

G, γ) .
(42)

Dinner et al. Page 14

SIAM Rev Soc Ind Appl Math. Author manuscript; available in PMC 2021 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Because Π j(G, γ) = π j, expressions (34) and (37) imply that 𝒢(G, γ) = G and Γi j(G, γ) = γi j,

establishing our fixed-point relation (39).

Having fully specified the fixed-point problem, we can now consider iterative methods for

its solution. One approach would be to fix some ε ∈ (0,1] and compute the deterministic

fixed-point iteration

G(m + 1) = G(m) + ε(𝒢(G(m), γ(m)) − G(m)), and 
γ(m + 1) = γ(m) + ε(Γ(G(m), γ(m)) − γ(m)), (43)

given initial guesses G(0) and γ(0) for G and γ, respectively. One would typically choose ε =

1 in this deterministic iteration; we consider arbitrary ε ∈ (0,1] to motivate the stochastic

approximation algorithm developed in Section III C.

In practice, computing 𝒢 and Γ in the right hand side of (43) requires computing averages

over trajectories of (X(t), J(t)) initiated from Π j(G(m), γ(m)). While we cannot hope to

compute these integrals exactly, we can construct a stochastic algorithm approximating the

iteration in (43) using a finite number of sampled trajectories. The resulting scheme, which

we detail in Section III C, fits within the basic stochastic approximation framework.

C. A Stochastic Approximation

In this section, we present the full NEUS algorithm and we interpret it as a stochastic

approximation algorithm analogous to the deterministic fixed-point iteration (43). In NEUS,

as in the fixed-point iteration, we generate a sequence of approximations G(m) and γ(m),
converging to G and γ, respectively. During the mth iteration of the NEUS algorithm, we

update the current approximations G(m) and γ(m) based on statistics gathered from K

independent excursions 𝒴 j
(r)(m) = T j

(r), Y j
(r), I j

(r)  defined according to the rules governing

𝒴 j
(r) enumerated above with T j

0 , Y j
0  drown from Π j(G(m), γ(m)), the current (at the mth

iteration of the scheme) estimate of the flux distribution π j.

We now state the NEUS algorithm. To simplify the expressions below, we sometimes omit

the iteration number m. The algorithm proceeds as follows:

1. Choose initial approximations G(0) and γ(0) of G and γ, respectively. Fix the

number K of independent excursions 𝒴 j
(r)(m) to compute for each restricted

distribution πj(t,dx). Choose the maximum number of new points L included in

the update to the empirical approximations of the distributions γi j(m).

2. For each j = 1,2, … , n generate K independent excursions

𝒴ik
(r) = T ik

(r), Y ik
(r), Iik

(r)  for k = 1, 2, …, K . (44)

Let
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ρik = min r ≥ 0: Iik
(r) ≠ j or  T ik

(r), Y ik
(r) ∉ D (45)

be the length of the excursion 𝒴ik
(r) as in (30).

3. Let

Mi j(m) = ∑
k = 1

K
1 j Iik

ρik 1D T ik
ρik , Y ik

ρik
(46)

be the number of i to j transitions of the index process observed while generating

the excursions 𝒴ik
(r)(m). Let Let  T i j

(𝓁)
𝓁 = 1

Mi j(m)
 and Y i j

(𝓁)
𝓁 = 1

Mi j(m)
 be the times T ik

ρik

and positions Y ik
ρik  for which Iik

ρik = j and Y ik
ρik ∈ D.

4. Compute

Gi j(m) =
Mi j(m)

K , (47)

γ i j(s, dy; m) =
1

L ∧ Mi j(m) ∑
𝓁 = 1

L ∧ Mi j(m)

1
Ti j

(𝓁)(s)δ
Yi j

(𝓁)(dy) if Mi j(m) > 0,

0 if Mi j(m) = 0,
(48)

and

f i(m) = 1
K ∑

k = 1

K
∑

r = 0

ρ jk − 1

f T jk
(r)(m), Y jk

(r)(m) , (49)

where L ∧ Mij(m) = min{L,Mij(m)}. In Equation (48), δx represents the Dirac

delta function centered at position x.

5. Replace the deterministic iteration (43) by the approximation

Gi j(m + 1) = Gi j(m) + εm Gi j(m) − Gi j(m) (50)

and

γi j(m + 1) = γi j(m) + εm γ i j(m) − γi j(m)
1

Mi j(m) > 0

Ii j(m) (51)

where
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Ii j(m) = 1
m + 1 ∑

𝓁 = 0

m
1

Mi j(𝓁) > 0
(52)

and εm > 0 satisfies

∑
m = 1

∞
εm = ∞ and ∑

m = 1

∞
εm

2 < ∞ . (53)

6. Update the expectations

f i(m + 1) = f i(m) + εm f i(m) − f i(m) . (54)

7. Once the desired level of convergence has been reached, compute

E ∑
t = 0

τ − 1
f t, X(t) ≈ ∑

j = 1

n
z j(m) f i(m), (55)

where the vector z(m) solves zT(m) = zT(m)G(m) + aT.

We now interpret NEUS as a stochastic approximation algorithm analogous to the

deterministic fixed-point iteration (43). First, we observe that G(m) approximates

𝒢(G(m), γ(m)) in the following sense. Suppose we were to compute a sequence G(n),
G(n + 1), …, G(n + k − 1) as in NEUS, except holding the values of G(n) and γ(n) fixed. We

would then have that E[G(n + i)] = 𝒢(G(n), γ(n)), and that each of the G(n + i) were

independent (conditionally on G(n) and γ(n)). A Law of Large Numbers would therefore

apply and we could conclude that

lim
k ∞

1
k ∑

i = 0

k − 1
G(n + i) = 𝒢(G(n), γ(n)) . (56)

The distribution γij(m) approximates Γi, j(G(m), γ(m)) in a similar sense. Therefore, the

NEUS iteration (50) is a version of the deterministic fixed-point iteration (43) but with a

shrinking sequence εm instead of a fixed ε and with random approximations instead of the

exact values of 𝒢 and Γ. The conditions (53) on the sequence εm are common to most

stochastic approximation algorithms [29]; they ensure convergence of the iteration when 𝒢
and Γ can only be approximated up to random errors.

We remark that in practice the empirical measures γ(m) are stored as lists of time and

position pairs. The update in (50) allows the number of pairs stored in these lists to grow

with each iteration. This can lead to impractical memory requirements for the method. We

therefore limit the size of each list γi j(m) to a fixed maximum value by implementing a

selection step in which the points that have been stored for the most iterations are removed
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to make room for the points in the updates of γi j(m) when this maximum is exceeded. Also,

in our numerical experiments in Section V, we use εm = 1/(m+1) in which case,

Gi j(m) = 1
m + 1 ∑

𝓁 = 0

m
Gi j(𝓁) (57)

and

γi j(m) = 1
∑𝓁 = 0

m 1
Mi j(𝓁) > 0

∑
𝓁 = 0

m
γ i j(𝓁) .

(58)

This and other details of our implementation are explained in Section V.

The implementation detailed above borrows ideas from several earlier modifications of the

basic NEUS algorithm. The use of a linear system solve for the weights z was introduced in

[11]. In the scheme presented above, the number of samples, K, of the process Y j
(r) is fixed at

the beginning of each iteration of the scheme. In this aspect, the implementation above is

similar to the Exact Milestoning approach presented in [16]. With the number of samples of

Y j
(r) fixed, the total amount of computational effort, as measured in number of time steps of

the process X(t), becomes a random variable (with expectation KE[σ(S(ℓ))]). In practical

applications, it may be advantageous to fix the total computational effort expended per

iteration in each J = j. An alternative version of the NEUS scheme is therefore to fix the total

computational effort expended (or similarly the number of numerical integration steps) and

allow the number of samples, K, to be a random number. In our tests (not shown here),

neither implementation showed a clear advantage provided that a sufficient number of

samples, K, was generated to compute the necessary transition statistics.

It is also important to note that if the number of points used in the representation of γ is

restricted (as it typically has to be in practice), any of the implementations of NEUS that we

have described has a systematic error that decreases as the number of points increases or as

the work per iteration increases. Earlier implementations of NEUS [9–12, 14] computed

transition statistics that were normalized with respect to the simulation time spent associated

with each J = j rather than the number of samples of Y j
(r) generated. This implementation

choice leads to a scheme with a systematic error that vanishes only as the number of points

allowed in the representation of γ grows, regardless of the work performed per iteration.

IV. ERGODIC AVERAGES

In this section we consider the calculation of ergodic averages with respect to a general (not

necessarily time-homogenous) Markov process. We also describe the simplifications that

occur when the target Markov process is time-homogenous as in the original NEUS

algorithm.

In order to ensure that the definitions in this section are sensible, we require that
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lim
τ ∞

1
τ ∑

t = 0

τ − 1
P X(t) ∈ dx, J(t) = i (59)

exists as a probability distribution on ℝd × 1, 2, …, n  and let

π(dx) = lim
τ ∞

1
τ ∑

t = 0

τ − 1
P X(t) ∈ dx . (60)

This general ergodicity requirement allows processes X(t) with periodicities or time

dependent forcing.

Our goal is to compute ergodic averages of the form

lim
τ ∞

1
τ ∑

t = 0

τ − 1
E f X(t) = ∫

x ∈ ℝd f (x)π(dx) . (61)

To that end, we fix a deterministic time horizon τ > 0 in (12) and (18); the condition t < τ
can thus be written as an upper bound of τ − 1 on the summation index. If we divide both

sides of (17) by τ and take the limit τ → ∞, we obtain the equation

zTG = zT (62)

where now

z j = lim
τ ∞

1
τ ∑

t = 0

τ − 1
P J(t) = j . (63)

and

Gi j = lim
τ ∞

∑t = 0
τ − 2P J(t + 1) = j, J(t) = i

∑t = 0
τ − 1P J(t) = i

. (64)

Note that the matrix G is now stochastic and that ∑ j = 1
n z j = 1. We can rewrite the ergodic

average of f as

∫
x ∈ ℝd f (x)π(dx) = ∑

j = 1

n
z j f j, (65)

where

f j = ∫
x ∈ ℝd f (x)π j(dx) (66)

and we represent the large τ limit of the position marginal distribution of πj defined in (11)

as
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π j(dx) = lim
τ ∞

∑
t = 0

τ − 1
π j(t, dx) . (67)

These formulas indicate that the only modification of the algorithm in Section III that is

required to compute a long-time average is to set τ = ∞ in the definition of the processes

Y i(G, γ), to set a = 0 in (40), and let z solve zT = zTG with ∑ j = 1
n z j = 1. In other words, the

algorithm seamlessly transitions from solving the initial value problem to solving the infinite

time problem as τ becomes large.

When the joint process (X(t), J(t)) is time-homogenous and stationary and our goal is to

compute the average of a position dependent observable f(x) with respect to the stationary

distribution π of X(t), the above relations can be further simplified. In this case,

π j(dx) = 1
z j

lim
t ∞

P X(t) ∈ dx, J(t) = j , (68)

where zj defined in (63) becomes

z j = lim
t ∞

P J(t) = j . (69)

The matrix G in (64) can now be written

Gi j = lim
t ∞

P J(t + 1) = j ∣ J(t) = i (70)

and the vector 〈f〉j defined in (66) becomes

f j = ∫
x ∈ ℝd f (x)π j(dx) . (71)

These simplifications lead to a version of the original NEUS method [9] that employs a

direct method for solving for the weights similar to the scheme in [11].

In [11] and [10] the basic NEUS approach was extended to the estimation of transition rates

between sets for a stationary Markov process. Implicit in this extension was the observation

that any algorithm that can efficiently compute averages with respect to the stationary

distribution of a time-homogenous Markov process can be applied to computing dynamic

averages more generally by an enlargement of the state space, i.e., by applying the scheme to

computing stationary averages for a higher dimensional time-homogenous Markov process.

This idea is also central to Exact Milestoning [16], which extends the original Milestoning

procedure [17] to compute steady-state averages with respect to a time-homogenous Markov

process and is very similar in structure to steady-state versions of NEUS.
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V. NUMERICAL EXAMPLES

Here we illustrate the flexibility of the generalized algorithm with respect to both the means

of restricting the trajectories (the choice of the J(t) process) and the averages that can be

calculated. Specifically, in Section V A we discuss our choice of the J(t) process. In Section

V B we show how finite-time hitting probabilities can be calculated by discretizing the state

space according to both time and space. In Section V C we show how free energies can be

obtained by discretizing the state space according to time and the irreversible work.

A. One Choice of the J(t) Process

Rapid convergence of the scheme outlined in Section III rests on the choice of J(t). Perhaps

the most intuitive choice is

J(t) = ∑
j = 1

n
j1A j

t, X(t)
(72)

where the subsets A1, A2, … , An partition ℕ × ℝd. Indeed, earlier steady-state NEUS

implementations [9–12, 14] employed an analogous rule using a partition of the space

variable (the time variable was not stored or partitioned). However, even with an optimal

choice of the subsets A1, A2, … , An, (72) has an important disadvantage: in many

situations, X(t) frequently recrosses the boundary between neighboring subsets Ai and Aj,

which slows convergence. Fortunately, there are many alternative choices of J(t) that

approximate the choice in (72) while mitigating this issue. We give one simple and intuitive

alternative which we use in the numerical examples that follow.

Let ψj be a set of non-negative functions on ℕ × ℝd for which ∑ j = 1
n ψ j = 1. The ψj are

generalizations of the functions 1A j
 in that they serve to restrict trajectories to regions of

state space. In practice, given a partition of space A1, A2, … , An, the ψj can be chosen to be

smoothed approximations of the functions 1A j
 Given a trajectory of X(t), the rule defining J(t)

is as follows. Initially, choose J(0) ∈ {1, 2, … , n} with probabilities proportional to {ψ1(0,

X(0)), ψ2(0, X(0)), … , ψn(0, X(0))}. At later times J(t) evolves according to the rule

1. If ψJ(t − 1) t, X(t) > 0 then J(t) = J(t−1).

2. Otherwise sample J(t) independently from {1, 2, … , n} according to

probabilities {ψ1(t, X(t)), ψ2(t, X(t)), …, ψn(t, X(t))}.

While transitions out of J(t) = i occur when X(t) leaves the support of ψi, transitions back into

J(t) = i can only occur outside of the support of ψj. Thus, this transition rule allows one to

separate in space the values of X(t) at which J(t) transitions away from i from those where J(t)

transitions into i, mitigating the recrossing issues mentioned above.

In our examples, we discretize time and only one additional “collective variable” (a dihedral

angle in Section V B and the nonequilibrium work in Section V C). Here we denote the

collective variable by ϕ, and we discretize it within some interval of values [a,b] (though it
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may take values outside this interval). In both examples [a, b] is evenly discretized into a set

of points a + k(b − a)/mϕ k = 0

mϕ
 for some integer mϕ. Letting ϕj be any of the points in that

discretization, we set

ψ j(t, x) ∝ 1 − 1
Δϕ

ϕ(x)ϕ j 1[a, b] if  ϕ(x) − ϕ j ≤ Δϕand t ∈ tstart
j , tend

j

0  otherwise
(73)

where Δϕ is some fixed value controlling the width of the support of ψj, and the indicator

1[a,b] restricts the terminal functions. Recall that the ψj are required to sum to 1. We choose

tstart
j  and tend

j  to equally divide the interval [0,τ), where, in our examples, τ is a fixed time

horizon. The function ψj is largest when t ∈ tstart
j , tend

j  and ϕ(x) = ϕj. The supports of the

various ψj correspond to products of overlapping intervals in the ϕ variable, but non-

overlapping intervals in time. The fact that ψj depends on time is essential in our examples.

B. Finite-Time Hitting Probability

In this section we compute the probability, PBA(τmax), of hitting a set B before a separate set

A and before a fixed time τmax > 0 given that the system is at a point X(0) ∉ A ∪ B at time t
= 0. In the case where X(0) and B are separated by a large free energy barrier while X(0) and

A are not, computing PBA(τmax) can be challenging since trajectories that contribute to

PBA(τmax) are rare in direct simulations. To compute PBA(τmax) via the scheme in Section

III C, we let the stopping time τ be the minimum of τmax and the first time, t, at which X(t−1)

is in either A or B, i.e., τ – 1 = min{τA, τB, τmax − 1} where τA and τB are the first times

that enters the sets A and B respectively. Strictly speaking, to write τ in the form in (9), we

need to replace (t,X(t)) in that equation by (t,X(t−1),X(t)). The set D corresponding to our

choice of τ is then D = {(t, x, y): t < τmax, x ∉ (A ∪ B)}. As we have already mentioned, this

can be done without further modification of the scheme. Then f(t, X(t)) in (10) is

f t, X(t) = 1B X(t) . (74)

The system that we simulate is the alanine dipeptide (CH3-CONH-CαH(CβH3)-CONH-

CH3) in vacuum modeled by the CHARMM 22 force field [31]. We use the default Langevin

integrator [32] implemented in LAMMPS [33], with a temperature of 310 K, a timestep of 1

fs and a damping coefficient of 30ps−1. The SHAKE algorithm is used to constrain all bonds

to hydrogens [34]. We consider the system to be in set A if −150° < ϕ < −100° and in set B
if 30° < ϕ < 100° (Figure 2). We discretize time into intervals of tend−tstart = 103 time steps

with a terminal time of τmax = 104 time steps. We use the rule outlined in Section V A for

the evolution of J(t) with the ψj of the form in (73). The ϕj in (73) are chosen from the set

{−100°,−74°,−48°,−22°,4°,30°} with [a, b] = [100°, 30°] and Δϕ = 20°.

We generate the initial point X(0) by running an unbiased simulation at 310 K and choosing

a single point X(0) between the sets A and B. The vector a defined in (19) is
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a j =
ψ j 0, X(0)

∑i = 1
n ψ i 0, X(0) . (75)

Note that the initial condition at J(0) can be drawn from an ensemble of configurations with

minimal changes to the algorithm, but we restrict our attention to the initial condition

consisting of a single point. To evaluate the performance of the algorithm in Section III C,

we choose two points from our direct simulation, one at ϕ = −58.0° and one at ϕ = −91.0°.

The former is chosen to allow the NEUS results to be compared with results from unbiased

direct simulations, while the latter provides a more challenging test because PBA becomes

small when X(0) is close to A.

We set K = 100 and L = 1 and perform a total of 104 iterations (about 7.2 μs of dynamics) of

the scheme in Section III C for each starting point. Each step of the process 𝒴 j
(r)(G(m), γ(m))

corresponds to 10 time steps of the physical model. The γi j are represented as lists of time

and position pairs with associated weights. We cap the maximum size of those lists at 25

entries. If Π j(s, dy; G(m), γ(m)) by the following. With probability aj/zj, set S = 0 and select Y

from P[X(0) ∈ dy|J(0) = j], or with the remaining probability select an index I proportional to

the flux ziGi j and then select (S,Y) from the list of weighted samples comprising γI j(m). For

each j we compute f j = PBA
j = M jB/(mK) where MjB is the total number of transition events

of X j
(r) into B observed after m iterations (mK is the total number of excursions in state j

after m iterations). The estimate of PBA(τmax) after m iterations is then computed as

PBA τmax = ∑ j = 1
n PBA

j z j(m).

To assess the efficiency of the trajectory stratification, we also estimate PBA(τmax) by

integrating an ensemble of n = 106 unbiased dynamics trajectories for τmax time steps from

the initial point X(0). In this case, PBA(τmax) ≈ NB/N, where NB is the number of trajectories

that hit set B before set A. To assess the accuracy of the NEUS result, we perform 10

independent NEUS calculations. In each NEUS simulation, we estimate the value of PBA as

the average over the final 1000 iterations of each simulation and compute the mean of this

estimate over 10 independent NEUS simulations. We obtain PBA(τmax) ≈ 4.43 × 10−4 from

NEUS and PBA(τmax) ≈ 4.12 × 10−4 from direct simulation for the starting point at ϕ =

−58.0° (Figure 3). In this case, the NEUS result is within the 95% confidence interval [3.72

× 10−4, 4.52 × 10−4] (estimated as ±1.96 p(1 − p)/n, where p is the estimate of PBA from the

direct simulation) for the direct simulation estimate given the number of samples. We obtain

PBA(τmax) ≈ 2.78 × 10−8 from NEUS for the starting point at ϕ = −91.0°, consistent with the

fact that none of the unbiased trajectories reached B before A in this case. From the same

data (for either NEUS or direct simulation), one can easily assemble estimates of PBA(t) for

any t ≤ τmax by counting only those transitions into B that occur before t time steps. Up to a

normalization, PBA(t) is the cumulative distribution function for the time that it takes X(t) to

enter B conditioned on not entering A. Estimates of this cumulative distribution function

compiled from the NEUS and direct simulation data are plotted in Figure 4. The NEUS

results show excellent agreement with the results from the direct simulation.
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Spatiotemporal plots of the weights computed from the converged NEUS calculations and

the direct simulations are shown in Figure 5. For both starting points, the stratification

scheme is able to efficiently sample events with weights spanning 12 orders of magnitude.

When X(0) is close to the boundary of set A, accurate estimation of the very small

probability PBA(τmax) depends sensitively on the ability to realize a set of very rare

trajectories, ruling out the use of direct simulation.

C. Free Energy Differences via the Jarzynski Equation

In this section, we show how a specific choice of the J(t) process enables us to stratify a path-

dependent variable, specifically, the accumulated work appearing in the Jarzynski equation

[8, 35]. For a statistical model defined by a density proportional to exp[−V (x)] (e.g., V (x) is

a potential function or a log-likelihood), the normalization constant is Q = ∫ e−V (x)dx. In

fields ranging from statistics to chemistry, a ratio of normalization constants is often used to

compare models [36, 37]. Subject to certain conditions [35, 38], the Jarzynski equation

relates the ratio of normalization constants to an average over paths of a time-dependent

process, X(t):

Qt
Q0

= E exp −W(t)
(76)

where

W(t) = ∑
𝓁 = 0

t − 1
V 𝓁 + 1, X(𝓁) − V 𝓁, X(𝓁) , W(0) = 0 (77)

and we refer to ΔF = −log(Qt/Q0) as the free energy difference. For example, for a small

time discretization parameter, dt, a suitable choice of dynamics is

X(t + 1) = X(t) −
∂V t + 1, X(t)

∂x dt + 2dtξt
(78)

where ξt is a standard Gaussian random variable and X(0) is drawn from p0 ∝ exp[−V (0,x)].

Formula (76) suggests a numerical procedure for estimating free energy differences in which

one simulates many trajectories of X(t), evaluates the work W(t) for each, and then uses this

sample to compute the expectation on the right hand side of (76) approximately. This

approach has been particularly useful in the context of single-molecule laboratory

experiments [39, 40]. A well-known weakness of this strategy in the fast-switching (small t)
regime is large statistical errors result from the fact that low-work trajectories contribute

significantly to the expectation but are infrequently sampled [39, 41–44].

The quantity that we seek to compute is the free energy difference between a particle in a

double-well potential that is additionally harmonically restrained with spring constant k = 20

near x = −1 and a particle in the same potential restrained near x = 1. The model is adapted

from the one presented in [36]. Setting τ = 501, for t < τ we define

Dinner et al. Page 24

SIAM Rev Soc Ind Appl Math. Author manuscript; available in PMC 2021 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



V(t, x) = 5 x2 − 1 2 + 3x + k(x − (2tdt − 1))2 (79)

where dt = 0.001. We show V(0, x), V(τ – 1, x) and V (x;k = 0) in Figure 6. The process X(t)

evolves according to (78).

The reader may be concerned that the expectation in (76) is not immediately of the general

form in (10) suitable for an application of NEUS. We apply NEUS as described in Section II

B to the augmented process Z(t) = (X(t), W(t)). To compute the expectation of the left hand

side of (76) via NEUS, we compute the expectation in (10) with

f t, Z(t) = exp −W(t)  if t = τ − 1
0 if t ≠ τ − 1.

(80)

The index process J(t) marks transitions between regions of the time t and accumulated work

W(t) variables. We discretize the work space in overlapping subsets using the pyramid form

in (73). We use 100 subsets with centers evenly spaced on the interval [−35.0,35.0] with a

width of Δϕ = 0.6. We discretize time into 5 discrete nonover-laping subsets every 100 time

steps for a total of 500 subsets. We cap the maximum size of the list representation of γi j

at 50 entries using the same scheme as in Section V B.

To assess the accuracy of the NEUS result, we perform 10 independent NEUS simulations.

For both NEUS and direct simulations, we prepare an ensemble of 1000 starting states X(0)

by performing an unbiased simulation with fixed potential V (0, x) for 106 steps, saving

every 1000 steps. The direct fast-switching simulations start from each of these points and

comprise 500 steps of integration forward in time; each trajectory contributes equally to the

left hand side of (76). For the NEUS simulations, the vector a is constructed as in (75), and

trajectories are initialized at J(0) by drawing uniformly from this ensemble. We set K = 100

and L = 1, and we perform 500 iterations. Each step in K corresponds to a single step of

(78). As in Section V B, we sample only in the restricted distributions where there is at least

one point stored in γ from which to restart the dynamics.

The estimated ΔF produced from data generated in the last 50 iterations of NEUS is 5.89

(the units are chosen to absorb temperature factors above), which is in excellent agreement

with the reference value of 5.94, in contrast to the estimate from direct simulation (Figure 7).

The left panel of Figure 8 shows the weights along the time and work axes. In the right panel

of Figure 8 we plot histogram approximations of the density PW(w) of W(τ−1) along with the

weighted density proportional to PW(w)exp(−w). The separation of the peaks of this

distribution highlight how NEUS is able to effectively sample the low work tails that

contribute significantly to the expectation in the Jarzynski relation in (76) but are rarely

accessed by the switching procedure in the unbiased simulations.

VI. CONCLUSIONS

We describe a trajectory stratification framework for the estimation of expectations with

respect to arbitrary Markov processes. The basis for this framework is the nonequilibrium
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umbrella sampling method (NEUS) originally introduced to compute steady state averages.

Our development highlights the structural similarities between the nonequilibrium and

equilibrium US algorithms and places the NEUS method within the general context of

stochastic approximation. These connections have practical implications for further

optimizing the procedure and point the way to a more in depth convergence analysis that

will be the subject of future work.

Our development reveals that the basic trajectory stratification approach can be useful well

beyond the estimation of stationary averages for time-homogenous Markov processes. This

flexibility is demonstrated in two examples, both involving an expectation over trajectories

of finite duration. In the first example, we show that the probability of first hitting a set

within a finite time can be efficiently computed via stratification even when the dynamics

start close to a competing absorbing state. In our second example, we use NEUS to stratify a

process according to a path-dependent variable, the accumulated work in a nonequilibrium

process appearing in the Jarzynski equation. The result is a novel and effective scheme for

estimating free energy differences by enhancing sampling of the tails of the accumulated

work distribution.

Our general framework also suggests new and exciting applications of trajectory

stratification. For example, with little modification, these methods can be applied to

sequential data assimilation applications where the goal is to approximate averages with

respect to the conditional distribution of a hidden signal X(t) given sequentially arriving

observations (i.e., with respect to the posterior distribution). In high-dimensional settings

(e.g., weather forecasting) the only practical alternatives are limited to providing information

about only the mode of the posterior distribution (i.e., variational methods) or involve

uncontrolled and often unjustified approximations (i.e., Kalman-type schemes). The

approach that we present here opens the door to efficient data assimilation, machine

learning, and, more generally, new forms of analysis of complex dynamics.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix A: An Alternative F

Here we present an alternative construction of the stochastic matrix F (Section II A) that

more closely aligns with the nonequilibrium version of the algorithm presented in Section II

B. Suppose that one has available a transition distribution p(dy | x) for a Markov chain that

preserves (or nearly preserves) the target density, π, in the sense that
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π(dy) = ∫
x ∈ ℝd p(dy ∣ x)π(dx) . (A1)

For example, p(dy | x) might be the transition density for a number of steps of a Langevin

dynamics integrator. We can again express the zi as the solution to an eigenproblem (8)

where now

Fi j = ∫
y ∈ ℝd∫x ∈ ℝdψ j(y)p(dy ∣ x)πi(dx) . (A2)

Note that when ψi(x) = 1Ai for some partition of space {Ai}, and p(dy | x) is reversible with

respect to π, the entry Fij can be estimated by evolving samples according to p(dy | x),

rejecting any proposed samples that lie outside of Ai (so that πi is preserved), and then

counting the number of times the chain attempts transitions from set Ai to set Aj. For a

closely related approach to approximating certain nonequilibrium quantities see [45].

Appendix B: Expressions for G¯ and z¯

In this appendix we establish the identities

Gi j =
Gi j

1 − Gii
, i ≠ j

0, i = j
and z j = 1 − G j j z j (B1)

appearing in (22) and (24). First, note that the equality ziGi j = ziGi j for i ≠ j (which follows

immediately from the definitions of z, G, z, and G) together with 1 − G j j = z j/z j implies the

expression for G in terms of G. It remains then only to establish the expression for z in terms

of z and G. To that end, notice that

z j = ∑
t = 0

∞
P[J(t) = j, t < τ]

= P J(0) = j + ∑
t = 0

∞
P t + 1 < τ, J(t + 1) = j, J(t) = j

+ ∑
t = 0

∞
P t + 1 < τ, J(t + 1) = j, J(t) ≠ j

= a j + z jG j j

+ ∑
t = 0

∞
∑

𝓁 = 0

∞
P S(𝓁 + 1) < τ, S(𝓁 + 1) = t + 1, J

S(𝓁 + 1)
= j

= a j + z jG j j + ∑
𝓁 = 0

∞
P S(𝓁 + 1) < τ, J

S(𝓁 + 1)
= j

= z jG j j + z j

(B2)
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so that

z j
z j

= 1 − G j j . (B3)

Appendix C: Excursions sample the restricted distributions

Here, we establish (32). We have

z jπ j(t, dx) = P t < τ, X(t) ∈ dx, J(t) = j

= P J(0) = j, t < σ(0) ∧ τ, X(t) ∈ dx + ∑
s = 1

t
P

J(s) = j, J(s − 1) ≠ j, t < σ(s) ∧ τ, X(t) ∈ dx

= ∑
s = 0

t
∑

𝓁 = 0

∞
P s = S(𝓁), t < σ(s) ∧ τ, X(t) ∈ dx

= z j ∑
s = 0

t ∫
y

Ps, y, j t < σ(s) ∧ τ, X(t) ∈ dx π j(s, dy)

= z jP t < ρ j + T j
(0), Y j

t − T j
(0)

∈ dx .

(C1)
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FIG. 1.
Illustration of the stratification of a process (X(t), J(t)) (solid black lines, panel A) via the

scheme outlined in Section II B. (A) The restricted distributions corresponding to each value

of the index process J(t) are outlined as discrete regions of the (t, X(t)) space (panel A, black

dashed lines). In this depiction, the value of J(t) corresponds to the current cell containing (t,
X(t)) within a rectangular grid of times and positions. (B) Each of the restricted distributions

πj(t, dx) are sampled by integrating a locally restricted dynamics 𝒴 j
(r) (panel B, black lines).

The 𝒴 j
(r) process is generated by integrating an excursion of the unbiased process (X(t), J(t))

corresponding to a particular fixed value of J = j (panel A). As each excursion transitions

from J = i to J = j with j ≠ i, the dynamics are stopped and a new excursion is started at a

time and point (s, y) (panel B, blue dots) drawn from the flux distribution π j(s, dy).
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FIG. 2.
Free energy (black curve) of the alanine dipeptide projected onto the ϕ dihedral angle, with

sets A and B indicated. The initial positions of X(0) at ϕ = −58.0° (blue) and ϕ = −91.0°

(green) are shown as vertical dashed lines. The free energy is computed from the method

presented in Section II A as implemented in [27].
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FIG. 3.
Running estimate of PBA from NEUS for dynamics starting at ϕ = −58.0° (blue, upper curve;

error bars are computed every 1000 iterations and indicate ±2.262s/ n where s is the

standard error estimated from n = 10 independent NEUS simulations) compared to the final

result from direct simulation (red solid line; dashed lines indicate ±1.96 p(1 − p)/n, where n
= 106 is the number of physically weighted trajectories generated and p is the estimate of

PBA from the direct simulation). Also shown is the estimate from NEUS for dynamics

starting from ϕ = −91.0° (green, lower curve; error bars computed similarly as the blue

curve). The estimate at each iteration is computed as the average of the previous 1000

iterations. Lower panel is a magnification of the upper panel.
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FIG. 4.
Estimate of the cumulative distribution function of the time to enter set B conditioned on not

entering A from NEUS for the dynamics starting at ϕ = −58.0° (blue) and ϕ = −91.0° (green)

compared to the result from the direct simulation (red). (Inset) The early time portion is

shown. The estimate from each NEUS simulation at each time is computed as an average

over the last 1000 iterations of the calculation and then averaged over 10 independent NEUS

simulations.
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FIG. 5.
Estimates of the subset weights from NEUS (left) and direct simulations (right). Upper

panels show the dynamics starting from ϕ = −58.0° (dashed line) and lower panels show the

dynamics starting from ϕ = −91.0° (dashed line). White space represents subsets which were

not sampled.
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FIG. 6.
V (0, x) (blue) and V (τ−1, x) (green) for the switching process used to compute Jarzynski’s

equality. For reference, the potential with k = 0 (black) is also shown.
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FIG. 7.
Estimate of the free energy computed from NEUS (blue; error bars are computed every 50

iterations and indicate ±2.262s/ n where s is the standard error estimated from n = 10

independent NEUS simulations) and from conventional fast-switching simulations (green;

error bars are computed every 50 iterations and indicate ±2.262s/ n where s is the standard

error estimated from n = 10 independent direct simulations). The value computed from

numerically integrating the potentials is shown as a black line. For the direct fast-switching

simulations, we scale the number of repetitions to the number of NEUS iterations that are

equivalent in computational effort.
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FIG. 8.
Sampling the work with NEUS. (top) The estimate of the dynamic weights, z j, from the final

iteration of the NEUS calculation. White space represents subsets that are not visited in the

NEUS calculation. (bottom) The probability density PW(w) of the accumulated work W(τ−1)

estimated from NEUS (blue dashed line), from direct integration (red solid line) and the

exponentially scaled probability density proportional to PW(w)exp(−w) estimated from the

NEUS calculations (green dashed line). The estimates of PW(w) and PW(w)exp(−w) from

NEUS (blue dashed line and green dashed line respectively) at each value of W(τ−1) are

computed as an average over the last 10 iterations and then averaged over 10 independent

NEUS simulations. The estimate of PW(w) from direct integration (red solid line) is

computed as an average over 10 independent direct simulations that are equivalent in

computational effort to the 10 independent NEUS simulations.
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