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ABSTRACT
A theoretical study on the shape dynamics of phase-separated biomolecular droplets is presented, highlighting the importance of condensate
viscoelasticity. Previous studies on shape dynamics have modeled biomolecular condensates as purely viscous, but recent data have shown
them to be viscoelastic. Here, we present an exact analytical solution for the shape recovery dynamics of deformed biomolecular droplets.
The shape recovery of viscous droplets has an exponential time dependence, with the time constant given by the “viscocapillary” ratio, i.e.,
viscosity over interfacial tension. In contrast, the shape recovery dynamics of viscoelastic droplets is multi-exponential, with shear relaxation
yielding additional time constants. During shape recovery, viscoelastic droplets exhibit shear thickening (increase in apparent viscosity) at fast
shear relaxation rates but shear thinning (decrease in apparent viscosity) at slow shear relaxation rates. These results highlight the importance
of viscoelasticity and expand our understanding of how material properties affect condensate dynamics in general, including aging.
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I. INTRODUCTION

Phase-separated biomolecular condensates exhibit different
extents of liquidity, which may be crucial for cellular functions and
correlated with diseases such as neurodegeneration and cancer.1–7

Driven by interfacial tension (or capillarity), condensates that are
more liquid-like retain a spherical shape and hence appear as micro-
sized droplets. The material properties of many condensates also
evolve over time and become more solid-like (sometimes referred
to as “aging”).8–13 A simple indication of liquidity is the tendency of
deformed droplets to recover their spherical shape. In all the studies
so far on the dynamics of such shape changes, biomolecular con-
densates have been modeled as purely viscous, reporting viscosities
that are orders of magnitude higher than that of water.1,8,14–18 How-
ever, recent work has shown that condensates are viscoelastic.12,19–23

In viscoelastic fluids, shear relaxation is not instantaneous21 and its
effects, when coupled with viscocapillary effects, can lead to unex-
pected observations. In this work, we present a theoretical study
on the effects of viscoelasticity on the shape recovery dynamics of
deformed biomolecular droplets.

Nearly all previous studies on the shape dynamics of biomolec-
ular condensates have dealt with the fusion of droplets when they

come into contact.1,8,11,14–18,24–28 However, in one study, Hubsten-
berger et al.1 reported observations on both droplet fusion and shape
recovery of grP-bodies formed in the cytoplasm of Caenorhabdi-
tis elegans oocytes. Shape recovery after mechanical stress-induced
elongation was faster than droplet fusion by two orders of magni-
tude, which was suggested as indicating elasticity of these ribonu-
cleoprotein condensates. While theoretical results of viscous fluids
have been used for qualitative and quantitative analysis of droplet
fusion dynamics1,14–18,28 and a theoretical model of viscoelastic fluids
has been introduced to treat deformation of droplets under external
force,19,20 until now, no theory has been presented for shape recovery
of deformed biomolecular droplets.

However, the problem of shape recovery has long received
attention in the fluid-dynamics literature. Prosperetti29,30 presented
a full analytical solution to the recovery dynamics of viscous droplets
from a small-amplitude deformation. Phenomenological models
have also been introduced to propose theoretical results for shape
recovery, also known as deformation retraction, of viscoelastic
droplets.31,32 This problem has also been tackled by numerically
solving the fluid-dynamics equations.33–35 There have also been a
number of experimental studies on the deformation retraction of
polymer blends,36–39 often indicating the effects of viscoelasticity.
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FIG. 1. Illustration of the shape recovery of a deformed droplet. Left: initial defor-
mation. Right: fully recovered spherical shape. “II” denotes the interior region, i.e.,
the region inside the droplet, whereas “I” denotes the exterior region.

The high viscosities reported in in vitro studies of biomolecular
condensates (relative to water) translate into a significant viscosity
ratio, ηII/ηI, between the dense droplet phase (indicated by index II;
Fig. 1) and the exterior dilute bulk phase (indicated by index I). On
the other hand, Caragine et al.24 suggested a case with ηII/ηI ≪ 1.
They noted the even higher viscosity of the nucleoplasm surround-
ing nucleoli, a type of biomolecular condensate specializing in ribo-
somal biogenesis, than that of droplets formed by a main nucleolar
protein.17 In addition, polymer blends may phase separate to pro-
duce dilute-phase “bubbles” in dense coacervates,39 also leading to
ηII/ηI ≪ 1. The viscosity ratio is of theoretical interest because in the
limiting cases of ηII/ηI = ∞ and 0, one can neglect the fluid dynam-
ics in either the exterior region (i.e., “I”) or interior region (i.e.,
“II”), significantly simplifying the mathematics. The viscosity ratio
may also affect how much viscoelastic droplets and purely viscous
droplets differ in shape dynamics.

Here, we develop an analytical solution for the shape recovery
dynamics of deformed viscoelastic droplets. This solution is pre-
sented in Sec. II. We direct the reader’s focus to Sec. III, where
we report shape recovery curves for selected values of viscosities
and shear relaxation rates, to illustrate rich effects of viscoelastic-
ity. In particular, during shape recovery, viscoelastic droplets exhibit
shear thickening (increase in apparent viscosity) at fast shear relax-
ation rates but shear thinning (decrease in apparent viscosity) at
slow shear relaxation rates. Moreover, our analytical results show
that shear relaxation is a new rate-limiting mechanism for shape
dynamics, although experimental verification can be challenging.
This paper ends with concluding remarks in Sec. IV. We place
technical details in Appendixes A–F.

II. THEORY
Our main interest is the shape recovery dynamics of biomolec-

ular droplets formed by phase separation. Below, we first give the
results for purely viscous droplets (derivation found in Appendix A)
and then generalize the solution to viscoelastic droplets.

We assume that the initial shape deformation is axisymmet-
ric (Fig. 1). At polar angle θ and time t, the radial distance of the
interface between the droplet and its surrounding bulk phase can be
expressed as

r(θ, t) = R + fl(t)Pl(cos θ), (1)

where R is the radius of the fully recovered spherical shape, l ≥ 2,
and Pl(x) is a Legendre polynomial. As will be apparent below,
the solution for viscoelastic droplets is facilitated by working with
Laplace transforms, which we denote by a caret. For viscous droplets,
we find [Eq. (A42c) in Appendix A] that

f̂l(s) =
fl(0)

s + λD
l

, (2)

where s is the counterpart of t in Laplace space,

λD
l =

l(l + 2)(2l + 1)
2(2l2 + 4l + 3)

γ
ηR

, (3)

and γ denotes the interfacial tension. The inverse Laplace transform
of the foregoing f̂l(s) is an exponential function of time, with recov-
ery rate λD

l , which is inversely proportional to the “viscocapillary”
ratio, i.e., viscosity over interfacial tension.

A. Constitutive relation for viscoelastic fluids
In purely viscous or Newtonian fluids, shear relaxation occurs

instantaneously, and hence, the stress responds only to the strain
rate at the same moment [see Eq. (A3b) in Appendix A]. For later
reference, we present this constitutive relation in Laplace space,

ˆ̃τd(s) = ηˆ̃̇ε(s), (4)

where τ̃d is the deviatoric (shape-changing) component of the stress
tensor and ˙̃ε is the strain-rate tensor. In biomolecular conden-
sates and other complex materials, shear relaxation occurs at a
finite rate,12,20,21,38,39 and consequently, the stress depends on the
entire history of the strain rate. Limiting to small strain rates so
that the relation between τ̃d and ˙̃ε remains linear, Eq. (A3b) is
generalized to21

τ̃d(t) =
t

∫
−∞

dt′G(t − t′)˙̃ε(t′) (5a)

= τ̃d(0) + ∫
t

0
dt′G(t − t′)˙̃ε(t′). (5b)

The function G(t) introduced above is the shear relaxation modulus.
For our problem at hand, the strain rate starts at t = 0 [i.e., ˙̃ε(t′) = 0
for t′ < 0], and hence,

τ̃d(0) = 0, (5c)

and Eq. (5b) becomes

τ̃d(t) =
t

∫

0

dt′G(t − t′)˙̃ε(t′). (5d)

Note that we must also have G(t′) = 0 for t′ < 0 since other-
wise Eq. (5a) would mean that future strain rates [˙̃ε(t′) at t′ > t]
would affect the present stress τ̃d(t). Taking the Laplace transform
of Eq. (5d), we obtain a simple constitutive relation between ˆ̃τd

and ˆ̃̇ε,
ˆ̃τd(s) = Ĝ(s)ˆ̃̇ε(s). (5e)

In comparison to Eq. (4) for Newtonian fluids, we see that the only
difference is that η is now replaced with Ĝ(s). Therefore, in Laplace
space, the Navier–Stokes equations can be generalized to viscoelastic
fluids by simply replacing η with Ĝ(s). Correspondingly, the solu-
tion for Newtonian fluids can be transformed to the solution for
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viscoelastic fluids by the same replacement. We will present this
solution in Secs. II B–II D. A similar replacement of η, by the Fourier
transform of G(t) for viscoelastic fluids, is found in Ref. 20.

It is remarkable that the solution for the shape recovery dynam-
ics of viscoelastic droplets can be easily obtained, in Laplace space
anyway, by a substitution of Ĝ(s) for η. Mathematically, this route
simplifies the solution enormously and enables easy application to
a variety of viscoelasticity models [i.e., different functional forms of
Ĝ(s)]. For example, Khismatullin and Nadim40 derived the normal-
mode solution explicitly for the Jeffreys model of viscoelasticity. It
can be easily verified that their solution is the same as the coun-
terpart for Newtonian droplets29,41,42 except with the replacement
of η by Ĝ(s). Physically, the replacement of η by Ĝ(s) means that
Ĝ(s), the shear relaxation modulus (in Laplace space) of viscoelastic
droplets, plays a similar role as the viscosity of Newtonian droplets.
Indeed, by definition, Newtonian fluids have a shear relaxation
modulus that is constant and equal to the viscosity,

Ĝ(s) = η for Newtonian fluids. (6a)

The counterpart in the time domain is a delta function,

G(t) = ηδ(t) for Newtonian fluids, (6b)

which means that shear relaxation occurs instantaneously. For vis-
coelastic fluids, the value of Ĝ(s) at s = 0 is the zero-shear viscosity,
i.e., the viscosity measured at the zero strain rate,

Ĝ(0) = ηz. (7)

However, shear relaxation occurs at a finite rate in viscoelastic fluids
and Ĝ(s) is no longer a constant. Correspondingly, the shape defor-
mation amplitude fl(t) is no longer a single exponential with a time
constant dictated by the “viscocapillary” ratio. Rather, additional
time constants are introduced by shear relaxation.

We now introduce various models of linear viscoelasticity. In
the Maxwell model, shear relaxation is an exponential function of
time, with a time constant τsr,

G(t) =
η

τsr e−t/τsr

for t > 0. (8)

The Laplace transform is

Ĝ(s) =
η

1 + τsrs
. (9)

In the limit τsr
→ 0, the Maxwell model reduces to a Newtonian

fluid, consistent with the latter’s instantaneous shear relaxation. A
linear combination of a Newtonian fluid and the Maxwell model,

Ĝ(s) = η0 +
η1

1 + τsr
1 s

, (10)

is the Jeffreys model, which can also be seen as the linearized ver-
sion of the Oldroyd B model. When the Newtonian component of
Eq. (10) is also generalized to be Maxwellian, i.e.,

Ĝ(s) =
η0

1 + τsr
0 s
+

η1

1 + τsr
1 s

, (11)

we obtain the Burgers model. For the Jeffreys and Burgers models,
the zero-shear viscosity is

ηz = Ĝ(0) = η0 + η1. (12)

We can represent an arbitrary shear relaxation modulus by adding
more and more Maxwellian components. However, these more
complicated models rarely are useful.

B. Viscoelastic droplets in an ideal-fluid medium
By substituting the shear relaxation modulus Ĝ(s) for the vis-

cosity η in Eq. (3) and using the latter in Eq. (2), we obtain the shape
deformation amplitude, f̂l(s), for viscoelastic droplets,

f̂l(s) =
fl(0)

s + λD
l /ĝ(s)

, (13)

where λD
l is given by Eq. (3) but with η now replaced by ηz, i.e.,

λD
l =

l(l + 2)(2l + 1)
2(2l2 + 4l + 3)

γ
ηzR

, (14)

and

ĝ(s) =
Ĝ(s)

ηz
. (15)

By definition, ĝ(0) = 1. For Newtonian fluids, ĝ(s) = 1 for all s. Note
that the area under the fl(t) vs t curve, given by f̂l(0), is

f̂l(0) =
fl(0)
λD

l
. (16)

With this result, we can interpret λD
l as the mean recovery rate, in the

sense that the exponential function fl(0)e−λD
l t has the same area as

fl(t). Equation (16) is derived from Eq. (13) using ĝ(0) = 1. Because
Eq. (16) holds irrespective of ĝ(s), the area of the fl(t) curve must
be conserved when the parameters, in particular the time constants
of shear relaxation in ĝ(s), or even the functional forms of ĝ(s) are
varied.

C. Ideal-fluid bubbles in a viscoelastic medium
Similarly, by substituting the shear relaxation modulus Ĝ(s)

for the viscosity η in Eq. (A52c), we obtain the shape deformation
amplitude, f̂l(s), for ideal-fluid bubbles in a viscoelastic medium,

f̂l(s) =
fl(0)

s + λB
l /ĝ(s)

, (17)

where λB
l is given by Eq. (A17) but with η now replaced by ηz,

λB
l =
(l − 1)(l + 1)(2l + 1)

2(2l2 + 1)
γ

ηzR
, (18)

and represents the mean recovery rate that corresponds to the area
under the fl(t) vs t curve.

D. Viscoelastic droplets in a viscous medium
and viscous droplets in a viscoelastic medium

For the shape recovery of a deformed viscoelastic droplet in a
viscous medium, by substituting ĜII(s) for the interior viscosity ηII
in λl that is given by Eq. (A20a) and appears in Eq. (B5), we obtain

f̂l(s) =
fl(0)

s + λI
l/hl(s)

, (19a)
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where

λI
l =

elγ
ηIR

, (19b)

hl(s) =
[alαII/IĝII(s) + bl][clαII/IĝII(s) + dl]

αII/IĝII(s) + 1
, (19c)

with al, bl, cl, dl, and el given by Eqs. (A20b)–(A20f). Furthermore,
αII/I is the viscosity ratio given by Eq. (A20g), but ηII now represents
the zero-shear viscosity of the viscoelastic droplet, and

ĝII(s) =
ĜII(s)

ηII
. (19d)

At s = 0, we find that

f̂l(0) =
fl(0)

λI
l/hl(0)

=
fl(0)

λl
, (19e)

where λl is given by Eq. (A20a). Equation (19e) means that the area
under the fl(t) curve is conserved for any ĝII(s), including the one,
ĝII(s) = 1, for Newtonian fluids.

The foregoing results can also apply to the reverse case, i.e., a
viscous droplet in a viscoelastic medium, after the following changes:
replacing λI

l with λII
l and ĝII(s) with ĝI(s) and swapping al with bl

and cl with dl in Eq. (19c). Finally, the shape recovery dynamics
of the most general case, i.e., a viscoelastic droplet in a viscoelas-
tic medium, can be obtained by further modifying λl in Eq. (B5).
This time, the modification entails substituting both ĜII(s) for the
interior viscosity ηII and ĜI(s) for the exterior viscosity ηI in the
expression of λl given by Eq. (A20a).

III. ILLUSTRATIVE RESULTS AND DISCUSSION
The analytical solution in Sec. II predicts rich dynamic

behaviors of deformed droplets during their shape recovery. Here,
we present illustrative results, to motivate experimental studies into
the effects of viscoelasticity on shape dynamics of biomolecular
condensates, and demonstrate the potential importance of the
present analytical solution in fitting experimental data and in
validating numerical solutions.

A. Comparison between droplet fusion
and shape recovery

It is interesting to compare the dynamics of the two kinds of
shape changes: fusion of two droplets and recovery of a deformed
droplet. The half-length, Lfus(t), of two fusing viscous droplets, ini-
tially with equal radius R, in an ideal-fluid medium is approximately
given by28

Lfus(t) − Lfus(∞) = [Lfus(0) − Lfus(∞)]e
−(t/τfus)

β

, (20)

where β = 1.5 and

τfus = 1.97
ηR
γ
≡ 1.97τvc. (21)

The last identity defines the viscocapillary time τvc. For the
shape recovery of a deformed droplet, the half-length is given by
[Eq. (A14)]

Lrec(t) − Lrec(∞) = fl(t) = [Lrec(0) − Lrec(∞)]e−λD
l t . (22)

The relaxation rates for l = 2 and 4 are [Eq. (A15)]

λD
2 =

20
19τvc , (23a)

λD
4 =

36
17τvc . (23b)

As shown in Fig. 2, the fusion dynamics is a stretched exponen-
tial function of time, occurring more slowly than the shape recov-
ery dynamics of a droplet with a deformation represented by the
lowest-order Legendre polynomial (“P2”). As the order of the Leg-
endre polynomial increases, shape recovery becomes even faster.
Interestingly, Hubstenberger et al.1 observed that shape recovery of
elongated grP-bodies was much faster than the fusion of grP-bodies.
However, Fig. 2 shows that the results predicted for viscous droplets
are unlikely to reach the two orders of magnitude difference in
timescales, which Hubstenberger et al. suggested as indicating
elasticity. Next, we present results for viscoelastic droplets.

B. Shape recovery of viscoelastic droplets
We now examine the time dependence of fl(t) for viscoelastic

droplets in an ideal fluid. We focus on the Jeffreys model of vis-
coelasticity. The corresponding results for the Maxwell model and
Burgers model are given in Appendixes C and D. These results eas-
ily extend to the shape recovery dynamics of bubbles in a viscoelastic
medium (Appendix E).

Substituting Ĝ(s) of Eq. (10) for the Jeffreys model into Eq. (13)
gives

f̂l(s) =
(η0 +

η1
1+τsr

1 s) fl(0)

s(η0 +
η1

1+τsr
1 s) + ηzλD

l

. (24)

FIG. 2. Comparison of droplet fusion dynamics and shape recovery dynamics.
Fusion starts with two equal-sized droplets at contact and ends with a single larger
spherical droplet having the same total volume. Deformation recovery is illustrated
in Fig. 1; P2 and P4 indicate that the deformation is represented by the second- or
fourth-order Legendre polynomial. L denotes the half-length of each system.
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The inverse Laplace transform of Eq. (24) is a sum of two exponen-
tials,

fl(t) = fl(0)(Al+e−λD
l+t
+ Al−e−λD

l−t
), (25a)

as opposed to a single exponential for a Newtonian fluid. The
recovery rates and corresponding amplitudes are as follows:

λD
l± =

1
2

ηz

η0

1
τsr

1
[τsr

1 λD
l + 1 ±

√

(τsr
1 λD

l + 1)2
− 4(η0/ηz)τsr

1 λD
l ],

(25b)

Al± =
1
2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 ±
τsr

1 λD
l − 1

√

(τsr
1 λD

l + 1)2
− 4(η0/ηz)τsr

1 λD
l

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (25c)

In the limit η1 → 0, the two recovery rates of Eq. (25b) reduce to
λD

l and 1/τsr
1 , and the corresponding amplitudes given by Eq. (25c)

reduce to 1 and 0, respectively. Thus, Eq. (25a) properly reduces to
the single exponential of Eq. (22) for a Newtonian fluid. In the limit
η0 → 0, the two recovery rates become infinite and λD

l /(1 + τsr
1 λD

l ),
and the corresponding amplitudes are τsr

1 λD
l /(1 + τsr

1 λD
l ) and

1/(1 + τsr
1 λD

l ). These results correctly match the counterparts of
Maxwell droplets (see Appendix C).

The scaled recovery rates λD
l±/λ

D
l and the amplitudes Al±

depend only on two dimensionless parameters: η0/ηz and τsr
1 λD

l .
It can be easily shown that λD

l+/λ
D
l > 1 whereas λD

l−/λ
D
l < 1 for all

parameter values. For a given η0/ηz, τsr
1 λD

l = 1 is a special point,
where Al+/Al− is 1 and λD

l+/λ
D
l− reaches its minimum. At this spe-

cial τsr
1 λD

l , λD
l+/λ

D
l− gets closer and closer to 1 as η0/ηz approaches

1, i.e., when the Newtonian component of the complex shear mod-
ulus becomes dominant. In Fig. 3, we compare the shape recovery
curves for η0/η1 = 5:1, 1:1, and 1:5 while holding τsr

1 λD
l at 1. Whereas

the curve at η0/η1 = 5:1 is close to the counterpart of Newtonian
droplets, the curve at η0/η1 = 1:5 is clearly non-exponential, with
a fast decay followed by a slow decay. The curve at η0/η1 = 1:1 is
intermediate between those two.

Recently, we have found that modulating intermolecular
interactions, e.g., by adding salt, can tune the η0/η1 ratio.21 For
PGL-3 protein droplets, the Maxwellian component dominates (i.e.,

FIG. 3. Effect of the η0/η1 ratio on the shape recovery dynamics of viscoelastic
droplets in an ideal fluid. The shear relaxation rate is fixed at τsr

1 λD
l = 1, where the

two decay components of fl(t) have equal amplitudes. The values of η0/η1 are
shown in the legend. The result for a Newtonian droplet is displayed for reference.
The results here are valid for any l.

η0/η1 < 1) at low salt, while the Newtonian component dominates
(i.e., η0/η1 > 1) at high salt. Qualitatively, we expect the shape recov-
ery curves of PGL-3 droplets to become less non-exponential at
increasing salt concentration. Experimental studies of salt effects on
the shape recovery dynamics of biomolecular condensates will be
of particular interest. Salts also have complex effects on the shear
relaxation moduli of polymer blends.43

C. Effect of shear relaxation rate
Let us look closely at the effect of τsr

1 , the shear relaxation rate
in the Jeffreys model, on the shape recovery dynamics of viscoelastic
droplets in an ideal fluid. In associative polymers, which may serve
as a generic model of biomolecular condensates, the main mecha-
nism of shear relaxation is the reconfiguration of polymer networks,
and τsr

1 represents the time constant for making and breaking of
crosslinks between polymer chains.44 In Fig. 4, we display shape
recovery curves for τsr

1 λD
l at 0.1, 1, 10, and 50 while holding η0/η1

at 1:5. Each fl(t) curve exhibits two successive decays. With increas-
ing τsr

1 , the amplitude of the first decay becomes larger and that of
the second decay becomes smaller, while the recovery rates of both
decays become slower. The latter trend is a sign for slowdown in
shape recovery by shear relaxation.

To understand these results more clearly, let us consider
two extremes. For extremely fast shear relaxation, i.e., τsr

1 λD
l ≪ 1,

expanding Eqs. (25b) and (25c) in powers of τsr
1 λD

l and keeping terms
up to the first power, we find that

λD
l+ ≈

ηz

η0

1
τsr

1
+

η1

η0
λD

l , λD
l− ≈ λD

l , (26)

Al+ ≈
η1

ηz
τsr

1 λD
l , Al− ≈ 1 −

η1

ηz
τsr

1 λD
l . (27)

As illustrated by the curve at τsr
1 λD

l = 0.1 in Fig. 4, the first expo-
nential, Al+e−λD

l+t , has a small amplitude and decays rapidly to 0, and
hence, it is less important. The remaining exponential, Al−e−λD

l−t , has
an amplitude close to 1 and a recovery rate that is lower than but
close to λD

l , the Newtonian result. In other words, for τsr
1 λD

l <∼0.2,

FIG. 4. Effect of the shear relaxation rate on the shape recovery dynamics of vis-
coelastic droplets in an ideal fluid. The η0/η1 ratio is fixed at 1:5, whereas the
values of τsr

1 λD
l are shown in the legend. The result for a Newtonian droplet is

displayed for reference. The results here are valid for any l.
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the shape recovery dynamics of viscoelastic droplets is almost a sin-
gle exponential but with a recovery rate slower than the Newtonian
counterpart and thus apparently indicating shear thickening (i.e.,
increase in apparent viscosity). This slower shape recovery for vis-
coelastic droplets than for Newtonian droplets can be attributed to a
finite rate of shear relaxation.

In the opposite limit where shear relaxation is extremely slow,
i.e., τsr

1 λD
l ≫ 1, we expand Eqs. (25b) and (25c) in powers of 1/τsr

1 λD
l

and keep terms up to the first power, finding

λD
l+ ≈

ηz

η0
λD

l +
η1

η0

1
τsr

1
, λD

l− ≈
1

τsr
1

, (28)

A+;l = 1 −
η1

ηz
(τsr

1 λD
l )
−1, A−;l =

η1

ηz
(τsr

1 λD
l )
−1. (29)

As illustrated by the curves at τsr
1 λD

l = 10 and 50 in Fig. 4, the first
exponential has an amplitude that approaches 1 and a recovery rate
that approaches (η0/ηz)λD

l , while the second exponential has a very
small amplitude but a very slow recovery rate, 1/τsr

1 . The ratio of
the areas under the two exponentials is approximately η0/η1, and
hence, both areas can be significant, but the second, slow exponential
may be difficult to detect experimentally due to the small ampli-
tude. The apparent dominance of the first exponential thus gives the
impression of fast shape recovery. Note that (η0/ηz)λD

l is the recov-
ery rate of a Newtonian fluid with viscosity at η0. In essence, when
shear relaxation is very slow, only the Newtonian component of the
shear relaxation modulus is active in slowing down shape recov-
ery (i.e., the Maxwell component of the shear relaxation modulus
remains dormant on the timescale of the shape recovery). There-
fore, during shape recovery, viscoelastic droplets appears to exhibit
shear thinning (decrease in apparent viscosity) when shear relax-
ation is very slow. This apparent shear thinning could explain, at
least partially, the shorter than expected timescale of grP-body shape
recovery observed by Hubstenberger et al.1

As noted above, a finite rate of shear relaxation could slow
down shape recovery. Naively, one would expect shape recovery to
become slower and slower at decreasing shear relaxation rates (i.e.,
increasing τsr

1 ). Indeed, as noted above, the two recovery rates λD
l+

and λD
l− decrease with increasing τsr

1 . However, shear relaxation also
affects the amplitudes of the two exponentials. Thus, paradoxically,
the major exponential (i.e., the one with the larger amplitude) has
a recovery rate lower than λD

l when shear relaxation is fast (e.g.,
τsr

1 λD
l <∼ 0.2), but a recovery rate higher than λD

l when shear relax-
ation is slow (e.g., τsr

1 λD
l >∼ 2) (Fig. 4). The opposite deviations from

λD
l correspond to shear thickening and shear thinning, respectively.

Interestingly, associative polymers exhibit shear thickening at mod-
erate steady shear rates and shear thinning at high steady shear
rates.44 We propose that the shear thickening and thinning phe-
nomena of viscoelastic droplets during shape recovery and of asso-
ciative polymers under steady shear have a common explanation.
Our recent experimental studies that dissected droplet fusion data
have presented evidence for shear thickening and shear thinning of
biomolecular condensates.23,28

Of course, we should not forget that there is also a minor expo-
nential, which at increasing τsr

1 λD
l (starting from a value 1) has a

time constant that becomes dominated by shear relaxation and less
and less dependent on interfacial tension. For extremely slow shear

relaxation, the time constant becomes τsr
1 itself, thus directly show-

ing that the shear relaxation rate limits shape recovery. However,
this new mechanism only accounts for a very small fraction of the
total amplitude, thus making experimental verification challenging.

As noted in Subsection III B, the results illustrated in Fig. 4
are also applicable to the shape recovery of bubbles in a vis-
coelastic medium upon replacing λD

l with λB
l . Ali and Prabhu39

recently presented such data where the viscoelastic medium is coac-
ervates formed by potassium poly(styrenesulfonate) and poly(diallyl
dimethylammonium bromide). They observed an initial decay fol-
lowed by a slow second decay, qualitatively in agreement with our
prediction. The shear relaxation in their system has τsr

1 < 1 s and
becomes faster with increasing salt (similar to results found for
PGL-3 droplets21). In comparison, the time constants of their second
decay, corresponding to our 1/λB

l−, are mostly >1 s. Ali and Prabhu
analyzed their data essentially by assuming λB

l− = λB
l , i.e., completely

neglecting shear relaxation. However, even fast shear relaxation can
affect λB

l−, and hence, its neglect can lead to underestimation of
the interfacial tension. For example, at τsr

1 λB
l = 0.1, we predict λB

l−
= 0.92λB

l . Ali and Prabhu also reported the time, te, for the initial
decay to complete. te should scale with 1/λB

l+, i.e., the time constant
of the initial decay, which we predict to be significantly affected by
the shear relaxation rate [see λD

l+ given by Eq. (26)]. Indeed, Ali and
Prabhu reported an ∼10fold decrease in te when the salt concen-
tration increased from 1.55 to 1.85M. Over the same range of salt
concentration, the time constants of their second decay changed by
< twofold, whereas the shear relaxation rates changed substantially,
suggesting their major role in determining te.

D. Finite viscosity ratio: Newtonian fluids
So far, we have only considered cases where either the exterior

or the interior fluid is modeled as ideal. Now, we want to present
cases where the viscosity ratio between the two phases is finite so
that both interior and the exterior fluid dynamics must be treated at
the same time. Both ηI and ηII need to be high for inertial effects to be
neglected. As a prelude to cases where a viscoelastic fluid interfaces
with a Newtonian fluid, here, we first consider the case where both
phases are Newtonian fluids. The shape recovery dynamics is an
exponential function [see Eq. (B5)], with the recovery rate λl given
by Eq. (A20a). For l = 2, the recovery rate is

λ2 =
40(ηII/ηI + 1)

(19ηII/ηI + 16)(2ηII/ηI + 3)
1

τvc
I

, (30a)

where

τvc
I =

ηIR
γ

. (30b)

Equation (30a) is identical to the recovery rate widely quoted for
droplets approximated as ellipsoids.31,32,34,36,39

Although shapes specified by the second-order Legendre poly-
nomial (“P2”) have been assumed to be equivalent to ellipsoids, e.g.,
Ref. 45, there are actually noticeable differences between them. As
detailed in Appendix F, P2 combined with a small-amplitude fourth-
order Legendre polynomial (P4) does an excellent job in reproduc-
ing ellipsoidal shapes. A deformation with an ellipsoidal shape thus
requires a linear combination of f2(t) and f4(t) (see Fig. 2), leading
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to a bi-exponential decay even when both phases are Newtonian flu-
ids. For the rest of this paper, we will limit to l = 2, focusing attention,
instead, on non-exponentiality arising from viscoelasticity.

In Fig. 5(a), we present the shape recovery curves for Newto-
nian droplets in a Newtonian fluid with ηII/ηI at 10, 1.5, and 0.5.
This will serve as references for assessing the effect of droplet vis-
cosity in Subsection III E. One can tune ηII/ηI by changing temper-
ature or salt concentration. In cases where the dense phase is inside
droplets, ηII/ηI is much higher than 1 while away from the critical
point and approaches 1 as the critical point is reached. For complex
biomolecular condensates, one can also tune ηII/ηI by varying their
macromolecular composition.16,18,28

E. Finite viscosity ratio: Viscoelastic fluids
To determine the shape recovery dynamics of viscoelastic

droplets in a Newtonian fluid, we obtain f l(t) of Eq. (19a) by numer-
ical Laplace inversion.46 The results are displayed as dotted curves in
Fig. 5(a) for Jeffreys droplets with ηII0/ηII1 = 1:5; τsr

II1γ/ηIR = 10; and
ηII/ηI = 10, 1.5, and 0.5. Similar to the results presented in Figs. 3
and 4 for ηII/ηI = ∞, for each finite ηII/ηI value, the initial decay of
f l(t) for the Jeffreys droplet (“J/N”) is faster than that of the cor-
responding Newtonian droplet (“N/N”). The J/N curve then slows
down and crosses the N/N curve.

It is interesting to compare the shape recovery curves between
Jeffreys droplets in a Newtonian fluid (i.e., “J/N”) and Newtonian
droplets in a viscoelastic medium (“N/J”). The N/J results are shown
as dashed curves in Fig. 5(a). When ηII/ηI > 1, relative to the J/N
curves, the corresponding N/J curves move closer to the N/N curves.
Conversely, when ηII/ηI < 1, it is the J/N curves that are closer to
the N/N curves. At ηII/ηI = 1.5 and 0.5, with τsr

1 γ/ηIR = 10, the
shear relaxation of the viscoelastic fluids occurs on a timescale that
is approximately ten times longer than both the interior and exterior
viscocapillary times. Correspondingly, the shape recovery curves at
ηII/ηI = 1.5 and 0.5 all have a slow decay with a time constant close
to τsr

1 . Therefore, once again, we observe the scenario where the slow
decay is dictated by shear relaxation and independent of interfacial
tension.

In Fig. 5(b), we compare our analytical solution with the exper-
imental data of Verhulst et al.38 for N/N, J/N, and N/J systems,
all with ηII/ηI = 1.5. For the N/N system, there is good agreement
between theory and experiment. For the J/N system, the analyti-
cal curve has a significant late slow decay, whereas the experimen-
tal curve deviates only slightly from the counterpart for the N/N
system. For the N/J systems, both the experimental and analytical
curves have a long-time tail and the decay rate of the tail decreases
with increasing τsr

1 γ/ηIR, indicating that this part of the curves is
dominated by shear relaxation. However, the analytical solution sig-
nificantly underestimates the amplitude of the tail. We attribute the
underestimation to the fluid-dynamics model adopted here for New-
tonian droplets inside a viscoelastic fluid, not our analytical solution.
The experimental N/J curves are above the corresponding N/N curve
at all times, but the analytical solution of the present fluid-dynamics
model predicts that the N/J curves must intersect the N/N curve
and all the curves integrate to the same total area. Clearly, the fluid-
dynamics model needs to be modified for the N/J systems in order
to achieve quantitative agreement with the experimental data. While
phenomenological models have achieved partial success in fitting the
experimental data,31,32 we believe that it is more important to iden-
tify physical ingredients missing from the fluid-dynamics model and
then solve the physical model exactly.

We also compared our analytical solution with the numeri-
cal solution of Hooper et al.,33 who used the Oldroyd B model for
viscoelasticity. The analytical and numerical results agree well for
Newtonian droplets in a Newtonian fluid. However, for viscoelastic
droplets in a Newtonian fluid, the initial decay of the shape defor-
mation of Hooper et al. is faster. Although the analytical solution is
limited to linear order (specifically in the extent of shape deforma-
tion and in the linearization of the Oldroyd B model), we suspect that
the discrepancy is largely due to errors in the numerical solution.
The Oldroyd B model is known to be difficult for numerical imple-
mentation and to be prone to numerical instability.35 Our own
numerical solution using the COMSOL software has shown close
agreement with the analytical solution (Naderi, Peng, and Zhou,
to be published). The analytical solution thus presents a unique
benchmark for testing the accuracy of numerical solutions.

FIG. 5. Shape recovery curves at a finite viscosity ratio between the droplet and bulk phases. (a) Comparison of f 2(t) for three cases of pairing interior and exterior fluids:
Newtonian with Newtonian (solid curves), viscoelastic with Newtonian (dotted curves), and Newtonian with viscoelastic (dashed curves). The viscosity ratios, i.e., ηII/ηI, are
shown in the legend. Viscoelasticity is given by the Jeffreys model, with η0/η1 = 1:5 and τsr

1 γ/ηIR = 10. (b) Comparison of our analytical results (curves) with experimental
data of Verhulst et al. (symbols) for five systems, all with ηII/ηI = 1.5. The viscoelasticity was reported as fitting to the Oldroyd B model, with η0/η1 ≈ 2:1 and τsr

1 γ/ηIR
indicated in the legend. Curves and symbols have matching colors for the same systems.
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IV. CONCLUDING REMARKS

We have presented an exact analytical solution for the recov-
ery dynamics of biomolecular droplets from small-amplitude defor-
mation. Whereas viscocapillarity sets the timescale for the shape
recovery dynamics of viscous droplets, with viscoelasticity, shape
recovery becomes multi-exponential. For the Jeffreys model of vis-
coelasticity featuring a single shear relaxation rate, two exponentials
are predicted for the shape recovery dynamics, with time constants
shorter and longer, respectively, than the viscocapillary timescale.
Shear relaxation inside the droplets affects both the time constants
and amplitudes of the exponentials, with one exponential becoming
dominant under some conditions. For moderately fast shear relax-
ation, the dominant exponential is the one with a time constant
longer than the viscocapillary timescale, which can be interpreted as
arising from an apparent increase in viscosity. Conversely, for very
slow shear relaxation, the dominant exponential is the one with a
time constant shorter than the viscocapillary timescale, which can
be interpreted as arising from an apparent decrease in viscosity.
Therefore, during shape recovery, viscoelastic droplets exhibit shear
thickening at fast shear relaxation rates but shear thinning at slow
shear relaxation rates. Under the latter condition, the time constant
of the minor exponential is dictated by shear relaxation, which can
thus be seen as a new rate-limiting mechanism for shape dynamics.

It will be interesting to experimentally test the theoretical pre-
dictions on the shape recovery dynamics of biomolecular droplets.
The experimental data may consist of time-lapse images of droplets
after an initial deformation. To analyze the data, one will represent
the boundary of a droplet at time t by a sum of Legendre polynomi-
als and determine the expansion coefficients fl(t) (cf. Appendix F).
One will then fit the time dependence of fl(t) to the theoretical
results for a model of viscoelasticity [in particular, Eq. (25a)]. One
prediction is that the recovery rate depends on the initial shape
(see Fig. 2). Initial shapes that are more elongated have components
of higher order (i.e., l) Legendre polynomials, which are predicted
to have higher recovery rates. This prediction already has support
from the data of Hubstenberger et al.,1 which showed that shape
recovery of elongated grP-bodies was much faster than the fusion of
grP-bodies. Another theoretical prediction is shear thickening and
shear thinning. If the zero-shear viscosity of droplets is known, then
experimental data on shape dynamics will be able to tell whether
shear thickening or thinning, indeed, occurs. In the most ideal case,
the shape recovery data may allow for the discrimination among
different models of viscoelasticity.

We anticipate qualitatively similar effects of shear relax-
ation on droplet fusion dynamics. Indeed, preliminary data from
COMSOL calculations on droplet fusion and shape recovery sup-
port this contention (Naderi, Peng, and Zhou, to be published).
Therefore, in droplet fusion, we can also expect shear thickening
for condensates with fast shear relaxation rates but shear thin-
ning for condensates with slow shear relaxation rates. This expec-
tation is confirmed by our recent experimental studies that dissected
droplet fusion data of biomolecular condensates.23,28 It has become
a common practice to deduce the interfacial tension by applying the
viscocapillary model [Eq. (21)], i.e., by combining the inverse capil-
lary velocity (obtained by, e.g., measuring fusion speed) with zero-
shear viscosity (obtained by, e.g., particle tracking). The observa-
tion of shear thickening and shear thinning means that interfacial

tensions deduced from the viscocapillary model can be in serious
error.

There is great interest in condensate aging, especially in its
connection with neurodegeneration, but there is little physical
understanding of this phenomenon. One possible physical change
in biomolecular condensates over time is the slowdown in shear
relaxation.12 Our analytical solution predicts that a slowdown in
shear relaxation can lead to a very slow decay in shape dynamics,
thereby giving the appearance of stalled or incomplete shape recov-
ery and fusion. The work here thus reveals shear relaxation as a
crucial link in understanding condensate aging.

Our analytical solution should prove useful for validating
numerical solutions of fluid-dynamics equations for condensate
shape changes. Such validation is important, as numerical solutions
may be the only option for the theoretical treatment of nonlinear
issues such as large-amplitude deformation and nonlinear constitu-
tive relations (e.g., the Oldroyd B model). We do expect that our
present solution is still qualitatively and even semi-quantitatively
correct when nonlinearity is present, and as such, it will be good for
fitting experimental data on shape recovery. Finally, shape recovery
and fusion may potentially be modeled by molecular simulations45

and our analytical theory can motivate and guide data analysis in
such studies.
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APPENDIX A: SHAPE RECOVERY OF NEWTONIAN
DROPLETS IN A NEWTONIAN MEDIUM

For biomolecular droplets formed by phase separation,
ηII ≫ ηI due to significantly higher macromolecular concentrations
and extensive intermolecular interactions in the droplet phase. We
denote the viscosity of the droplet phase as η, without subscript
“II.” The opposite limit, i.e., ηI ≫ ηII, occurs in some other cases.
For example, the phase separation of some polymer blends leads to
polymer-poor “bubbles” in the coacervate matrix.39 We then neglect
ηII and denote the viscosity of the coacervate phase as η, without
subscript “I.” We only retain subscripts I and II when considering
the full problem where both interior and exterior fluid dynamics are
treated.

1. Fluid-dynamics problem
The shape change of a liquid droplet inside an ideal-fluid

medium is dictated by the interior fluid dynamics, which we model
by the (generalized) Navier–Stokes equations. The first of these

J. Chem. Phys. 155, 145102 (2021); doi: 10.1063/5.0064247 155, 145102-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

equations expresses mass conservation, which for an incompressible
fluid has the form

∇ ⋅ v(x, t) = 0, (A1)

where v(x, t) is the fluid velocity at position x and time t and ∇
denotes the gradient operator. The second of the Navier–Stokes
equations expresses momentum conservation,

𝜚(∂v
∂t
+ v ⋅ ∇v) = ∇ ⋅ τ̃, (A2)

where 𝜚 is the fluid density and τ̃ is the stress tensor. Closure of this
equation requires a constitutive relation for τ̃. One contribution to τ̃
comes from hydrostatic pressure (p) and is related to volume change;
the remaining, deviatoric, contribution comes from fluid viscosity
(η) and is related to shape change,

τ̃ = −pĨ + τ̃d, (A3a)

where Ĩ is the unit tensor. For purely viscous or Newtonian fluids,
the deviatoric contribution is given by

τ̃d = η˙̃ε, (A3b)

where a dot denotes differentiation with respect to time and

˙̃ε = ∇v + (∇v)T (A3c)

is the symmetrized strain-rate tensor, with superscript “T” denoting
the transpose. The momentum equation then becomes

𝜚(∂v
∂t
+ v ⋅ ∇v) = −∇p + η∇2v. (A4a)

At high frictions, the inertial terms on the left-hand side of Eq. (A4a)
can be neglected, leading to

−∇p + η∇2v ≈ 0. (A4b)

This reduction, similar to the reduction in the Langevin equation
to one representing Brownian motion, is justified for biomolecular
condensates because of their high viscosity.

To solve Eqs. (A1) and (A4a) [or (A4b)], we have to spec-
ify boundary conditions. One is a “kinematic” boundary condition,
which expresses the fact that fluid motions lead to changes in the
shape of the interface between the droplet and the surrounding bulk
phase. If the interface at time t is specified by the condition

S(x, t) = 0 when x ∈ the interface, (A5)

then the kinematic boundary condition is

∂S
∂t
+ v ⋅ ∇S = 0. (A6)

The outward unit normal vector of the interface is given by

n =
∇S
∣∇S∣

. (A7)

The remaining boundary conditions express force balance at the
interface,

n ⋅ τ̃ ⋅ t = 0, (A8)

n ⋅ τ̃ ⋅ n = −γ∇ ⋅ n for droplets, (A9)

where t denotes a unit vector along a tangential direction of the
interface and γ is the interfacial tension. Note that due to the much
higher viscosity inside biomolecular droplets than in the bulk phase,
the effect of the velocity field in the bulk phase has been neglected. A
constant pressure in the bulk phase can be accounted for by subtract-
ing it from the interior pressure. Therefore, the two force-balance
boundary conditions involve only the interior stress tensor.

In the case of ideal-fluid bubbles in a Newtonian-fluid medium,
the shape change is dictated by the exterior fluid dynamics. All but
one of the above equations still hold when the symbols denote exte-
rior properties. The one exception is a sign change in the boundary
condition of Eq. (A9),

n ⋅ τ̃ ⋅ n = γ∇ ⋅ n for bubbles. (A10)

The problem at hand is to find the interface shape function
S(x, t) at any time t, given the initial shape function S(x, 0) [and
its initial rate Ṡ(x, 0) if necessary]. Due to the interfacial tension,
a deformed droplet will recover its spherical shape. We refer to
this process shape recovery, but terms used in the literature include
deformation retraction or relaxation.

2. Solution of Prosperetti
Prosperetti29 solved the shape recovery problem for small-

amplitude deformation. That is, the initial shape of the interface
between a droplet and the bulk phase (approximated as ideal fluid)
was assumed to be a small deformation from a sphere with radius
R. Using spherical coordinates (r, θ, ϕ) for the position x (with ori-
gin at the center of the reference sphere), the radial distance of the
interface at polar angle θ and azimuthal angle ϕ and at time t can be
written as (Fig. 1)

r(θ, ϕ, t) = R + fl(t)Ylm(θ, ϕ), (A11)

where Y lm(θ, ϕ) is a spherical harmonic. Because of the orthogo-
nality of spherical harmonics, we can later add up the results for
individual spherical harmonics to obtain a complete solution. The
amplitude f l(t) satisfies the following integro-differential equation:

f̈ l(t) + bḟ l(t) − bc
t

∫

0

dt′Q(t − t′)ḟ (t′) + ϖ2
0 fl(t) = 0, (A12)

where
b =

2(l − 1)(2l + 1)η
𝜚R2 , (A13a)

c =
(l − 1)(l + 1)

2l + 1
, (A13b)

ϖ2
0 =

l(l − 1)(l + 2)γ
𝜚R3 , (A13c)

and for the function Q(t), only its Laplace transform is known.
Denoting the Laplace transform of any function of time, g(t) as ĝ(s),
we have

Q̂(s) =
1

wIl+1/2(w)
2Il+3/2(w)

− 1
≡

1
1
2 Il(w) − 1

, (A13d)
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where w = R
√
𝜚s/η and Il+1/2(x) are modified Bessel functions of

the first kind.
Prosperetti29 considered the long-time asymptotic behavior of

f l(t), where fl(t) ≈ C(t)e−νlt with C(t) becoming a finite constant
as t →∞, leading to an equation for νl that is identical to the classical
result of Chandrasekhar41 and Reid42 using normal-mode analysis.
This analysis has now been extended to viscoelastic droplets in an
ideal fluid.40,47

Here, our concern is the initial value problem, i.e., the time
dependence of f l(t) starting from t = 0. We are particularly inter-
ested in the high-friction regime. In this regime, we neglect the sec-
ond derivative, f̈ l(t), in Eq. (A12), similar to reducing the Langevin
equation to one representing Brownian motion. Furthermore, high
friction means w → 0, and hence, we approximate Q̂(s) as

Q̂(s) ≈ lim
w→0

Q̂(s) =
2

2l + 1
. (A13e)

This result is independent of s, meaning that Q(t) is a delta function
of time. The solution of Eq. (A12) is an exponential function,

fl(t) = fl(0)e
−λD

l t , (A14)

with the recovering rate given by

λD
l =

l(l + 2)(2l + 1)
2(2l2 + 4l + 3)

γ
ηR

. (A15)

For ideal-fluid bubbles, Eq. (A12) still holds, but with

b =
2(l + 2)(2l + 1)η

𝜚R2 , (A16a)

c =
l(l + 2)
2l + 1

, (A16b)

ϖ2
0 =
(l − 1)(l + 1)(l + 2)γ

𝜚R3 , (A16c)

Q̂(s) =
1

wKl+1/2(w)
2Kl−1/2(w)

+ 1
≡

1
1
2Kl(w) + 1

, (A16d)

where K l+1/2(x) are modified Bessel functions of the second kind.
Again, our interest is the high-friction regime, where w → 0 and
Q̂(s) of Eq. (A16d) approaches the same limit as given by Eq. (A13e).
The solution for fl(t) remains an exponential function, with the
recovery rate now given by

λB
l =
(l − 1)(l + 1)(2l + 1)

2(2l2 + 1)
γ

ηR
. (A17)

In Eqs. (A15) and (A17), we have used the superscript “D” to
designate shape recovery rates for viscous droplets in an ideal-
fluid medium and for ideal-fluid bubbles in a viscous medium,
respectively.

Prosperetti30 also solved the full problem where both inte-
rior and exterior fluid dynamics are treated, i.e., without invoking
ηII ≫ ηI or ηII ≪ ηI. Equation (A12) becomes

f̈ l(t) + d−1
t

∫

0

dt′Q(t − t′)ḟ l(t
′
) + ϖ2

0 fl(t) = 0, (A18)

where
d = [(l + 1)𝜚II + l𝜚I]R

2, (A19a)

ϖ2
0 =

l(l − 1)(l + 1)(l + 2)γ
dR

, (A19b)

Q̂(s) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

[(2l + 1)ηIIIl(wII) − 2l(l + 2)(ηII − ηI)]

×[(2l + 1)ηIKl(wI) + 2(l − 1)(l + 1)(ηII − ηI)]

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

ηIIIl(wII) + ηIKl(wI) − 2(ηII − ηI)
,

(A19c)

with subscripts “II” and “I” denoting quantities in the interior and
exterior of the droplet. When both ηII and ηI fall in the high-friction
regime,

Q̂(s) ≈
[(2l2

+ 4l + 3)ηII + 2l(l + 2)ηI][2(l − 1)(l + 1)ηII + (2l2
+ 1)ηI]

(2l + 1)(ηII + ηI)
, (A19d)

and fl(t) is an exponential function of time, with the recovery rate
given by

λl =
el(αII/I + 1)

(alαII/I + bl)(clαII/I + dl)

γ
ηIR

, (A20a)

where
al = 2l2

+ 4l + 3, (A20b)

bl = 2l(l + 2), (A20c)

cl = 2(l − 1)(l + 1), (A20d)

dl = 2l2
+ 1, (A20e)

el = l(l − 1)(l + 1)(l + 2)(2l + 1), (A20f)

αII/I =
ηII

ηI
. (A20g)

One can easily verify that λl reduces to λD
l when αII/I ≫ 1 and to λB

l
when αII/I ≪ 1.
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3. New solution
Here, we present a new solution for the shape recovery dynam-

ics in the high-friction regime. This solution easily lends itself to gen-
eralization from viscous to viscoelastic fluids. The derivation here
for droplets largely follows the solution of a related fluid-dynamics
problem.20 We assume that the shape deformation is axisymmetric
(Fig. 1). Equation (A11) then reduces to

r(θ, t) = R + fl(t)Pl(cos θ). (A21)

Note that the lowest l should be 2 since l = 0 corresponds to a change
in the droplet radius and thus a violation of volume conservation
demanded by fluid incompressibility, and l = 1 corresponds to a
translational motion of the entire interface. We will keep terms only
up to the first order in f l(t); to this order, the volume of the droplet
is a constant when fl(t) changes over time.

The interface shape function can be identified as

S(x, t) = r − [R + fl(t)Pl(cos θ)]. (A22)

The outward normal vector of the interface [Eq. (A7)] can be
found as

n = er − fl(t)∇Pl(cos θ) = er −
fl(t)

R
∂Pl(cos θ)

∂θ
eθ (A23)

to the first order in f l(t), where er and eθ are unit vectors along r
and θ, respectively. The divergence of n is

∇ ⋅ n =
2
R
−

2
R2 fl(t)Pl(cos θ) −

fl(t)
R2 sin θ

∂

∂θ
(sin θ

∂Pl(cos θ)
∂θ

)

=
2
R
+
(l − 1)(l + 2)

R2 fl(t)Pl(cos θ). (A24)

The fluid velocity v(x, t) is of the same order as f l(t). Similarly, the
pressure should only deviate from the static pressure that balances
the interfacial tension of a spherical droplet by an amount, δp(x, t),
that is of the same order as f l(t),

p(x, t) =
2γ
R
+ δp(x, t). (A25)

The kinematic boundary condition [Eq. (A6)] yields

ḟ l(t)Pl(cos θ) = vr at r = R. (A26)

Subscripts r and θ denote the components of the velocity. The force-
balance boundary conditions [Eqs. (A8) and (A9)] lead to

∂vr

∂θ
+ r

∂vθ

∂r
− vθ = 0 at r = R, (A27)

− δp + 2η
∂vr

∂r
= −

γ
R2 (l − 1)(l + 2) fl(t)Pl(cos θ) at r = R. (A28)

The velocity and pressure fields for an axisymmetric problem
can be expressed in terms of the stream function Ψ(r, θ, t). For the
interior problem considered here for droplets, the stream function
has the form48

Ψ = [A(t)rl+3
+ B(t)rl+1

]Ql(cos θ), (A29)

where A(t) and B(t) are coefficients to be determined by the bound-
ary conditions and Ql(x) are related to Legendre polynomials Pl(x)
via

Ql(x) =
x

∫

−1

dx′Pl(x
′
) =

Pl+1(x) − Pl−1(x)
2l + 1

. (A30)

The components of the velocity and the pressure are given by

vr = −
1
r2

∂Ψ
∂ cos θ

= −[A(t)rl+1
+ B(t)rl−1

]Pl(cos θ), (A31)

vθ = −
1

r sin θ
∂Ψ
∂r

= −[A(t)(l + 3)rl+1
+ B(t)(l + 1)rl−1

]
Ql(cos θ)

sin θ
, (A32)

δp
2η
= −A(t)(2 +

3
l
)rlPl(cos θ). (A33)

Substituting Eqs. (A31) and (A32) into Eq. (A27) leads to

l(l + 2)Ā(t) + (l − 1)(l + 1)B̄(t) = 0, (A34)

where Ā(t) = A(t)Rl and B̄(t) = B(t)Rl−2. Similarly, using
Eqs. (A31) and (A33) in Eq. (A28) leads to

l2
− l − 3

l
Ā(t) + (l − 1)B̄(t) =

γ
2ηR2 (l − 1)(l + 2) fl(t). (A35)

The results for Ā(t) and B̄(t) are

Ā(t) = −
l(l − 1)(l + 1)(l + 2)

2(2l2 + 4l + 3)
γ fl(t)
ηR2 , (A36a)

B̄(t) =
l2
(l + 2)2

2(2l2 + 4l + 3)
γ fl(t)
ηR2 . (A36b)

When these last results are inserted into Eq. (A31), we find that

vr(R, θ, t) = −λD
l fl(t)Pl(cos θ), (A37)

where λD
l is given by Eq. (A15). Substituting Eq. (A37) into Eq. (A26)

yields
ḟ l(t) + λD

l fl(t) = 0. (A38)

The solution of this last equation is the exponential function in
Eq. (A14).

In preparation for the generalization to viscoelastic fluids, let
us solve the problem again, now using Laplace transforms. The gov-
erning equations (A1) and (A4b) and the force-balance boundary
conditions [Eqs. (A27) and (A28)] have the same form in Laplace
space as they have in the time domain, as does the general form of
the stream function [Eq. (A29)]. Therefore, Eqs. (A34) and (A35)
take the same form in Laplace space,

l(l + 2) ˆ̄A(s) + (l − 1)(l + 1) ˆ̄B(s) = 0, (A39)
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l2
− l − 3

l
ˆ̄A(s) + (l − 1) ˆ̄B(s) =

γ
2ηR2 (l − 1)(l + 2)f̂l(s). (A40)

The kinematic boundary condition [Eq. (A26)] now takes the form

[sf̂l(s) − fl(0)]Pl(cos θ) = v̂r at r = R. (A41a)

Using Eq. (A31) in the preceding equation, we find that

sf̂l(s) = fl(0) − [ ˆ̄A(s) + ˆ̄B(s)]R. (A41b)

Solving Eqs. (A39), (A40), and (A41b), we find that

ˆ̄A(s) = −
γ

R2 l(l − 1)(l + 1)(l + 2) fl(0)
2ηs(2l2 + 4l + 3) + γ

R l(l + 2)(2l + 1)
, (A42a)

ˆ̄B(s) =
γ

R2 l2
(l + 2)2 fl(0)

2sη(2l2 + 4l + 3) + γ
R l(l + 2)(2l + 1)

, (A42b)

f̂l(s) =
2η(2l2

+ 4l + 3) fl(0)
2sη(2l2 + 4l + 3) + γ

R l(l + 2)(2l + 1)
=

fl(0)
s + λD

l
. (A42c)

The inverse Laplace transform of the foregoing f̂l(s) is given by
Eq. (A14).

For the exterior problem appropriate for bubbles, the stream
function is48

Ψ = [C(t)r−l+2
+D(t)r−l

]Ql(cos θ). (A43)

Analogous to Eqs. (A31)–(A33), we find the velocity and pressure
to be

vr = −[C(t)r−l
+D(t)r−l−2

]Pl(cos θ), (A44)

vθ = [(l − 2)C(t)r−l
+ lD(t)r−l−2

]
Ql(cos θ)

sin θ
, (A45)

p
2η
= −

γ
ηR
−

2l − 1
l + 1

C(t)r−l−1Pl(cos θ). (A46)

The force-balance boundary conditions [Eqs. (A8) and (A10),
appropriate for bubbles] lead to

∂vr

∂θ
+ r

∂vθ

∂r
− vθ = 0 at r = R, (A47)

− p + 2η
∂vr

∂r
=

2γ
R
+

γ
R2 (l − 1)(l + 2) f (t)Pl(cos θ) at r = R.

(A48)
Substituting Eqs. (A44)–(A46) into Eqs. (A47) and (A48) and
expressing the results in Laplace space, we find that

(l − 1)(l + 1) ˆ̄C(s) + l(l + 2) ˆ̄D(s) = 0, (A49)

l2
+ 3l − 1
l + 1

ˆ̄C(s) + (l + 2) ˆ̄D(s) =
γ

2ηR2 (l − 1)(l + 2)f̂l(s), (A50)

where C̄(t) = C(t)R−l−1 and D̄(t) = D(t)R−l−3. Using Eq. (A44) in
Eq. (A41b), the kinematic boundary condition in Laplace space, we
obtain

sf̂l(s) = fl(0) − [ ˆ̄C(s) + ˆ̄D(s)]R. (A51)

Solving the last three equations, we find that

ˆ̄C(s) =
γ

R2 l(l − 1)(l + 1)(l + 2) fl(0)
2ηs(2l2 + 1) + γ

R(l − 1)(l + 1)(2l + 1)
, (A52a)

ˆ̄D(s) = −
γ

R2 (l − 1)2
(l + 1)2 fl(0)

2ηs(2l2 + 1) + γ
R(l − 1)(l + 1)(2l + 1)

, (A52b)

f̂l(s) =
2η(2l2

+ 1) fl(0)
2ηs(2l2 + 1) + γ

R(l − 1)(l + 1)(2l + 1)
=

fl(0)
s + λB

l
. (A52c)

This f̂l(s) corresponds to an exponential function of time, with the
recovery rate λB

l given by Eq. (A17).

APPENDIX B: SOLUTION WHEN BOTH ηI AND ηII
ARE FINITE

When both ηI and ηII are finite, we need to consider both the
interior and exterior fluid dynamics. The boundary conditions on
the interface between the droplet and bulk phases consist of the
continuity of the velocity field,

vII ⋅ n = vI ⋅ n, (B1a)

vII ⋅ t = vI ⋅ t, (B1b)

the kinematic equation,

∂S
∂t
+ vII ⋅ ∇S = 0, (B2)

and the force-balance equations,

n ⋅ (ηIIε̃II − ηIε̃I) ⋅ t = 0. (B3a)

n ⋅ (τ̃II − τ̃I) ⋅ n = −γ∇ ⋅ n. (B3b)

The interior velocity and pressure fields are given by
Eqs. (A31)–(A33); the exterior counterparts are given by
Eqs. (A44)–(A46), except that the term −γ/ηR on the right-hand
side of Eq. (A46) should be removed since the effect of this
term is already accounted in Eq. (A33) for the interior pressure.
Equations (B1a) and (B1b) lead to

ˆ̄A(s) + ˆ̄B(s) = ˆ̄C(s) + ˆ̄D(s), (B4a)

−(l + 3) ˆ̄A(s) − (l + 1) ˆ̄B(s) = (l − 2) ˆ̄C(s) + l ˆ̄D(s). (B4b)

Equation (B3a) leads to
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ηII[l(l + 2) ˆ̄A(s) + (l − 1)(l + 1) ˆ̄B(s)]

= ηI[(l − 1)(l + 1) ˆ̄C(s) + l(l + 2) ˆ̄D(s)]. (B4c)

Equation (B3b) leads to

ηII[
l2
− l − 3

l
ˆ̄A(s) + (l − 1) ˆ̄B(s)]

+ ηI[
l2
+ 3l − 1
l + 1

ˆ̄C(s) + (l + 2) ˆ̄D(s)] =
γ

2R2 (l − 1)(l + 2)f̂ (s).

(B4d)

Finally, Eq. (B2) leads to

sf̂l(s) = fl(0) − [ ˆ̄A(s) + ˆ̄B(s)]R, (B4e)

which is the same as Eq. (A41b). Solving Eqs. (B4a)–(B4e), we find
that

f̂l(s) =
fl(0)
s + λl

, (B5)

where the recovery rate λl is given by Eq. (A20a).

APPENDIX C: SHAPE RECOVERY DYNAMICS
OF MAXWELL DROPLETS

For the Maxwell model of linear viscoelasticity, substituting
Ĝ(s) of Eq. (9) into Eq. (13) would have yielded

f̂l(s) =
fl(0)

s + λD
l (1 + τsrs)

=
fl(0)/(1 + τsrλD

l )

s + λD
l /(1 + τsrλD

l )
. (C1)

The inverse Laplace transform is

fl(t) =
fl(0)

1 + τsrλD
l

e−λD
l t/(1+τsrλD

l ), (C2)

which is an exponential function of time. The recovery rate, λD
l /(1

+ τsrλD
l ), is less than the counterpart for a Newtonian fluid (when

τsr
= 0) by a factor of 1 + τsrλD

l . The apparent zero-time deforma-
tion, fl(0)/(1 + τsrλD

l ), is also less than the nominal value, f l(0), by
the same factor, as required by the conservation of area under the
curve [see Eq. (16)]. Hence, evidently, there is a missing amplitude
of fl(0) − fl(0)/(1 + τsrλD

l ) = [τ
srλD

l /(1 + τsrλD
l )] fl(0).

To find the origin of the missing amplitude, we need to take a
step back from Eq. (A42c), which yields Eq. (13) when η is replaced
by Ĝ(s), and work with ḟ l(t) instead of f l(t). Using Eq. (A41b)
and Eqs. (A42a) and (A42b) with η replaced by Ĝ(s) of Eq. (9), the
Laplace transform of ḟ l(t) is

sf̂l(s) − fl(0) = −[ ˆ̄A(s) + ˆ̄B(s)]R

= −
λD

l fl(0)
s

1+τsrs + λD
l

= −
τsrλD

l fl(0)
1 + τsrλD

l
−

fl(0)
1 + τsrλD

l

λD
l /(1 + τsrλD

l )

s + λD
l /(1 + τsrλD

l )
. (C3)

The inverse Laplace transform is

ḟ l(t) = −
τsrλD

l fl(0)
1 + τsrλD

l
δ(t) −

fl(0)
1 + τsrλD

l

λD
l

1 + τsrλD
l

e−λD
l t/(1+τsrλD

l ). (C4)

Upon integrating Eq. (C4) over time, the first term, a delta function,
leads to an instantaneous drop in the amplitude at t = 0, which is
exactly the missing amplitude; the second term yields the result in
Eq. (C2), which is applicable for t > 0.

In general, the behavior of f l(t) near t = 0 is dictated by f̂l(s)
at s→∞. If Ĝ(∞) is a nonzero finite value, then the asymptote of
f̂l(s) given by Eq. (13) is f l(0)/s, which upon inverse Laplace trans-
form yields the correct value, f l(0), for f l(t) at t = 0. However, this
analysis breaks down if Ĝ(∞) = 0, as is the case for the Maxwell
and Burgers models, leading to a missing amplitude. Note that the
0 value of Ĝ(∞) violates an assumption used for deriving Eq. (13),
which is that Ĝ(s) is much greater than the exterior viscosity. The
full solution, given by Eq. (19a), that accounts for the exterior vis-
cosity does not suffer a missing amplitude. When ĝII(∞) = 0 as in
the Maxwell and Burgers models, Eq. (19c) still yields a finite hl(∞)

and therefore Eq. (19a) gives the correct asymptote f l(0)/s for f̂l(s).

APPENDIX D: SHAPE RECOVERY DYNAMICS
OF BURGERS DROPLETS

For viscoelastic droplets modeled by the Burgers model, substi-
tuting Ĝ(s) of Eq. (11) into Eq. (13) yields

f̂l(s) =
(

η0
1+τsr

0 s +
η1

1+τsr
1 s) fl(0)

s( η0
1+τsr

0 s +
η1

1+τsr
1 s) + ηzλD

l

. (D1)

The Burgers model has Ĝ(∞) = 0, and correspondingly, there
is also a missing amplitude, amounting to ηzτsr

0 τsr
1 λD

l fl(0)/(η0τsr
1

+ η1τsr
0 + ηzτsr

0 τsr
1 λD

l ), at t = 0. For t > 0, The inverse Laplace trans-
form of Eq. (D1) gives a bi-exponential f l(t) [see Eq. (25a)]. The
two recovery rates and the corresponding amplitudes are

λD
l± =

1
2(Γ+ + τsr

0 τsr
1 λD

l )
[(τsr

0 + τsr
1 )λ

D
l + 1 ±

√
Δ], (D2)

Al± =
Γ+

2(Γ+ + τsr
0 τsr

1 λD
l )
[1 ±

(Γ−/Γ+)(τsr
1 − τsr

0 )λ
D
l − 1

√
Δ

], (D3)

where

Δ = [(τsr
1 − τsr

0 )λ
D
l + 1]

2
− 4(η0/ηz)(τsr

1 − τsr
0 )λ

D
l , (D4)

Γ± = (η0/ηz)τsr
1 ± (η1/ηz)τsr

0 . (D5)

Note that

Al+ + Al− =
Γ+

(Γ+ + τsr
0 τsr

1 λD
l )

, (D6)

which is less than 1 due to the missing amplitude at t = 0.
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FIG. 6. Effect of initial shape on recovery dynamics. (a) Representation of an ellipse (with major and minor semi-axes at 1.4 and 0.87) by the sum of the first, second (P2),
and fourth order (P4) Legendre polynomials. The amplitudes of P2 and P4 are 0.305 and 0.073, respectively. (b) Comparison of the deformation decay curves for P2, P4,
and their combination (“P2 + P4”) that represents the ellipse in (a). The dotted curve labeled “exponential” displays the P2 component in the P2 + P4 curve. Inset: difference
between the P2 + P4 curve and the P2 component at short times. The ordinate is in linear scale, in contrast to the log scale in the main figure.

APPENDIX E: SHAPE RECOVERY DYNAMICS
OF IDEAL-FLUID BUBBLES IN A VISCOELASTIC
MEDIUM

The results for viscoelastic droplets in an ideal fluid also apply
to the shape recovery dynamics of ideal-fluid bubbles in a viscoelas-
tic medium, after replacing λD

l with λB
l . The expressions for these two

relaxation rates are given in Eqs. (14) and (18), respectively.

APPENDIX F: EFFECT OF INITIAL DEFORMED SHAPE

Both Fig. 2 and Eqs. (23a) and (23b) make it clear that the pre-
cise shape of the initial deformation affects the recovery dynamics. In
particular, an ellipsoid can be approximated well by a combination
of the second- and fourth-order Legendre polynomials, as illustrated
in Fig. 6(a) for an ellipsoid with a half-length 1.4R and a half-width
of 0.87R. In this case, the P2 and P4 amplitudes determined by repre-
senting the elliptical cross section by a sum of Legendre polynomials
are 0.305 and 0.073, respectively. Recovery dynamics from such an
initial ellipsoidal shape can be described by a corresponding linear
combination of f2(t) and f4(t), leading to a bi-exponential decay
[Fig. 6(b)].
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