
Nature  |  Vol 598  |  14 October 2021  |  293

Article

Superior robustness of anomalous 
non-reciprocal topological edge states

Zhe Zhang1, Pierre Delplace2 & Romain Fleury1 ✉

Robustness against disorder and defects is a pivotal advantage of topological systems1, 
manifested by the absence of electronic backscattering in the quantum-Hall2 and 
spin-Hall effects3, and by unidirectional waveguiding in their classical analogues4,5. 
Two-dimensional (2D) topological insulators4–13, in particular, provide unprecedented 
opportunities in a variety of fields owing to their compact planar geometries, which are 
compatible with the fabrication technologies used in modern electronics and photonics. 
Among all 2D topological phases, Chern insulators14–25 are currently the most reliable 
designs owing to the genuine backscattering immunity of their non-reciprocal edge 
modes, brought via time-reversal symmetry breaking. Yet such resistance to fabrication 
tolerances is limited to fluctuations of the same order of magnitude as their bandgap, 
limiting their resilience to small perturbations only. Here we investigate the robustness 
problem in a system where edge transmission can survive disorder levels with strengths 
arbitrarily larger than the bandgap—an anomalous non-reciprocal topological network. 
We explore the general conditions needed to obtain such an unusual effect in systems 
made of unitary three-port non-reciprocal scatterers connected by phase links, and 
establish the superior robustness of anomalous edge transmission modes over Chern 
ones to phase-link disorder of arbitrarily large values. We confirm experimentally the 
exceptional resilience of the anomalous phase, and demonstrate its operation in various 
arbitrarily shaped disordered multi-port prototypes. Our results pave the way to 
efficient, arbitrary planar energy transport on 2D substrates for wave devices with full 
protection against large fabrication flaws or imperfections.

Among the unique and counter-intuitive attributes of topological sys-
tems, topological robustness1 against disorder and flaws is undoubtedly 
one of the most remarkable. This property shows substantial applica-
tion potential by relaxing the tight constraints imparted by fabrication 
tolerances, and provides a way to route energy and information in a wide 
variety of 2D platforms4–27, ranging from quantum electronics23 to clas-
sical photonic4,5 and phononic devices25–27. Topological edge states were 
found in systems with broken time-reversal symmetry, such as Chern 
insulators14,28, and then extended to time-reversal invariant scenarios, 
including the Z2 (ref. 3) and other symmetry-protected schemes29, 
simultaneously stimulating study of their classical analogues6,10,17. So 
far, Chern topological edge modes14–25 undeniably represent the most 
reliable solution for point-to-point energy guiding, as they provide truly 
unidirectional, backscattering-immune wave transport at their bounda-
ries. They have been reported in non-reciprocal artificial wave media, 
such as externally biased magneto-photonic crystals16 or mechanical 
systems13 with moving17,19,20,25 or time-dependent8,24 elements. Albeit 
protected from the presence of local defects by the Chern number, 
the edge modes cannot survive the presence of distributed disorder of 
sufficiently large magnitude1,4,5,14, especially when the average ampli-
tude of frequency fluctuations gets larger than the bandgap size. This 
behaviour inherently confines the topological protection of Chern 
phases to small distributed disorder levels.

Here we demonstrate an anomalous non-reciprocal topological 
phase in which edge transmission is quantitatively stronger than for 
the Chern phase, surviving parametric fluctuations arbitrarily larger 
than the bandgap size. We find such anomalous robustness in unitary 
scattering networks made of interconnected non-reciprocal resonant 
scatterers coupled by non-directed phase links. We compare quanti-
tatively the robustness of transmission through the anomalous and 
Chern channels to phase-link and scattering disorder, by statistical 
averaging over many disorder realizations. Our experiments at micro-
wave frequencies confirm the superior resilience of the anomalous 
transmission channel over the Chern one. We apply our findings to the 
design of ideally robust networks with arbitrarily located ports and 
irregular shapes, including a perfect six-port circulator.

A non-reciprocal scattering network
Consider the non-reciprocal unitary scattering network of Fig. 1a, 
which consists of general three-port non-reciprocal scatterers con-
nected by bidirectional links in a honeycomb periodic structure. The 
scattering elements exhibit threefold (C3) rotational symmetry, while 
the links impart a phase delay of φ, as represented in the zoomed-in 
view of the unit cell (Fig. 1b). The scattering process is described 
by a unitary 3 × 3 asymmetric scattering matrix S0 whose general 
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parametrization involves only two angles, ξ and η, in the interval (−π/2, 
π/2) (see Supplementary Information and Extended Data Fig. 1). The 
wave propagation in the infinite network can be described by a Bloch 
eigenproblem, which considers the scattering at the nodes, described 

by a 6 × 6 unitary matrix S(k), and also involves the bidirectional phase 
delay φ induced by the links:
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Fig. 1 | Topological non-reciprocal wave network 
and its bulk band structure. a, We consider a 
unitary scattering network made of three-port 
non-reciprocal elements, described by asymmetric 
unitary scattering matrices. b, Unit cell of the 
honeycomb lattice, highlighting the signals entering 
the non-reciprocal elements, their 120° rotational 
symmetry, and the reciprocal phase delay φ 
imparted by the links. The network is described by a 
unitary unit-cell scattering operator S(k) defining a 
Floquet unitary mapping with quasi-energy φ. c, 
Evolution of the Floquet band structure on 
increasing the level of reflection of the 
non-reciprocal elements from |R| = 0.16 (leftmost 
panel, with angular parameter values 
ξ = −η = 2.5π/12) to |R| = 0.51 (rightmost panel, 
ξ = −η = 3.5π/12). While the type 1 bandgaps do not 
change much, at |R| = 1/3 (centre panel, ξ = −η = π/4), 
the type 2 bandgap closes, symptomatic of a 
topological phase transition.
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Fig. 2 | Anomalous and Chern topological phases in non-reciprocal wave  
networks. a, Band structure of a supercell with periodic boundary conditions 
along x and unitary reflection at the top and bottom. The parameters are the 
same as in Fig. 1c. The low-reflection case is the anomalous topological phase  
(an anomalous Floquet insulator, AFI), which features an edge mode in every qua-
si-energy gap. Conversely, the high-reflection case supports edge modes only in-
side the type 1 bandgaps, consistent with the Chern insulator (CI) phase. Edge 
modes localized to the top and bottom are shown in red and blue, respectively.  
The phase transition is depicted in the middle panel. b, Supercell with examples 
of the profiles of Chern and anomalous topological edge modes, corresponding 

to the markers in a. c, Topological phase diagrams in the (ξ, η) plane. The blue-
shaded areas correspond to the anomalous phase, and the red-shaded areas to 
the Chern phase. Left, comparison with the iso-reflection contours of the indi-
vidual scatterers, demonstrating the coincidence between the topological phase 
transition and the |R| = 1/3 contour. Right, comparison with the non-reciprocal 
isolation level of the individual scatterers |S21/S12|. On the thick grey diagonals in 
panel c, the scatterers are reciprocal and the type 1 bandgaps close. At the centre 
red point, all bandgaps close. The two green points represents the perfect circu-
lator cases, either with right-handed circulation (upper-left point) or left-handed  
circulation (lower-right point).



Nature  |  Vol 598  |  14 October 2021  |  295

So far, topological unitary scattering wave networks6,30–34 have 
only been implemented in reciprocal systems7,35–37 exploiting two 
time-reversed subspaces that are never genuinely decoupled. On the 
contrary, our non-reciprocal scattering network is formally analogous 
to a rigorously oriented kagome graph (see Supplementary Informa-
tion), described by a unitary matrix33 S(k), which can be mapped38 onto 
the Floquet eigenproblem of a periodically driven lattice39–45, with the 
angle variable φ taking the role of the quasi-energy. Therefore, we can 
truly benefit from both the advantages of non-reciprocity46, and the 
potentially richer topological physics of Floquet systems44.

Chern and anomalous phases
We used the model of equation (1) to explore the parameters influencing 
potential topological phase transitions in the network. We found the 
individual reflection coefficient |R| of the non-reciprocal scatterers to be 
the main ‘control knob’ for the closing of the quasi-energy bandgaps. The 
evolution of the bulk band structure with increasing values of |R| is shown 
in Fig. 1c. Our semi-analytical model shows a systematic closing of two of 
the bandgaps at |R| = 1/3 (denoted type 2, in red) while the others (type 
1, in blue) do not change much. This suggests that topological phase 
transitions may be controlled by the individual scatterer reflectance.

To confirm this intuition, we probe the existence of edge modes for each 
of these situations by numerically calculating the band structure of a ribbon 
terminated by full-reflection boundary conditions at top and bottom. As 
depicted in Fig. 2a, both the low- and high-reflection cases (respectively the 
leftmost and rightmost panels) exhibit chiral edge modes located at the 
walls either at the top (red line) or bottom (blue line), with profiles repre-
sented in Fig. 2b. The main difference is that the low-reflection case has edge 
modes in every quasi-energy bandgap, whereas at high reflection, they are 

found only in bandgaps of type 1. This low-|R| behaviour is the hallmark of 
anomalous Floquet insulators33,35,42,45 (AFI), which possess topological edge 
states despite the Chern number of all surrounding bands being zero. In 
contrast, the high-reflection case corresponds to the Chern insulator (CI). 
We map out in Fig. 2c the complete topological phase diagram for every 
possible realization of the scattering matrix S0, represented by the angle 
parameters ξ and η. The CI and AFI regimes are shaded in red and blue, 
respectively. To connect this phase diagram with physically meaningful 
quantities, we plot it twice in the same parameter space, together with 
contour lines depicting the reflectance (Fig. 2c, left) and non-reciprocal 
isolation (Fig. 2c, right). Remarkably, the phase diagram unambiguously 
demonstrates the coincidence between the 1/3 reflection contours with 
the topological phase transition. Its centre corresponds to a semi-metallic 
phase, with all bandgaps closed, whereas the green point is the perfect 
circulator case with |R| = 0 and infinite isolation, for which the bulk bands 
are flat and the edge modes are dispersionless (see Extended Data Fig. 2). 
Such a critical condition corresponds to a phase rotation symmetric point33, 
which can only occur in the anomalous (or trivial) phases.

Robustness comparison
From the band structures of Fig. 2a, we can already intuitively expect the AFI 
edge transmission to be much more robust than the CI one to quasi-energy 
fluctuations, even those much larger than the bandgap size. Indeed, the AFI 
phase occurs in the ballistic regime, in which reflections at nodes are low, 
yielding relatively flat (slow) bulk bands and large bandgaps. An abrupt 
jump of φ within the lattice is very likely to land in a bandgap, which neces-
sarily carries an edge mode. Conversely, in the CI phase, the probability of 
an edge mode being destroyed by fluctuations larger than the bandgap 
is much higher, owing to the increased width of the bulk bands33 and the 
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Fig. 3 | Superior robustness of anomalous non-reciprocal topological edge 
transmission. a, Numerical simulation of the steady-state energy propagation 
in finite non-reciprocal networks with different phase-link distributions. The sig-
nal is incident from port 1 (see top panel for positions of ports 1–3). The parame-
ters used to generate the anomalous (centre panel) and Chern (bottom panel) 
phases are the same as in Figs. 1 and 2. Left column (network 1, N1), the phase-link 
distribution is uniform, with φ = π/8, and the energy can be transmitted to port 2 
in both the anomalous and Chern phases. Right column (network 2, N2), we intro-
duce an interface and abruptly change the value of φ to π/2 for the bottom part of 
the network. Only the anomalous phase is robust to this change, and keeps trans-
mitting to port 2. In the Chern phase, the edge mode travels along the interface 
and reaches port 3. b, Experimental validation using microwaves in a network 

made of ferrite circulators. The colourmap represents the measured field ampli-
tude distribution, where brighter colours correspond to a large field amplitude, 
and darker colours a low field amplitude. c, Top panel, transmission between 
ports 1 and 2 in a disordered system with randomly generated phase delays. The 
phases are uniformly drawn in an interval [−δφ/2, δφ/2] around φ = π/8. Solid lines 
represent the value of transmission averaged over 1,000 realizations of disorder, 
and the dashed lines are the first and last quartiles (Q1 and Q3). The anomalous 
edge transmission channel can survive disorder strengths up to a full 2π rota-
tion. Bottom panel, same but for the case of scattering matrix disorder within a 
given topological phase (φ = π/8). Transmission in the anomalous channel is also 
more resilient to this disorder type. See Supplementary Information for particu-
lar field maps and other Chern cases.
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occurrence of trivial bandgaps. As an example of such a situation, let us 
consider the transport properties of edge modes in a finite non-reciprocal 
network with an abrupt quasi-energy jump in the middle (Fig. 3a, right). As 
a reference, we also include the case of a uniform sample (Fig. 3a, left). The 
two hexagonal-shaped networks have three input/output ports, as shown 
in the top row of Fig. 3a. Network 1 (N1) consists of uniformly distributed 
phase links φ = π/8, while for network 2 (N2), a quasi-energy jump is intro-
duced by changing all phase links in the bottom part to π/2. With numerical 
simulations, we then compare the propagation of the anomalous and Chern 
edge modes, when exciting from port 1. The anomalous phase finds itself 
in topological bandgaps at both φ = π/8 and π/2 (Fig. 2a, left), whereas the 
Chern phase possesses a nontrivial bandgap only at φ = π/8 (Fig. 2a, right). As 
shown in Fig. 3a, the anomalous edge mode crosses the interface completely 
unperturbed. In stark contrast, the Chern edge mode is unable to transmit to 
port 2 in the presence of the interface, and all the energy is guided to port 3.

We validate experimentally this fundamental distinction between the 
anomalous and Chern phases by designing a non-reciprocal network 
operating at microwave frequencies. The scatterers are ferrite circula-
tors connected with microstrip lines. Our experimental design, which 
takes into account both the frequency dispersion of the scatterers and 
delay lines, finds itself in the anomalous and Chern phases at 4.9 GHz 
and 3.6 GHz, respectively. Modification of the phase delays of the links 
is induced by changing the total lengths of the microstrip lines with ser-
pentine paths. As shown in Fig. 3b, the measured field amplitude profiles 
confirm the resilience of the anomalous edge mode to the phase jump, 
in perfect agreement with the numerical predictions. Further evidence 
is provided by the measured changes in scattering parameters and field 
maps upon exciting ports 2 and 3 (Extended Data Figs. 3, 4d, e, 5 and 6).

The resilience of the anomalous edge transport in these interface 
scenarios, involving two periodic networks, raises the question of its 
generalization to non-periodic quasi-energy perturbations. To answer 
quantitatively, we consider the same hexagonal network as in the left 
of Fig. 3a, and impose site-dependent disorder on the phase links, with 

fluctuations of strength δφ randomly drawn with uniform probability in 
the interval π/8 + [−δφ/2, δφ/2]. We then numerically extract the transmis-
sion from ports 1 to 2 for 1,000 realizations of disorder, and plot its mag-
nitude versus δφ in the top panel of Fig. 3c. The solid lines represent the 
ensemble average, and the dashed lines are the first and last quartiles (Q1 
and Q3). In the clean limit (δφ = 0), both AFI and CI phases show high trans-
mission, since the edge states exist in both cases and are unperturbed. We 
now turn on the disorder, up to the maximal possible strength, which cor-
responds to randomly drawn values in the entire 2π quasi-energy range, 
much larger than the bandgap size of both AFI and CI phases (roughly π/4). 
Upon increasing δφ, the average transmission in the Chern case quickly 
drops to low values. Remarkably, the AFI transmission shows a markedly 
different behaviour, remaining near 90% even when δφ reaches 2π (fully 
random case). Note that this exceptional robustness does not require the 
critical condition |R| = 0 to be reached, since the figure is generated for 
|R| = 16%. Such statistically stable transmission constitutes solid evidence 
of the superiority of anomalous non-reciprocal topological networks, 
which survive phase disorder levels arbitrarily larger than their bandgap 
size. We also consider the other possible source of disorder, namely the 
scattering matrices of the nodes, which we pick randomly within the Chern 
or anomalous phases, fixing φ = π/8. The transmission statistics are shown 
in the bottom panel of Fig. 3c. We see that the anomalous transmission can 
tolerate 100% disorder in the choice of scattering matrices, whereas the 
Chern one falls after 25%. The reason for this surprising behaviour is that 
in a disordered Chern phase (random |R| > 1/3), transmission is mediated 
by both bulk and edge modes, but is blocked by trivial gaps, whereas in 
the anomalous case (random |R| < 1/3), those trivial gaps are absent (see 
Supplementary Fig. 8). This shows that the superior robustness of the 
anomalous phase is not restricted to phase-link disorder, but also to the 
other possible source of disorder: fluctuations of the scattering matrices.

We validate the resilience of the anomalous transmission by performing 
experiments on irregularly shaped disordered networks. First, we dem-
onstrate the use of anomalous phases in a practical scenario, where an 
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Fig. 4 | Experiments on irregularly shaped and disordered networks. a, We 
consider a network shaped like the map of Switzerland, and placed six ports on 
the external boundary at six city locations. b, Photograph of the associated 
prototype, showing ports 1–6. c, Experimental field maps upon sequential 
excitation of this six-port system. The network behaves as a six-port circulator 
despite its irregular shape, the random port locations and the high number of 

ports. d, Experimental validation of robust anomalous transmission in a 
two-port system with randomly disordered phase links under the largest 
possible disorder strength (δφ = 2π). Top, photograph of one of our prototypes. 
Bottom, measured field maps in the AFI and CI cases. The AFI edge mode 
reaches port 2, while the Chern one is blocked. The other four results are shown 
in Extended Data Fig. 9.
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anomalous non-reciprocal topological network is used to create a robust 
six-port circulator with arbitrary shape and port locations. The prototype 
is shaped like Switzerland, and we place six ports at the locations of six 
boundary cities (Fig. 4a). We aim at connecting each city to its clockwise 
closest neighbour, with strong non-reciprocal isolation to any other city. 
A picture of the fabricated prototype is shown in Fig. 4b. We sequentially 
excite each input of this six-port non-reciprocal network, and report the 
measured experimental field maps in the AFI band (Fig. 4c). Despite the 
presence of finite fabrication tolerances, such as the inaccuracy in the 
surface mounting process of the elements, and shrinking effects due to 
the employed reflow oven method, and regardless of the tortuous shape 
of the border, we observe the expected clockwise non-reciprocal circula-
tion of the energy, consistent with simulations (Extended Data Fig. 7c). 
Such robustness is also observed in longer-range transmission tests 
between ports 1 and 4 (Extended Data Fig. 7a and b). Second, we provide 
an experimental validation of the superiority of the anomalous transmis-
sion in the presence of fully random phase delays. We built five different 
prototypes, one of them shown in Fig. 4d, with phase fluctuations in a 2π 
range implemented via serpentine links. The measured field maps in the 
AFI and CI phases show that only the anomalous channel survives such 
strong distributed perturbations, consistent with our statistical studies.

Conclusion and outlook
We envision that such anomalous wave platforms may be used in a new 
generation of multiple-input multiple-output devices, capable of reach-
ing an unprecedented level of robustness. Since individual reflection is 
the sole ‘control knob’ for the transition from the CI to the AFI phase, one 
could foresee very practical ways to reconfigure a domain wall between 
the two phases—for example, by simply changing the matching of the 
scatterers—without the need for flipping a magnetic field. Our table-top 
experiment, compatible with standard printed circuit board microwave 
technologies and off-the-shelf surface mount components, provides 
genuine non-reciprocity and large robustness, not only to local defects, 
but also to distributed imperfections. This opens an avenue to a new gen-
eration of wave systems47 that can provide reconfigurable point-to-point 
unidirectional energy guiding, with arbitrary control over the imparted 
phase delays and full immunity against backscattering. Finally, explora-
tion of the interplay between anomalous non-reciprocal networks and 
non-Hermitian perturbations (such as radiation losses occurring when 
coupling the edge mode to the free-space continuum) represents a prom-
ising future opportunity for topologically controlled radiation patterns 
in applications such as multiple beam antennas for 5G communications.
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Methods

Network topology
The Chern number does not fully account for the topology of unitary 
operators, such as the scattering matrix in equation (1). For unitary 
evolutions, the eigenvalue (quasi-energy) spectrum being defined on a 
circle, each (quasi-energy) band is now allowed to be connected to the 
next one by an edge state42. Because of the cyclicity of the spectrum, 
and because the Chern number of a band counts the number of edge 
states that merge into that band, it follows that the Chern numbers of 
each band vanish. Since all the gaps are filled by a chiral edge state, this 
regime is called anomalous.

Actually, the topology of unitaries, such as evolution operators or 
our scattering matrix, is better described by the homotopy group 
π3(U(N)) = ℤ, whose elements are the topological numbers

( )∫W V V= (24π ) tr d . (2)ψ ψ ψ
2 −1 −1 3

The power 3 must be understood in the language of differential forms, 
and the integral runs over a 3-torus, spanned by the quasi-momentum 
k = (kx, ky) and time t (over a time period T). Time is not explicit in scat-
tering networks. However, the cyclicity of the network makes possible 
a direct mapping with a Floquet (that is, T-periodic in time) evolution 
operator U(t,k), such that an interpolation parameter that formally 
plays the role of time can be introduced33. Finally, the operator Vψ 
is a periodized (in time) evolution operator. For Floquet systems, it  
reads as42.

k k kV t U t itH( , ) = ( , )exp( ( )) (3)ψ eff

with

k kH i T U t T( ) = / ln ( = , ), (4)ψeff −

where −ψ denotes the branch-cut of the logarithm. The procedure to 
define such an operator Vψ and thus the invariant Wψ for discrete-time 
evolutions (that is, when the dynamics is given by a succession of scat-
tering events and where time therefore does not appear explicitly), as 
in our model, was developed in a previous detailed study33 (in particular 
in sections V.A. and V.B.).

Importantly, the branch-cut ψ must be chosen in a spectral gap of U(T, 
k), or S(k) in our case. For this reason, Wψ is said to be a gap invariant, 
and indeed directly gives the number of chiral edge states in a given 
quasi-energy gap ψ. In contrast, Chern numbers are band invariants. 
They are inferred from the eigenstates of Heff(k) expressed in equa-
tion (4) and thus cannot capture the full unitary evolution. Finally, 
the details for the calculation of the invariants Wψ in oriented kagome 
graphs can be found in Delplace et al.33. Their values for the band struc-
tures of Fig. 1c are 1,1,1,1,1,1 in the anomalous case and 1,0,1,1,0,1 for 
the Chern case. For completeness, we provide the bandgap map of 
the network together with the values of the homotopy invariant in 
Supplementary Fig. 8.

Simulations
The simulation method of arbitrary finite non-reciprocal honey-
comb networks is based on the scattering matrix method. For a finite 
non-reciprocal network with Nr input/output ports, once we have the 
information of the scattering matrix of each non-reciprocal element 
and the distribution of the phase delays of the links, this method can 
provide (i) the scattering matrix SNr regarding the Nr port system, and 
(ii) the field map across the network knowing the excitations at the Nr 
ports (see details in Supplementary Information part II).

We exemplify this method by calculating the transmission between 
‘Geneva’ and ‘Davos’ through the Switzerland-shaped network (the 

network used in Fig. 4 of the main text) as a function of φ, and compare 
the transmission results with the ribbon band structures (see Sup-
plementary Fig. 2). We assume a uniform distribution for the phase 
delay φ and the same non-reciprocal elements (in anomalous or Chern 
phase) in the Switzerland-shaped network. When both anomalous and 
Chern phases fall in a topological bandgap, the transmission is near 
unity. When both phases fall in a bulk band, the transmission under-
goes sharp variations with φ, depending on the excited bulk mode. 
Only the Chern phase exhibits bands of blocked transmission, owing 
to the trivial bandgaps.

Design
The non-reciprocal networks are designed and fabricated on 0.508 mm 
thick Rogers RT/duroid 5880 substrate (dielectric loss tanδ = 0.0009 at 
10 GHz) with 35 μm thick copper on each side. Here, the non-reciprocal 
element is a surface mount microwave circulator (UIYSC9B55T6, UIY 
Co.), designed from a ‘Y’-shaped strip line on a printed circuit board48. 
The three ports are placed 120° apart from each other such that they are 
iso-spaced. The printed circuit board is sandwiched between two pieces 
of ferrite. Without magnetic fields, the ‘Y’-junction strip line supports 
two degenerate modes at ω0: right-handed and left-handed. To bias it, 
two magnets are fixed outside, providing the required magnetic field of 
50 kA m−1 = 628 Oe, normal to the printed circuit board and polarizing 
the ferrite, therefore lifting the initial degeneracy, with chiral modes 
at ω+ and ω−. In our experiment, we first measure an individual circula-
tor and retrieve its scattering matrix S0. The measured reflection of an 
individual circulator is shown in Extended Data Fig. 4a, and sets the 
frequency bands for CI and AFI operations.

Microstrip lines serve as phase delay links, with a width of 1.65 mm, 
corresponding to a standard 50 ohm characteristic impedance. The 
phase delay φ induced by a microstrip line with length L operating at 
frequency f is expressed as φ πLf ε c= (2 )/eff

1/2 , where εeff is the effective 
permittivity of the microstrip line, and can be determined by an empir-
ical formula49. Taking into account the frequency dispersion of the 
lines and circulators, we construct a more practical topological band-
gap map, shown in Extended Data Fig. 4b, as a function of the effective 
length of the microstrip lines L and the operating frequency f. With the 
aid of the map, we select L1 = 26.5 mm and L2 = 37.5 mm, which produce 
the conditions φ = π/8 and φ = π/2, respectively, in the simulations 
(Fig. 3a, Extended Data Figs. 5a, 6a). As exhibited in Extended Data 
Fig. 4c, the fabricated networks show the microstrip lines of L1 (blue 
dashed region) and L2 (red dashed region).

Measurements
The scattering parameters and field maps of three fabricated net-
works (network 1, network 2 and the Switzerland-shaped network) 
are measured by a vector network analyser (VNA; ZNB20, R&S), as 
demonstrated in Extended Data Fig. 8. For the scattering parameter 
measurements (Extended Data Fig. 4), as the networks are multiport, 
we connect the two ports of the VNA to two ports of the measured 
network, with the other network ports perfectly matched with 50-ohm 
terminations (no reflection). For the longer-range transport measure-
ment shown in Extended Data Fig. 7, we connect ports 1 and 4 to the 
two VNA ports, while letting ports 2 and 3 be open (full reflection) and 
perfectly matching ports 5 and 6. For the field map measurements, we 
connect the signal input port of the measured network to VNA port 1, 
while perfectly matching the other ports of the network. We manually 
probe the field at the middle of the microstrip lines by using a coaxial 
probe, which is connected to VNA port 2, as shown in Extended Data  
Fig. 8b.

Validation of the model assumptions
The model is the one of a unitary scattering network, namely, loss-
less scatterers connected by links imparting phase delays. Microstrip 
transmission lines are known to behave as pure phase delays in this 



frequency range, since the propagation losses over so short distances 
are negligible (we indeed measured them to be 0.0167 dB cm−1). We 
are therefore left with checking that Supplementary equations (1)–(3) 
(see details in Supplementary Information part II) are a good model 
for the scatterers.

We start by checking the validity of the assumptions behind Supple-
mentary equations (1)–(3), namely, that the scatterers have three-fold 
rotational symmetry (C3 symmetry), and that they are unitary. To do 
this, we measured the scattering matrix SM of our scatterers. We start 
with checking C3 symmetry, which implies that S12 = S23 = S31, as well as 
S11 = S22 = S33. Extended Data Fig. 3a plots the moduli and arguments 
of all these quantities in the considered frequency range. From these 
plots, we see that although some small deviations from C3 symmetry 
are observed in the reflection coefficients, they correspond to fluctua-
tions of reflection below −20 dB. We conclude that C3 symmetry is a 
valid assumption.

Next, we check unitarity. Extended Data Fig. 3b plots the eigenvalues 
of the measured scattering matrix versus frequency, in the complex 
plane. We can see that they are always very close to the unit circle, 
meaning that unitarity is also a very reasonable assumption. This is 
expected since we used a substrate with a small loss tangent of 10−4 and 
circulators with low insertion losses of 0.2 dB. Absorption is therefore 
not expected to alter the prediction of the unitary theory, but simply 
to add an exponential decay which shows itself especially for large 
samples. For example, while long range transport from Geneva to Davos 
in the circulator network of Fig. 4b is associated with 20 dB of signal 
attenuation, the presence of the edge mode predicted by the unitary 
theory is not affected (see Extended Data Fig. 7).

Now, we estimate the error that we make by modelling the real 
matrix SM with Supplementary equations (1)–(3). To do this, we find 
the C3-symmetric unitary scattering matrix SU that is the closest to 
SM. We get SU by rescaling the eigenvalues of SM to make them exactly 
unitary, keeping their arguments. We then determine the parameters 
ξ and η of SU, which we plot against frequency in Extended Data Fig. 3c. 
We then define an S-parameter error metric as

( )ε S S S S S S=
1
3

− + − + − . (5)M U M U M U
11 11

2
12 12

2
21 21

2
1/2







This quantity represents the error that we make by using Supplemen-
tary equations (1)–(3). It is plotted in Extended Data Fig. 3d. We see that 
this error is below 5% at all frequencies, which unambiguously validates 
the relevance of Supplementary equation (3).
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Extended Data Fig. 1 | Detailed schematic of the unit cell of the 
non-reciprocal network and signal labelling convention. We define three 
state vectors: |a >, |b >, and |c >, which represent scattering wave amplitudes 
propagating out, between and into the non-reciprocal elements, respectively. 
The total phase delay between two scatterers is φ.



Extended Data Fig. 2 | Floquet band structures at two special points of the 
topological phase diagram. a, b, Bulk band structures at the green (a) and 
centre (b) points of the phase diagram of Fig. 2c in the main text. The green 
point corresponds to a phase-rotation symmetric network of perfect matched 
circulators, thus in AFI phase. The red centre point represents a network of 
reciprocal resonant scatterers, with all bandgaps closed. c, d, Ribbon band 
structures corresponding to panel a and b, respectively. The perfect circulator 
network features flat bulk band with dispersionless edge modes regardless of 
the value of the quasi-energy φ, which can only occur in the AFI phase.
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Extended Data Fig. 3 | Experimental validation of the model assumptions. 
a, C3 symmetry holds when S12 = S23 = S31 as well as S11 = S22 = S33, which is very well 
satisfied in the considered frequency range. b, Eigenvalues of the measured 
scattering matrix, with nearly-unitary behaviour over the entire experimental 

bandwidth. c, ξ and η parameters used to approximate the real scattering 
matrix with a C3-symmetric unitary matrix. The red area is the Chern phase, 
and the blue area the anomalous one. d, Error in % made by approximating the 
real scattering matrix with equation (4) over the entire bandwidth.



Extended Data Fig. 4 | Experimental network design and measured 
scattering parameters. a, Measured reflection spectrum of an individual 
ferrite circulator. The blue-shaded area represents the bandwidth of the 
anomalous phase, corresponding to low reflection (|R| < −9.5 dB = 20∙log10(1/3)). 
By contrast, the red-shaded area shows the Chern phase with high reflection 
(|R| > −9.5 dB). Topological phase transitions happen at around 3.9 GHz and 7 
GHz. b, Topological bandgap map predicted from the individual scattering 
data, when varying the length of the microstrip connections and the operating 
frequency. The blue and red regions correspond to bandgaps with and without 

topological edge modes, respectively. The white regions represent bulk bands. 
c, Design details of the experimental networks probed in Fig. 3b of the main 
text. Network 1 (N1) has a uniform length distribution of microstrip lines with 
L = L1. For network 2 (N2), we introduce an interface and replace the bottom part 
with lines of different length L2. d, Measured amplitudes of the scattering 
parameters S21 (left), S31 (middle) and S22 (right) in the Chern-phase frequency 
band (green dashed box in panel b). e, Measured scattering parameters in the 
anomalous-phase frequency band (yellow dashed box in panel b).
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Extended Data Fig. 5 | Numerical and experimental field maps for 
excitation at port 2. a, Numerical predictions for excitation at port 2 for the 
same system as in Fig. 3 of the main text. While the anomalous phase supports 
transmission to port 3 regardless of the phase link distribution, the Chern 

phase possesses a trivial bandgap at φ = π/2, and reflects all the energy incident 
from port 2, see bottom right plot (the field distribution exhibits exponential 
decay). b, Corresponding experimental data.



Extended Data Fig. 6 | Numerical and experimental field maps for 
excitation at port 3. a, Numerical predictions for excitation at port 3 for the 
same system as in Fig. 3 of the main text. Both the anomalous and Chern phases 

fall in topological bandgap at φ = π/2, leading to transmission to port 1.  
b, Corresponding experimental data.
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Extended Data Fig. 7 | Additional field maps for the anomalous topological 
Switzerland-shaped network. We plot simulated (a) and experimental 
(b) transmissions from Geneva (port 1) to Davos (port 4) for the same network 

in Fig. 4 of the main text, leaving all other ports open. c, Numerical prediction 
corresponding to the experimental data shown in Fig. 4c of the main text.



Extended Data Fig. 8 | Experimental setups for scattering parameter and 
field distribution measurements. a, The setup consists of a vector network 
analyser (VNA) and three microwave non-reciprocal networks: the 

Switzerland-shaped network (left), N1 (middle), and N2 (right). b, Field map 
measurement with a coaxial probe for measuring fields on the microstrip lines.
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Extended Data Fig. 9 | Experimental validation of anomalous phase 
disorder robustness in four other prototypes with distinct disorder 
realizations. a, Pictures of the prototypes, having the same irregular shape but 

different phase delay distributions implemented by varying the geometry of 
the serpentine links. b, Measured field maps in the AFI phase. c, Measured field 
maps in the CI phase.
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