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MesoNet allows automated scaling and
segmentation of mouse mesoscale cortical
maps using machine learning

Dongsheng Xiao® ', Brandon J. Forys® 2, Matthieu P. Vanni'3 & Timothy H. Murphy @ '®

Understanding the basis of brain function requires knowledge of cortical operations over wide
spatial scales and the quantitative analysis of brain activity in well-defined brain regions.
Matching an anatomical atlas to brain functional data requires substantial labor and exper-
tise. Here, we developed an automated machine learning-based registration and segmenta-
tion approach for quantitative analysis of mouse mesoscale cortical images. A deep learning
model identifies nine cortical landmarks using only a single raw fluorescent image. Another
fully convolutional network was adapted to delimit brain boundaries. This anatomical align-
ment approach was extended by adding three functional alignment approaches that use
sensory maps or spatial-temporal activity motifs. We present this methodology as MesoNet,
a robust and user-friendly analysis pipeline using pre-trained models to segment brain
regions as defined in the Allen Mouse Brain Atlas. This Python-based toolbox can also be
combined with existing methods to facilitate high-throughput data analysis.
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ARTICLE

he cerebral cortex is an exquisitely patterned structure that

is organized into anatomically and functionally distinct

areas!=%. A full understanding of cortical activity data
requires a reliable approach to segment and classify the different
regions of interest based on known anatomical and functional
structures. Wide-field cortical calcium imaging in mice has
become increasingly popular as it allows efficient mapping of
cortical activity over large spatio-temporal scales by expressing
cell-type-specific genetically encoded calcium indicators (GECI)
such as GCaMP6°~14. Automatic registration and segmentation
of brain imaging data can greatly improve the speed and precision
of data analysis and do not require an expert anatomist. This is
particularly crucial when using high-throughput neuroimaging
approaches, such as automated mesoscale mouse imaging!>~18,
where the amount of data generated greatly exceeds the capacity
of manual segmentation.

Deep learning techniques have been used as powerful tools for
medical image analysis, including a wide range of applications
such as image classification and segmentation!®20, For instance,
in magnetic resonance imaging studies, deep neural networks
could precisely delineate brain regions?l:?2. Deep learning
models have also been used to predict fluorescence images of
diverse cell and tissue structures®3, as well as segment neurons
on images recorded through two-photon microscopy?4, but not
for wide-field images.

In this study, we developed two approaches for brain atlas
alignment that either scale the atlas to a brain or re-scale the brain
to fit a common atlas. For atlas-to-brain, we trained a deep learning
model?® to automatically identify cortical landmarks based on
single raw fluorescence wide-field images. The predicted landmarks
are then used to re-scale a reference atlas (adapted from Allen
Mouse Brain Atlas)?®27 to the brain. Another fully convolutional
network U-Net?32? was then used to delineate the brain bound-
aries automatically. For the brain-to-atlas approach, our system
automatically registers cortical images to a common atlas using
predicted cortical landmarks. This alignment approach, while
robust in the presence of anatomical landmarks, does not leverage
regional patterns within functional calcium imaging data that are
related to underlying structural connectivity?3%31. We suggest that
functional maps that represent specific spatio-temporal consensus
patterns of regional activation observed using activity sensors such
as GCAMP623031 or potentially hemodynamic activation3%33 can
also be used for atlas registration. As such, we extended this ana-
tomical alignment approach with three pipelines that can use
functional sensory maps or spontaneous cortical activity. Sponta-
neous cortical activity was assessed by recovering regional activity
motifs>* and using them to generate motif-based functional maps
(MBFMs). MBFMs can then be used to train a learning-based
framework, VoxelMorph3>, which nonlinearly deforms the refer-
ence atlas to register it to the brain image. An MBFM based U-Net
model (MBFM-U-Net) can directly predict positions of anatomical
brain regions from the spatial structure of MBFMs. We demon-
strate that this new open-source toolbox for automated brain
image analysis is robust to morphological variation and can process
multiple data sets in a relatively automated manner.

Results

Brain-to-atlas and atlas-to-brain scaling in MesoNet. We pre-
sent an open-source toolbox (https://osf.io/svztu) that will facil-
itate the analysis of mesoscale imaging data from wide-field
microscopy. Brain-to-atlas and atlas-to-brain registration and
scaling in MesoNet can help to account for differences between
animals and imaging conditions which, in turn, can facilitate
group data analysis or averaging functional maps between ani-
mals. For this work, we have chosen a flattened areal view of the

cortex (see Fig. 1). The brain-to-atlas MesoNet approach scales
each brain to a common reference atlas with predicted landmarks,
such as bregma, over raw mesoscale GCaMP6 images with similar
performance as human raters (see Fig. 2). Alternatively, the atlas-
to-brain approach re-scales a reference atlas to fit brain data for
regional analysis of brain activity. While we see brain-to-atlas
scaling as being the most appropriate method for aggregating
experiments, MesoNet can handle special cases such as brains
that have been imaged at different angles or brains that are partly
out of the frame and will return a set of best-fit regions of interest
that can be matched with known anatomical regions by users.

Landmark definition in the common coordinate system. We
first define the landmarks in a common coordinate system for
alignment to the reference atlas. To determine suitable landmarks
for image registration and model training, we first employed an
inpainting method to process the raw images and remove
cortical-tissue patterns such as blood vessels unrelated to regional
borders (Supplementary Fig. 1a). We then averaged brain images
(images were manually aligned during experiments, n = 12 mice)
to determine consensus anatomical structures that fit a reference
atlas (Supplementary Fig. 1b, c). We selected nine clearly defined
landmarks3®-37 and created a common coordinate system while
setting the skull landmark Bregma as (0,0 mm) (Fig. 1b, ¢; Sup-
plementary Table 1). We see inpainting as a step in validating
cortical landmarks for pre-training the models, but it is not
required for a typical MesoNet pipeline.

Robust landmark estimation using deep learning. In order to
automatically estimate landmark locations, a dataset of 491
images annotated with nine anatomical landmarks was used to
train a landmark estimation network via DeepLabCut?> (“OSF
Storage/6_Landmark_estimation_model” at https://osf.io/svztu).
To evaluate the performance of this deep learning model for
landmark estimation, we calculated the pairwise Euclidean dis-
tance (root mean squared error: RMSE) between human anno-
tation and model-generated labels of a testing dataset of 20 brain
images. This permitted us to assess labelling precision at each
landmark during training (Supplementary Fig. 2a, b). We then
tested our trained network on a novel set of 20 wide-field cortical
calcium images (n = 20 mice) and compared the results of model
labelled landmarks with two different human raters. The average
distance between the placement of our network and human
annotators was generally around 0.1 mm and not more than the
difference between human raters (Fig. 2; Supplementary Table 2).

Raw fluorescence delimitations using U-Net. In parallel to the
landmark identification, we also developed an approach to deli-
mit the boundaries of the cortex (below the transparent skull).
This delimiting method was based on training an adapted U-Net
network?® (Supplementary Fig. 2¢c, d) using manually delimited
regions. After training, we compared the segmentation quality of
the U-Net network and a conventional segmentation method -
Otsu’s threshold method - for each image by using a paired-
samples t-test based on four criteria: area difference, structural
similarity index, peak signal-to-noise ratio, and mean squared
error (Fig. 3). All of these criteria, as well as the larger differences
(the green region in Fig. 3a) in segmentation, clearly showed that
the U-Net model offers higher accuracy for cortical delimitation
prediction compared to the conventional Otsu’s threshold
method (when both were compared to the human rater’s manual
delimitation).

Validation of performance of atlas-to-brain alignment
by sensory mapping. For atlas-to-brain alignment, our system
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Fig. 1 Set up of wide-field calcium imaging and definition of landmarks. a Schematic showing green (560 nm) and blue (480 nm) LED lights targeted
directly above the cranial recording window that were used to illuminate the cortex. Green reflectance and emission fluorescence were filtered using a
510-550 nm bandpass filter. The mouse head and skull were created with BioRender.com. b Examples of raw GCaMP and green reflectance images are
shown with annotated landmarks. ¢ Reference atlas (white outlines; ©2004 Allen Institute for Brain Science. Allen Mouse Brain Atlas. Available from:

http://mouse.brain-map.org/) used for our segmentation process. Mop, primary motor area; Mos, secondary motor area; SSp-m, primary somatosensory
area, mouth; SSp-ul, primary somatosensory area, upper limb; SSp-Il, primary somatosensory area, lower limb; SSp-n, primary somatosensory area, nose;
SSp-bfd, primary somatosensory area, barrel field; SSp-tr, primary somatosensory area, trunk; VISp, primary visual area; VISa, anterior visual area; VISam,
anteromedial visual area; VISpm, posteromedial visual area; VISrl, rostrolateral visual area; VISal, anterolateral visual area; VISI, lateral visual area; RSP,

retrosplenial area; AUD, auditory areas.

combined the aligned atlas and segmented cortical boundaries to
delimit each cortical area in each recording (Fig. 4a). We used
sensory mapping to validate expected delimited cortical regions.
To perform sensory mapping, we applied visual and tactile
(whiskers and tail) stimulations on mice (Fig. 4b) to generate
activation maps for the respective sensory modalities (Fig. 4c).
We expected that the sensory stimulation paradigms would
activate analogous areas of the cortex across different mice.
Cortical mapping is presented in terms of relative activation
(AF/F) and is not strictly dependent on the basal level of GCaMP
calcium-induced fluorescence. Calcium responses were averaged
between epochs, and the profiles of calcium fluctuations were
calculated before and after sensory stimulation by determining
the fluorescence (AF/F) time series (Fig. 4d). Then, the sensory
maps were generated by calculating the maximum AF/F for each
pixel after stimulation, and the peak activation (Fig. 4c) was
considered as the functional coordinate center (Supplementary
Fig. 3). The predicted sensory regions from MesoNet (nine
landmarks plus U-Net) were consistent with sensory functional
maps (Fig. 4c, d)>30.

Testing the brain-to-atlas scaling across different lines of
fluorescent protein mice. Since the training of our networks
could be influenced by specific patterns of expression of the
fluorescent indicators, such as those observed in TIGRE mice38,
we validated the robustness of the method by testing other lines.
We examined six different lines of mice expressing fluorescent
indicators, as well as mice injected with blood-brain barrier
permeable PHP.B virus allowing expression of GCaMP6%
(GCaMPé6f, n = 4 mice, GCaMP6s, n = 4 mice, GCaMP3, n =4

mice, PHP.B, n = 4 mice, GFP4%41, 5 = 4 mice, Thyl-GCaMP*2,
n = 4 mice, iGluSnFr#3, n = 4 mice, jrGECO*4, n = 4 mice, Green
reflectance on wild-type mice, n =4 mice) (Fig. 5a, b). Without
any manual delimitation of landmarks, we could register atlas
overlays to all of these examples. This result indicates that the
performance of MesoNet is not specific to a particular mouse line,
expression profile, or wavelength. Although this performance
could differ across mouse lines (due to regional promoter
activity®?), the pre-trained model can be easily fine-tuned using a
small dataset of line-specific brain images and a re-training step if
needed (online training, see Methods). To further quantify the
performance of brain-to-atlas alignment, we compared MesoNet
with manually labelled alignment by calculating the Euclidean
distance between the landmarks of the anterior tip of the inter-
parietal bone and cross point between the median line and the
line which connects the left and right frontal pole, and angle of
the midline compared to the ground truth common atlas. Mes-
oNet performs significantly better than manual labelled align-
ment in both comparisons (Fig. 5c¢, d).

The performance of brain-to-atlas registration during cluster-
ing cortical activity motifs. Scaling the brain image to fit an atlas
(registration) allows researchers to normalize data more effi-
ciently and reduce the effect of brain position or angle pertur-
bations when analyzing data. The transformation of brain images
into common atlas also allows us to combine cortical maps from
different animals. To evaluate the capabilities of our registration
pipeline, we used seqNMF3446 to discover cortical activity motifs
from resting-state mesoscale cortical imaging from 6 head-fixed
GCaMP6s mice. This method was able to reveal spatio-temporal
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Fig. 2 Performance of automated landmark estimation. a Examples of model labelled and manual labelled landmarks on GCaMP images (denoted by ‘+'
symbols; blue, model labelled; red and green, manual labelled). b Polar plot of distance between coordinates of model labelled and manual labelled
landmarks. ¢ Comparison of distance between coordinates of model labelled (n =20 mice) and manual labelled landmarks (n =20 mice) and distance
calculated by differences between coordinates of two runs of manual labelled landmarks (n = 20 mice) (scatter dot plot, line at mean with SEM, Bonferroni
tests (two-sided): human1 - human2 vs model - human1, p > 0.05; human1 - human2 vs model - human2, p > 0.05; model - human1 vs. model - human2,
p>0.05; mean distance and SEM for each landmark see Supplementary Table 2). Source data are provided as a Supplementary Data file.

cortical activity motifs (Fig. 6) that represent known intracortical
connection patterns!43031,

As a further test of our software, we artificially generated a
more diverse, mis-aligned test dataset by rotating the brain data
to arbitrary angles and resizing the images by variable factors
(Fig. 6a). We then compared the motif clusters for raw data from
mis-aligned data before and after brain-to-atlas transformation
using an unsupervised clustering algorithm (PhenoGraph)4’7. We
found that the brain-to-atlas approach was able to normalize the
motif cluster number in the mis-aligned datasets (8 clusters for
transformed data and 12 clusters for mis-aligned synthetic data,
Fig. 6b), which apparently misclassified some motif patterns as
new clusters (Fig. 6b, c). We further quantified the clusters by
calculating the silhouette score (values approaching 1 indicate
clusters are more separated from each other and clearly
distinguished), showing a better separation after brain-to-atlas
transformation. The silhouette score calculated from raw data was
0.43, from mis-aligned synthetic data was 0.39, and the score
from brain-to-atlas transformed data was the highest at 0.48,
indicating clusters with the least overlap.

Alignment using spatial-temporal functional cortical activity
signals. An advantage of MesoNet is that most alignment can be
performed using only a single raw fluorescent image (9 landmarks
plus U-Net). In this case, MesoNet alignment is mostly dependent
on cortical bone and brain edge markers and does not consider
internal functional boundaries. While this approach does show
good correspondence with the location of expected sensory sig-
nals (Fig. 4), it would be advantageous to also make use of
functional maps to track the dynamic organization of functional

cortical modules in different sensory and cognitive processes, as
well as the precise topography of brain parcellation. Previously,
we and others30-31:48 have used regional correlations of GCaMP
signals during spontaneous activity to establish brain functional
networks that correspond to underlying anatomical projections.
While correlations yield robust maps, they do require the place-
ment of seed locations and some underlying assumptions of
anatomical mapping3!.

As a potentially less-biased approach, we employ seqNMF3446
(as in Fig. 6) to recover stereotyped cortical spatio-temporal
activity motifs as a means of establishing functional maps. This
approach generates motif patterns that only require spontaneous
activity and would be advantageous over sensory modality
mapping that requires specialized forms of stimulation and
additional imaging trials (Figs. 4, 7a). To perform seqNMF motif
recovery, an averaged mask (15 mice) was applied to limit the
motif analysis to areas inside the brain window. In these
experiments, brains were roughly pre-aligned during GCAMP
data acquisition. As shown in Fig. 6, this approach can recover at
least six major spatial-temporal activity motifs from each brain.
To create an aggregate picture of motif boundaries, we scaled
each motif to its maximal value and then created a summed
maximal intensity projection (Fig. 7b, c).

Like previous projections of seed, pixel maps gradients®!,
maximal projection of the collection of motifs that represent
cortical activity led to the definition of functional “firewall”
boundaries that reflect weighted activity transitions between
major cortical groups of areas. Importantly, these firewalls were
relatively stable across different animals where functional resting-
state GCaMP activity was observed and can be used to create
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Fig. 3 Performance of automated delineation of brain boundary using U-Net. a Representative images showing raw GCaMP images and respective
human-applied brain delimitation as ground truth. Brain delimitation predictions from application of Otsu’s threshold (middle panel) and U-Net model
segmentations (bottom panel). Green areas are the absolute differences between predicted versus ground truth. b Comparison of model-predicted (n =20
mice) and Otsu’s threshold (n =20 mice) brain delimitation results to ground truth by mean values for area difference (scatter dot plot, line at mean with
SEM, paired t-test (two-tailed), ****p values <0.0001; U-Net, mean £+ SEM = 6.11+ 0.14; Otsu, mean + SEM =20.81+ 0.73; p<0.0001, t = 23.24),
structural similarity index (U-Net, mean + SEM = 0.83 + 0.003; Otsu, mean + SEM = 0.66 + 0.01; p < 0.0001, t = 26.08), peak signal-to-noise ratio (U-Net,
mean £ SEM =11.57 £ 0.1; Otsu, mean £+ SEM = 6.22 £ 0.14; p< 0.0001, t = 56.12) and mean squared error (U-Net, mean + SEM = 4551 £115.9; Otsu,
mean £ SEM = 15680 + 507.7; p < 0.0001, t = 26.12). Source data are provided as a Supplementary Data file.

animal-specific motif-based functional maps (MBFMs) (Fig. 7b, c,
Supplementary Fig. 4). These MBFMs provide an opportunity to
predict brain regional boundaries (represented by a cortical
overlay as the output of 9 landmarks plus U-Net in Fig. 4a) using
another pre-trained MBFM based U-Net model (Fig. 7b) that we
call the MBFM-U-Net model.

To supplement our anatomical landmark-based alignment
approach, we capture local deformation using functional map
features by integrating VoxelMorph3° as an optional add-in to the
MesoNet pipeline (Fig. 7c, Supplementary Fig. 2e). VoxelMorph
offers a learning-based approach that determines a deformation
field that is required for the transformation and registration of
image pairs such as MBFMs. We generate a template MBFM that
is aligned with an anatomical reference atlas (common atlas
framework, Fig. 7d). The deformation field predicted from
VoxelMorph can be applied to the reference atlas to fit the
functional regions in the input MBFM (atlas-to-brain).

To check the performance of these mouse-specific MBFM-
based alignments, we compared the predicted location of sensory
regions for sensory map-based (Fig. 7a), MBFM-U-Net (Fig. 7b),
and VoxelMorph (Fig. 7c) pipelines. The prediction accuracy was
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then evaluated by measuring the Euclidean distance between the
centroids of sensory stimulation-induced activation and predicted
atlas ROI centroids (Fig. 7e, f). All the three pipelines yielded
similar distances to anatomical sensory map centres, although the
VoxelMorph pipeline performed worse (in the barrel cortex BCS1
center, Fig. 7f). The VoxelMorph pipeline’s performance was
improved by first applying a brain-to-atlas transformation to the
MBEMs (VoxelMorph transformed, Fig. 7f, BCS1). We further
evaluated the performance of these pipelines by calculating
the correlation coefficient between manually delineated retro-
splenial (RSP) regions (RSP consistently has clear boundaries in
GCaMP functional data, Fig. 7d, e, Supplementary Fig. 1c)
and model-predicted RSP regions. In this case, VoxelMorph
performed significantly better than other pipelines as it warped
brain areas to fit functional boundaries in MBFMs (Fig. 7g,
Supplementary Movie 1).

We suggest that, under certain conditions, there may be unique
advantages to employing additional, computationally more-
intensive steps such as combining brain-to-atlas with VoxelMorph.
These conditions might include brains that were significantly
rotated or shifted between the experiments (Supplementary Fig. 5),
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Fig. 4 Sensory mapping in awake mice. a Automated alignment and segmentation pipeline of the atlas-to-brain approach. The raw GCaMP image was
segmented using U-Net, and landmark estimation was done using DLC and then combined together to determine each brain region ROI. b Frontal and
lateral view of an experimental set-up involving head-fixed mice with sensory stimulation cranial recording. ¢ Sensory mapping across independent trials
(n=6 mice) shows similar regions of activation resulting from physical stimulation of the tail or whiskers and visual field of the mouse. d Single trials
(n =30 trials) of calcium temporal dynamics around the tail, whisker, and visual stimulations of different brain regions (indicated with the same colour on
the brain image, the number of brain region ROls are automatically output from MesoNet). The black line is the averaged calcium response of all the trials.

or analyses of specific lines of mice in which phenotypes affect
neuroanatomical borders, or conditions such as lesions that may
make alignment to the consensus atlas more challenging. In
summary, we present multiple means of registering cortical
mesoscale functional images to cortical overlay atlases that are
transformations of a common Allen Brain atlas, or can be extended
to include animal-specific functional connectivity.

Discussion

We present an automated, Python-based image processing
pipeline for accurate alignment and segmentation of cortical
areas from mesoscale cortical fluorescent images. We developed
atlas-to-brain and brain-to-atlas alignment approaches using
anatomical landmarks and brain boundaries. We also extend our
pipeline to make use of functional sensory maps and spontaneous
cortical activity motifs. Finally, we included a GUI and a
command-line interface (CLI) to improve ease of use for non-
specialists and those who are not as familiar with scripting-based
techniques, enabling the use of our toolbox in a variety of projects
and conditions.

In order to carry out image registration, we leveraged mul-
tiple sources of anatomical and functional landmarks derived
from brain images as well as skull junctions. Anatomical
landmarks within the skull, such as the bregma and lambda,
have historically been used for decades to define locations of
brain regions in rodents”#°. Surprisingly, we discovered that
some unconventional anatomical landmarks based on the
frontal poles (landmarks 2 and 8) or the posterior tip of the

retrosplenial region (landmarks 3 and 9) facilitated similar or
more accurate atlas alignment than more familiar markers such
as bregma (Fig. 2¢). Automatic landmark estimation provided a
similar average placement error than between two different
human experimenters using manual annotation. High precision
of image registration is required as studies in the visual system
report functional activity transitions over 0.1 mm scales>>.
Other regional landmarks, such as intrinsic fluorescence or
light reflectance, could provide valuable spatial information for
the registration and would involve training for each mouse strain
and imaging modality specifically. Expression of genetically
encoded calcium indicators (GECIs) such as GCaMP provides
clear fluorescence that allows for characterization of neuronal
activity over large cortical regions. We observed that the basal
GCaMP6 fluorescence in some cortical structures, such as the
retrosplenial area (Supplementary Fig. 1), primary sensorimotor
area, and secondary motor area, are relatively enhanced and
visible after averaging. This was especially a characteristic of some
GCaMP6 mouse lines developed by the Allen Brain Institute,
such as TIGRE®38. Since intracellular calcium levels are related to
neuronal spiking and excitation are measured by wide-field
GCaMP-fluorescence activity>°l, it is possible that the enhanced
fluorescence we observe when averaging could represent areas of
increased neural firing or line-specific differences in GCaMP6
expression. However, this regional pattern of GCaMP6 fluores-
cence was not observed in other mouse line strategies such as in
tetO mice®?, Thyl-GCaMP6%2, or ROSA26° suggesting differ-
ences in GCaMP expression. Importantly, MesoNet works equally
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results of the brain-to-atlas transformation of brain image from different transgenic or virally injected mice. € Example images showing brain to atlas
alignment using MesoNet or manually labelled landmarks (bregma, window margins). The performance of the alignment is based on the calculation of the
distance between landmarks of anterior tip of the interparietal bone and cross point between the median line and the line which connects the left and right
frontal pole, and angle of the midline compared to the ground truth common atlas, and angle of the midline compared to the ground truth common atlas (all
distances and angles are reported as positive deviations compared to ground truth common atlas). d Distribution of the angle (scatter dot plot, line at mean
with SEM, ***p values < 0.001, * denote p values <0.05; MesoNet, mean + SEM = 0.28 £ 0.04; Manual, mean £+ SEM = 0.62 £ 0.08; Wilcoxon signed-rank

test, Two-tailed, p = 0.0005, Sum of signed ranks (W) = —446, n =36 mice) and distance (MesoNet, mean + SEM = 0.07 £ 0.02; Manual,
mean £ SEM = 0.1+ 0.01; Wilcoxon signed-rank test, Two-tailed, p = 0.0122, Sum of signed ranks (W) = —320, n =36 mice). MesoNet performs
significantly better in both comparisons. Source data are provided as a Supplementary Data file.

well with mouse lines with these different regional profiles of
GCaMP6 expression (see below).

The current approach was also tested and worked well on other
lines of GECI mice, iGluSnFr, GFP, Green reflectance on wild-type
mice, as well as mice injected with a blood-brain barrier permeable
PHP.B virus expressing GCaMP6. Given this versatility, it is rea-
sonable to believe that the methods presented here could work on
any strain of fluorescent protein-expressing mouse or rat, as well as
other indicators (e.g., iGluSnFr in Ai85 mice) or optogenetic fusion
proteins (e.g., Thyl-ChR2-YFP) or in non-transgenic animals with
brain-wide infection by viruses such as PHP.B4-53,

Other pipelines, such as brainreg®, have been developed to
facilitate automatic registration of various types of brain imaging
data based on common structures (such as gyri, sulci, shape, and
edges) between images3>°% however, these pipelines are primarily
oriented towards aligning images with distinct anatomical features
that remain relatively consistent across brains. We tested brainreg
on our fluorescent images but did not produce consistent trans-
formations. We determined that the feature-matching procedure
utilized by brainreg requires a close correspondence in features
between brains. Such anatomical features are present and consistent
across many types of histological brain slice data, but not in raw
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Fig. 6 Performance of brain-to-atlas transformation for clustering cortical activity motifs. a Raw brain images, synthetic brain images, and brain-to-atlas
transformed brain images from 6 GCaMP6 mice. b Scatter plot of motif clusters. An unsupervised clustering algorithm (Phenograph) was used to classify
the motifs (n =1194 motifs from 6 mice). Different colors in the t-SNE plot indicate different motif clusters. Left panel: scatter plot of motif clusters of 6
mice using raw data, silhouette score = 0.43. Middle panel: motif clusters of synthetic misaligned data, Silhouette Score = 0.39. Right panel: motif clusters
of transformed data, silhouette score = 0.48. ¢ Averaged motifs for each cluster of raw, synthetic mis-aligned, and transformed data. All the spatio-
temporal motifs in each cluster were averaged, and the maximum temporal dynamics were projected onto one image. The pixel intensity scale is
normalized, and the intensity value is arbitrary because responses are convolved with independently scaled temporal weightings to reconstruct the

normalized DF/F fluorescence.

fluorescence or functional data such as that derived from mesoscale
calcium images. Furthermore, vasculature - a highly visible feature
across many calcium imaging datasets - is mostly unique across
mice, providing further visual differentiation between images that
challenge such feature-matching approaches to image registration.
As such, brainreg is primarily useful for registering anatomical
images - such as histological brain slices - whereas MesoNet offers a
novel machine learning-based approach to robust functional image
registration.

To increase the flexibility and accessibility of MesoNet, we
developed a landmark-based pipeline (Fig. 7a), an MBFM-U-Net-
based pipeline (Fig. 7b), and a VoxelMorph-based pipeline (Fig. 7c).
We also provided six end-to-end automated pipelines>>°° to allow
users to quickly output results from input images (Supplementary
Fig. 6 and Supplementary Movie 2). The landmark-based approach
is most advantageous when landmarks are visible in the brain
images (our pipeline is flexible to employ a different number of
landmarks to align the brain) and when brain images are rotated or
shifted. However, its registration procedure relies on a limited
number of landmarks, and an overlay atlas may not capture local
deformation that could be accounted for using methods that
employ deformation fields such as VoxelMorph. The sensory map-
based approach has the advantage of being able to utilize ground
truth sensory induced activation areas, but this approach relies on
experimental expertise and is susceptible to errors in the placement
of the stimulation devices. The MBFM-U-Net approach is most
useful for data with distinct functional features but non-distinct
anatomical landmarks. However, the model training of MBFM-U-
Net is supervised and needs a well-aligned label for each brain
image, and its effectiveness may be reduced if contrast and image
features differ significantly from the training dataset. The Vox-
elMorph approach provides a fast learning-based (unsupervised)
framework for deformable registration, but it is less robust to larger
rotations or shifts in cortical position in the frame (Supplementary

Fig. 5). In order to address each dataset’s individual strengths and
weaknesses, MesoNet allows anatomical and functional approaches
to be combined. We suggest first applying brain-to-atlas alignment
using a landmark-based pipeline then combining this with Vox-
elMorph as a better option to align and deform a reference atlas to
functional maps (Supplementary Fig. 6f).

Overall, we apply machine learning models to automate the
registration and overlay of the reference atlas and the segmen-
tation of brain regions using mesoscale wide-field images with
high accuracy. We developed animal-specific motif-based func-
tional maps that represent cortical consensus patterns of regional
activation that can be used for brain registration and segmenta-
tion. Our automated pipelines can be combined to consider both
anatomical consistency and functional individual variations to
help better analyze brain regional activity. Our open-source
platform, MesoNet, allows researchers to register their functional
maps to a common atlas framework based on cortical landmarks
and will help comparisons across studies.

Methods

Animals and surgery. Animal protocols (A18-0036 and A18-0321) were approved
by the University of British Columbia Animal Care Committee and conformed to
the Canadian Council on Animal Care and Use guidelines. Animals were housed in
a vivarium on a 12 h daylight cycle (7 AM lights on), with controlled room tem-
perature at 24 + 2 °C and relative humidity at 40-50%. Most experiments were
performed towards the end of the mouse light cycle. Transgenic GCaMP6f,
GCaMP6s or iGluSnFR mice (males, 2-4 months of age, weighing 20-30 g), were
produced by crossing Emx1-cre (B6.129 S2-Emx1tm1(cro)Krjf] Jax #005628),
CaMK2-tTA (B6.Cg-Tg(Camk2a-tTA)IMmay/Dbo], #007004) and TITL-GCaMP6f
(A193; B6;129S6-Igs7m93.1(tetO-GCaMPEf)Hze/y #024103) or TITL-GCaMP6s
(A194;B6.Cg-Igs7m941(tet0-GCaMP6s)Hze ], Jax #024104) or TITL-iGluSnER (B6;129S-
Igs7im85.1(tetO-gltl/GFP*)Hze/], #026260) strain®. GCaMP3 mice were crossing between
Emx1-cre and B6.Cg-Gt(ROSA)ZﬁSor’"‘38(CAG’GC“MP 3)Hze[] (#029043) strains. GFP,
Thyl, and jrGECO mice were single strain of Tg(Thyl-EGFP)MJrs/] (#007788),
C57BL/6]-Tg(Thyl-GCaMP6s)GP4.3Dkim/J (#024275), and STOCK Tg(Thyl-
jRGECO1a)GP8.20Dkim/J (#030525). Finally, some wild-type mice (PHP.B) were
IV injected with virus crossing the blood-brain barrier and allowing the expression
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of the indicator everywhere in the cortex (AAV.PHPeB.Syn.GCaMP6s)*”. The
presence of indicator expression was determined by genotyping each animal before
each surgical procedure with PCR amplification.

For the chronic window surgery, animals were anesthetized with isoflurane (2%
in pure O,), and the body temperature was maintained at 37 °C using a feedback-
regulated heating pad monitored by a rectal thermometer. Mice received an
intramuscular injection of 40 pl of dexamethasone (2 mg/ml) and a 0.5 ml
subcutaneous injection of a saline solution containing buprenorphine (2 pg/ml),
atropine (3 pg/ml), and glucose (20 mM) and were placed in a stereotaxic frame.
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After locally anesthetizing the scalp with lidocaine (0.1 ml, 0.2%), the skin covering
the skull was removed and replaced by transparent dental cement and a glass
coverslip’. A metal screw was attached to the chamber for future head fixation
during recordings.

Wide-field calcium imaging. A Pantera 1M60 CCD camera (Dalsa) was equipped
with two front-to-front lenses (50 mm, f % 1.4:35 mm, f % 2; Nikon Nikkor) and a
bandpass emission filter (52536 nm, Chroma). The 12-bit images were captured at
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Fig. 7 Performance of functional sensory map and activity-motif alighment pipelines. a Sensory map-based alignment by combining nine landmarks plus
U-Net pipeline with functional sensory maps (tail, visual, and whisker stimulation-induced peak activation) to align the reference atlas to brain image. b A
spontaneous activity motif matching procedure was used to generate motif-based functional map (MBFM) using calcium imaging data detected by
segNMF. The MBFM was then used to predict brain regional boundaries using MBFM based U-Net model (MBFM-U-Net). ¢ The MBFM is used to predict
a deformation field corresponding to a template MBFM using VoxelMorph. The deformation field will then be applied to the reference atlas to fit input
MBFM. d The generation of template MBFM (see Methods). Different colors in t-SNE plot indicate different motif clusters. e Example images show
the sensory maps and output atlas from sensory-based, MBFM-U-Net and VoxelMorph pipelines and manually painted RSP region on MBFM (blue).

f Comparison of the performance of the pipelines (sensory-based, MBFM, VoxelMorph, and VoxelMorph after brain-to-atlas transformation of the
MBFMs) by calculating the euclidean distance between the centroids of sensory stimulation-induced activation and predicted atlas ROIls (Tail, V1, and
BCS1). Scatter dot plot, the line at mean with SEM, one-way ANOVA with Dunn’s Multiple Comparison Test. ***p <0.001, **p < 0.01, *p < 0.05; Sensory-
based vs. Voxelmorph, p < 0.05, rank = —22; MBFM-U-Net vs Voxelmorph, p < 0.05, rank = —25; VoxelMorph vs VoxelMorph transformed, p < 0.05, rank
= 21, n=14 mice). g Comparison of the performance of the pipelines (sensory-based, MBFM-U-Net, VoxelMorph and VoxelMorph after brain-to-atlas

transformation) by calculating the correlation coefficient between manually painted RSP region (ground truth) and predicted RSP region by different
pipelines. VoxelMorph performed significantly better than other pipelines (Sensory based vs VoxelMorph, p < 0.05, rank = —29; MBFM-U-Net vs
VoxelMorph, p < 0.05, rank = —33; Sensory based vs VoxelMorph transformed, p < 0.05, rank = —23; MBFM-U-Net vs VoxelMorph transformed, p < 0.05,
rank = —27, n =14 mice). Source data are provided as a Supplementary Data file.

a frame rate of 120 Hz (exposure time of 7 ms) with 8 x 8 on-chip spatial binning
using EPIX XCAP V3.8 imaging software. These imaging parameters have been
used previously for voltage-sensitive dye imaging®? as well as anesthetized
GCaMP3 imaging of spontaneous activity in the mouse cortex® and awake
GCaMP6-imaging in the mouse cortex with chronic window’. The cortex was
sequentially illuminated with alternating blue and green LEDs (Thorlabs). Blue
light (473 nm) with a bandpass filter (467 to 499 nm) was used to excite calcium
indicators, and green light (525 nm) with a bandpass filter (52550 nm) was used to
observe changes in cerebral blood volume in alternating images. The blue and
green LEDs were sequentially activated and synchronized to the start of each
frame’s exposure period with transistor—transistor logic such that each frame
collected only fluorescence or reflectance signals at 60 Hz each. Images of reflec-
tance, used for blood artifact corrections, were also evaluated in the current
pipeline (see Fig. 5 and Supplementary Table 3).

Sensory stimulation in awake mice. In order to validate automatic delineation of
cortical maps, we applied a sensory stimulation paradigm on the tail, whiskers, and
eyes in awake mice (Fig. 4b). To stimulate the tail, a mini vibration motor (weight:
2 g, dimensions: 12 x 6 x 3.6 mm) was attached to the tail, and a 0.2's vibration
pulse was delivered at 10-55 Hz with an inter-stimulus interval of 10s. To sti-
mulate the upper part of the whiskers field, another mini-vibrator was attached to a
mini-brush and given a single 0.2 s tap using a square pulse. To deliver visual
stimulation, a 2 ms flash of combined green and blue light was displayed in a
consistent way between animals (position 20 mm from the left eye, azimuth: 90 deg
from the axis of the animal, elevation: 0 deg). Responses from 20-40 trials were
averaged for each sensory stimulation, and the maximum variation of fluorescence
(AF/F) was calculated for each pixel.

Image inpainting. To determine whether the wide-field basal fluorescence pattern
contains adequate structural information for landmark annotation (Supplementary
Fig. 1), we employed an inpainting method to process the raw images and remove
cortical-tissue independent patterns such as blood vessels. To generate masks of
blood vessels on wide-field calcium images, we used an adaptive thresholding
method implemented in OpenCV. Next, we used a Fast Marching Method
algorithm?® to fill in the entire region, starting from the boundary of this region.
The algorithm operates by taking a region of pixels around the pixel on the area to
be inpainted, then replacing the original pixel by a normalized weighted sum of all
the known pixels in the neighborhood of the pixels.

Overview of image analysis pipeline. We developed two approaches to auto-
matically define cortical regions: atlas-to-brain and brain-to-atlas approaches. The
reference atlas was adapted from 2D cortical surface maps of the Allen Mouse Brain
common coordinate framework (http://download.alleninstitute.org/publications/
allen_mouse_brain_common_coordinate_framework/)2¢>%60, In the first approach,
we developed methods to re-scale the reference atlas to cortical image based on
estimated cortical landmarks using deep neural networks (DeepLabCut)?>. An
adapted version of the U-Net network?® was used to delimitate the brain boundaries
automatically. Our pipeline then combines the re-scaled brain atlas and delineated
brain boundary to determine brain regions. In the second approach, our system
automatically re-scales and registers cortical images to our common atlas (Fig. 1,
Supplementary Fig. 3, Supplementary Table 1) combined with brain boundaries (the
output from U-Net) to segment brain regions.

Pre-trained model for landmark estimation. To make the atlas-to-brain and
brain-to-atlas pipeline automatic, we developed a pre-trained model to estimate
cortical landmarks on raw brain images. To generate the training dataset (“OSF

Storage/5_Model_Training_set” at https://osf.io/svztu), we randomly selected 402
wide-field cortical images from our database of experiments (Supplementary
Table 3). To minimize the number of animals used in research, we used calcium
imaging data that had already been collected from multiple previous and ongoing
studies” 1461 as well as current data. These images were blindly randomized to test
or train sets. A human annotator manually placed markers on nine specific ana-
tomical landmarks to label data for the model, as shown in Fig. 1 and Supple-
mentary Table 1. These landmarks are clearly visible and considered to be reference
points for brain-to-atlas alignment337. Then, we used the labelled images to train
a deep neural network (DeepLabCut)?>%2 with a 95% training and 5% testing split.
The pre-train neural network feature detector architecture relies on deep residual
networks (in our case, ResNet-50) with 50 layers and initialized with weights
trained on ImageNet®34, Approximately 10,000 iterations were sufficient for the
loss to converge when training the network on our computer (Windows 10, 64GB
of RAM, 3.3 GHz, and an Nvidia Titan Xp GPU). Every 2000 iterations, snapshots
of the weights were stored in TensorFlow®”.

Automatic cortical image segmentation. We used an adapted U-Net
network?%29 to segment cortical boundaries from fluorescent mesoscopic images
based on examples defined by the user. The training dataset of the U-Net model
was 60 pairs of GCaMP images associated with manually painted masks of brain
boundaries. To reduce the number of training data needed, we use a data aug-
mentation strategy implemented in Keras (https://github.com/fchollet/keras), using
simple transformations as summarized in Supplementary Table 4. The U-Net
network used in this study consists of ten repeated applications of 3 x 3 con-
volutions, each followed by a rectified linear unit (ReLU) activation function. A
2 x 2 max-pooling operation with a stride of two in the contracting path halves the
resolution of the feature map and additionally doubles the number of channels. In
the expanding path, repeated application of up-sampling by a factor of 2 halves the
number of channels. Corresponding feature maps from the decoder are con-
catenated with cropped feature maps from the encoder. The final convolutional
layer generates masks. The network was trained for 1000 epochs with a batch
size of 30.

After training, for each image of the testing dataset, the boundaries of the
cortical region were automatically defined based on the fluorescence pattern using
the U-Net network. For each fluorescence image, the output was a binary mask of
the same size, corresponding to the prediction of each pixel to be segmented as
“non-brain” or “brain”.

Automatic atlas-to-brain and brain-to-atlas alignment. Predicted landmarks
were used to align and overlay a reference brain atlas (Allen Mouse Brain Atlas) on
each brain image. For each raw GCaMP image used as an input, we first extracted
the predicted locations of each cortical landmark using the pre-trained landmark
estimation model. To align the brain atlas with the brain image, the cv2.getAffi-
neTransform method was used to calculate two independent transformations. The
first transformation registered the left cortical landmarks on the reference atlas
(stored in a MATLAB array adapted from the Allen Mouse Brain Atlas) to cor-
responding landmarks labelled on the left hemisphere of the brain image. The
second transformation registered the right cortical landmarks to corresponding
landmarks labelled on the right hemisphere of the brain image. We then use
cv2.warpAffine to warp each hemisphere of the atlas independently using a three-
point transformation based on these calculations. We can use the three-

point combination that the model most accurately predicted (based on the output
of the sigmoid activation function by TensorFlow via DeepLabCut?®). We can also
use three default points in each hemisphere: the leftmost or rightmost point in each
hemisphere, followed by the top central landmark and lambda. If these points were
manually un-selected as part of the analysis, the first three points selected in the left
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hemisphere and the last three points selected in the right hemisphere are used for
the transformations. This arrangement offers the ability to flexibly select different
sets of landmarks with which to align the atlas.

For flexibility of use (especially in cases where a brain image only offers a
limited number of landmarks), our software can also complete a registration using
two landmarks (using a cv2.estimateAffinePartial2D registration), three landmarks
(using a single cv2.getAffineTransform registration), or four to eight or more than
nine landmarks (using the method described for nine landmarks). If landmarks are
unavailable, but a VoxelMorph3> local deformation model is provided along with a
template for the desired alignment of the image, then VoxelMorph can be used in
place of DeepLabCut for atlas registration (see “Alternative pipelines”).

Furthermore, our software allows users to register the brain image to the
standard brain atlas using a similar procedure to atlas-to-brain transformation. We
first apply atlas-to-brain to the brain image so each hemisphere can be masked and
transformed independently. We then register each masked hemisphere to the
common atlas independently using landmarks on each hemisphere. We used
U-Net to segment the olfactory bulbs from the original brain image; the same
alignment is then applied to these olfactory bulbs to align with the registered brain
hemisphere.

Output brain region ROIs. The final step of our pipeline combines the registered
brain atlas with the brain boundaries determined through U-Net and output brain
region ROIs automatically. In order to identify and label individual brain regions
on our source brain images, we applied one iteration of spatial dilation to denoise
the output ROIs using OpenCV’s cv2.dilate function. We segment each brain
image in our dataset into regions by identifying the contours of each brain region
using OpenCV’s cv2.findContours function. Furthermore, we identify the centre of
each contour by locating the contour’s pole of inaccessibility (the most distant
point from the edges of the contour) using an iterative grid-based algorithm as
adapted by the python-polylabel package (https://github.com/Twista/python-
polylabel). As many of the brain regions have highly irregular shapes, the centre of
gravity of the contour may be outside of the contour borders, and small deviations
in the contour width can lead to highly eccentric centre points. Therefore, an
algorithmic identification of the pole of inaccessibility ensures that the point
represents a useful metric of the centre of the contour. As the contours may not be
numbered in a consistent order by default, we offer two methods to increase the
consistency of labels between brains. In the first method, we align a matrix in which
each brain region is filled with a unique number using the same transformations
that are applied to the original binary atlas; we then draw contours that match each
successive unique number (using cv2.inRange), ensuring that each brain region is
uniquely associated with a label that is applied consistently across images. In the
second method, we automatically number the contours from the contour with the
top-leftmost centrepoint to the bottom-rightmost centrepoint, separately for each
hemisphere of the functional brain image (left and right side of the bregma
landmark). If the centre points of two contours are vertically aligned (i.e., within 5
px horizontally of each other), these aligned contours are consistently re-sorted
from the top-most to the bottom-most centrepoint to improve the consistency of
contour numbering across images.

Alternative pipelines. Depending on the format and contents of the data, one can
select from different registration strategies to the one described above. Three
strategies are available if the brain images used do not have clearly defined ana-
tomical landmarks (necessary for the landmark-based affine transformation). First,
the alignment approach can leverage cross-image commonalities in sensory-related
activity. In our sensory map-based pipeline, MesoNet can detect four unilateral or
bilateral sensory activation peaks and use them as control points to transform
reference atlas (PiecewiseAffineTransform, a non-linear piecewise affine transfor-
mation implemented in scikit-image®). This additional step allows sensory sti-
mulation activation (e.g., of the tail, whiskers, and visual field; Fig. 4c) to be used
for registration based on functional and not just anatomical information in the data
(Fig. 7a).

Second, one can train a U-Net model on a set of motif-based functional
maps (MBFMs, see “Generation of MBFM”) and label images (we used manually
modified output masks from 9 landmarks plus U-Net MesoNet as label images,
Fig. 4a), and then use this MBFM-U-Net model to directly predict brain regional
boundaries on a new set of MBFMs. Third, one can train an unsupervised
VoxelMorph model3> on a set of MBFMs (not requiring any label data for
each MBFM image to train the model). After training, the VoxelMorph model
can predict a deformation field between pairs of MBFMs. The deformation field
can be used to transform template MBFM to each input MBFM. Specifically,
using VoxelMorph terminology, the input MBFM is fixed, and the template
MBEM is the moving image (Supplementary Fig. 2e, Supplementary Fig. 5).
As the template MBFM is aligned with the reference atlas (Fig. 7d), we can
apply the same deformation field to transform the reference atlas to fit the input
MBEFM. The deformation field is also exported for optional re-use in other
analyses.

Mesoscale cortical activity motif analysis and clustering. We used the seqNMF
algorithm?® to discover spatio-temporal sequences in wide-field calcium imaging

data. This method employs convolutional non-negative matrix factorization
(CNMF) with a penalty term to facilitate the discovery of repeating sequences. To
classify the cortical motifs, we used an unsupervised clustering algorithm called
PhenoGraph?’. Each motif matrix is partitioned into clusters by a graph that
represents their similarity. The graph is built in two steps. First, it finds k nearest
neighbors for each motif (using Euclidean distance), resulting in N sets of k nearest
neighbors. In the second step, a weighted graph is built such that the weight
between nodes depends on the number of neighbors they share. We then perform
Louvain community detection®” on this graph to partition the graph that max-
imizes modularity.

Specifically, mice were imaged for about 60 min each, and each recording was
divided into 5-min epochs to discover spatio-temporal motifs in neural activity.
After classifying the cortical motifs, we average the motifs in each cluster and
project the maximum temporal dynamics onto one image (see the cortical patterns
in Fig. 6¢).

Generation of MBFM. In order to generate the template MBFM for the MBFM-U-
Net or VoxelMorph approach, motifs (recovered from seqNMF) from different
mice are first normalized (after brain-to-atlas transformation) to a range of 0 to 1
and clustered (Phenograph*7). The center motifs of each cluster are then averaged
to generate template motifs (Fig. 7d, n = 6 mice). We selected the six most com-
mon motif patterns as template motifs for the motif matching procedure (see
below). These template motifs are used to generate a template MBFM using
maximum projection. The template MBFM is aligned to the common atlas during
the first step’s brain-to-atlas transformation (Fig. 7d).

The template motifs are used to match motifs generated from new mice
(Fig. 7b, c). Specifically, each new motif was first normalized to the range of 0 to 1.
One can also first do a brain-to-atlas alignment using MesoNet if the new motifs
are significantly rotated or shifted. We then calculated the correlation coefficient
between each pair of template motifs and new motifs. A threshold was set to match
most similar new motifs with template motifs. We averaged the matched motifs for
each motif pattern. The new MBFM was then generated by these averaged motifs
using maximum projection.

User interfaces. In order to make our methodology more accessible to a variety
of users, we have developed a graphical user interface (GUI) that allows users to
input the path to a folder containing brain images to be segmented (or a single
TIFF image stack) and the segmentation model to be used. The GUI then saves
and displays brain images that have been segmented and labelled based on the
model’s predictions, with the option to export each predicted brain region as a
region of interest in a .mat file for use in MATLAB. In a potential use case, one
could input a sample of brain images from one’s datasets and then use the
segmented output data to easily focus analyses of brain imaging data on specific
brain regions. The interface also allows the user to align and overlay a brain atlas
onto the image automatically. A similar GUI also allows users to train new U-Net
and DeepLabCut models in future MesoNet analyses. MesoNet also offers a
Python package-based command-line interface for increased flexibility and the
ability to integrate MesoNet analyses into larger analytical pipelines. Demo videos
(Supplementary Movies 2, 3, 4, 5, 6, and 7) are available on the OSF repository to
demonstrate the user interfaces (see “OSF Storage/2_Supplementary_Movies” at
https://osf.io/svztu).

Model online training and data augmentation. To make our system more flexible
and robust to different datasets, we developed an online training and data aug-
mentation algorithm in MesoNet. One can add additional image-mask pairs to an
existing model and train the existing model with these additional images, poten-
tially improving the robustness of an already-useful model. To facilitate this pro-
cess, we leverage Keras’s data augmentation features to enable automatic
augmentation of all images and marks that are used to train the U-Net model.
Together with DeepLabCut’s image augmentation features?> (as well as a custom
function for post-hoc augmentation of existing datasets labelled in DeepLabCut),
these image augmentation processes help users improve the robustness of their
models to noisy or distorted data®. Demo videos (Supplementary Movies 8, 9, and
10) and a user’s manual are available to demonstrate the model online training and
data augmentation (see “OSF Storage/2_Supplementary_Movies” at https://osf.io/
svztu).

Statistics and reproducibility. Data were analyzed using GraphPad Prism 6
and custom-written software in MATLAB R2020a and Python 3.7.9. We used a
Bonferroni test to compare the distance between coordinates of model labelled and
manual labelled landmarks and a paired t-test (two-tailed) to compare model-
predicted and Otsu’s threshold brain delimitation results on brain images from
different mice. We used a Wilcoxon signed-rank test to compare the performance
of the brain-to-atlas alignment using MesoNet or manual labelled landmarks, and
one-way ANOVA with Dunn’s Multiple Comparison Test to compare the per-
formance of functional alignment pipelines. For the comparison of the distance
between coordinates of model labelled and manual labelled landmarks, experi-
ments were repeated 20 times. For the comparison of model-predicted and Otsu’s
threshold brain delimitation, experiments were repeated 20 times. For the
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comparison of brain-to-atlas alignment, experiments were repeated 36 times. For
the comparison of functional alignment pipelines, experiments were repeated 14
times. All attempts at replication were successful.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Raw wide-field calcium imaging data generated in this study have been deposited in the
Open Science Framework (OSF) public repository (https://osf.io/34uwj). More imaging
data and corresponding annotations or masks used for model training (landmark
estimation model, U-Net model, MBFM-U-Net model, and VoxelMorph model), source
data for figures, and demo data with code have been deposited in another public OSF
repository (https://osf.io/svztu). Example brain images for testing the landmark
estimation model, U-Net model, MBFM-U-Net model, and the VoxelMorph model, as
well as data for the demo videos, are available on the public OSF repository (“OSF
Storage/0_Example_data”; https://osf.io/svztu). Source data are provided with this paper.

Code availability

The Python software package, pre-trained landmark estimation model, U-Net model,
user’s manual, and sample data for the demonstration of MesoNet are available on the
public OSF repository (https://osf.io/svztu), which also offers a link to the GitHub
repository®® from which the Python package can be installed. We also provide a Google
Colaboratory notebook for a fully functional version of the MesoNet command line
interface within this GitHub repository (mesonet_demo_colab.ipynb). We also provide
demo Matlab code and data to demonstrate the procedures to generate functional maps
from spontaneous cortical activity motifs (see “OSF Storage/4_Data_code” at https://
osf.io/svztu). Lastly, we provide a Code Ocean capsule to demonstrate the operation of all
automated MesoNet pipelines®® at 10.24433/C0.1919930.v1 [https://doi.org/10.24433/
C0.1919930.v1], and another capsule to demonstrate the MBFM generation process®® at
10.24433/C0.4985659.v1 [https://doi.org/10.24433/C0.4985659.v1].
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