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Finger sweat analysis enables short interval
metabolic biomonitoring in humans
1,2

Julia Brunmair® 4, Mathias Gotsmy® 4, Laura Niederstaetter!, Benjamin Neuditschko ,
Andrea Bileck® 3, Astrid Slany 1 Max Lennart Feuerstein!, Clemens Langbauer1, Lukas Janker® 13,
Jirgen Zanghellini® !, Samuel M. Meier-Menches® 23 & Christopher Gerner@® 3%

Metabolic biomonitoring in humans is typically based on the sampling of blood, plasma or
urine. Although established in the clinical routine, these sampling procedures are often
associated with a variety of compliance issues, which are impeding time-course studies.
Here, we show that the metabolic profiling of the minute amounts of sweat sampled from
fingertips addresses this challenge. Sweat sampling from fingertips is non-invasive, robust
and can be accomplished repeatedly by untrained personnel. The sweat matrix represents a
rich source for metabolic phenotyping. We confirm the feasibility of short interval sampling of
sweat from the fingertips in time-course studies involving the consumption of coffee or the
ingestion of a caffeine capsule after a fasting interval, in which we successfully monitor all
known caffeine metabolites as well as endogenous metabolic responses. Fluctuations in the
rate of sweat production are accounted for by mathematical modelling to reveal individual
rates of caffeine uptake, metabolism and clearance. To conclude, metabotyping using sweat
from fingertips combined with mathematical network modelling shows promise for broad
applications in precision medicine by enabling the assessment of dynamic metabolic patterns,
which may overcome the limitations of purely compositional biomarkers.
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etabolic phenotyping seeks to identify biomarkers for

diagnosis, prognosis or therapy and holds great promise

to improve clinical practice and especially, precision
medicinel:2. Despite considerable progress with respect to the
sensitive and parallel analysis of metabolites in metabolomics/
metabonomics studies>” and by mass spectrometry (MS)%?, the
successful implementation of metabolites as biomarkers in the
clinical setting still represents a major challengel-12. This is
illustrated by the strong individual and physiological background
variability? and individual differences in ADME properties, the
latter impacting significantly on drug responses!®14. To the best
of our knowledge, current techniques of metabolic phenotyping
are largely focussed on generating static diagnostic pictures
because the commonly used biological fluids (e.g. plasma,
urine)!>~17 or tissues do not routinely allow for time-course
studies. The implementation of dynamic metabolic responses as a
biomarker strategy may be desirable, but requires a considerable
number of data points on a single individual. Clearly, a non-
invasive method from an alternative biological fluid is required to
enable frequent sampling of the same individual in order to
obtain dynamic metabolic patterns in the frame of metabolic
phenotyping.

While fingerprints—the pattern of the ridge details left on a
surface—have been used for the identification of individuals since
the late 19th century!3, their relevance for detecting metabolites,
as well as drugs and their metabolites has only recently been
discovered!%20. While drug substances detected in the fingerprint
may originate from accidental dermal contact, the detection of
drug-specific metabolites implies that the drug was ingested,
metabolised and subsequently excreted from sweat glands. Thus,
we hypothesised that sweat from the skin surface may represent a
promising source for metabolic biomonitoring. Sweat is a hypo-
tonic, slightly acidic biofluid secreted by the eccrine, apocrine and
apoeccrine glands located on the skin surface?!22, Eccrine sweat
from the fingertips is mainly composed of water (~99%), but
contains electrolytes, urea, lactate, amino acids, metal ions?3:24
and a variety of endogenous metabolites, including peptides,
organic acids, carbohydrates, lipids, lipid-derived metabolites, as
well as xenobiotics?12%2-27, Sweat composition is highly
dynamic, changes significantly with pathological states and may
reveal habits of diet, metabolic conditions or use of drugs and
supplements!72428, In fact, the analysis of sweat has already
been reported to assess individual metabolic characteristics2%-30,
Clinical assays based on the analysis of sweat exist and include the
screening of newborn children for elevated chloride and sodium
levels to confirm cystic fibrosis via pilocarpine stimulated ionto-
phoresis or forensic and criminal investigations to test for illicit
drug use!7-22:31-33 Furthermore, it has already been successfully
demonstrated that the analysis of proteins contained in sweat
enables not only the diagnosis of active tuberculosis but can also
be used to screen for lung cancer!®3435 highlighting the potential
of sweat analysis for precision medicine3. Real-time monitoring
of biomarkers was demonstrated with wearable sweat sensors for
uric acid and tyrosine?’, interleukin-6 and cortisol3® or electro-
lytes such as sodium, ammonium ions and lactate’®.

However, these studies typically assessed a small number
of metabolites and relied on elaborate methods to collect
sweat, including sweat patches or artificially forcing sweat
production!”-2230 This was necessary because the detection
methods required relatively large absolute amounts of these
metabolites. It is known that eccrine glands on the fingertips
produce sweat at a rate of 50-500 nL cm—2 min—! 40, Thus, the
analysis of metabolites from sweat of the fingertips may be
achieved with sufficiently sensitive instrumentation, for example
MS*L. Sample collection using sweat from fingertips requires no
patient pre-treatment or trained personnel, is safe and fast. Upon

optimising the entire workflow for the analysis of sweat from
the fingertips, we analysed 1792 samples from 40 participants,
which underlines its potential as a high-throughput metabolic
technology. Proof-of-principle studies based on the consumption
of coffee or ingestion of a caffeine capsule were designed to assess
metabolic time-series of each participant and provided evidence
of the feasibility of this approach. Fluctuations in the rate of sweat
production were accounted for by mathematical modelling of
the conversion of xenobiotics to their catabolic products (e.g.
caffeine to paraxanthine). In this study, we show that metabolic
phenotyping using sweat from fingertips combined with mathe-
matical network modelling may have far reaching relevance for
precision medicine, because it allows to obtain dynamic metabolic
responses of individuals.

Results

Sweat from the fingertips is a rich source for metabolic
phenotyping. A straight-forward workflow was established for
sampling and processing sweat samples from fingertips. In short,
hands are washed without soap and dried with a disposable paper
towel prior to each sampling time-point. For sweat collection, a
circular sampling unit standardised to 1.15 cm diameter was then
held between thumb and index finger for 1 min and was trans-
ferred with clean tweezers into an empty tube for storage
(Fig. 1a). The metabolites were extracted from the sampling units
using aqueous conditions and the resulting solution was directly
introduced into the liquid chromatography-mass spectrometry
(LC-MS) system for analysis. Sample collection and processing
required ~13 min per sample. Sampling can be performed by
untrained personnel in a highly frequent manner and the non-
invasive nature of the sampling facilitates patient compliance.
Data acquisition requires a further 7.5 min, which gives a total of
~20 min for the entire workflow per sample.

Based on the known rates of sweat production in eccrine
glands on the fingertips??40, the median sweat volume collected
using this method can be estimated at around 200-2000 nL
(2 min x 2 cm? x 50-500 nL min—!cm~2) sweat per sample.
High-resolution MS using a Q Exactive HF orbitrap hyphe-
nated with an ultrahigh-performance liquid chromatography
(UHPLC) system proved suitable for metabolic phenotyping
from sweat samples (see methods). Initially, three participants
were sampled multiple times in an observational study in order
to evaluate the metabolic profile obtained from sweat of the
fingertips of each individual. In detail, the participants collected
sweat samples seven times per day at different intervals on 2
consecutive days and using both hands (see methods, study A).
A total of 250 metabolites were identified and verified
by external standards (Supplementary Data 1). Actually, many
known as well as previously unknown endogenous and
exogenous metabolites were identified in the sweat samples
with high confidence (Fig. 1b, c¢). We detected not only a
number of amino acid-related metabolites (e.g. tyrosine, leucine
or citrulline), but also hormones (e.g. melatonin or progester-
one). Newly identified metabolites include dopamine, proges-
terone and melatonin amongst others. Interestingly, we
observed many coffee-derived metabolites, including caffeine
and the related dimethyl- and methylxanthines. Principal
component analysis (PCA) using those metabolites revealed
that the samples clustered according to individuals (Fig. 1d).
This indicated that the molecular composition of sweat
associated with a given individual dominated the variances
derived from multiple sampling. Interestingly, the principal
components were strongly determined by the endogenous
metabolites histamine, tryptophan, tyrosine and arginine
(Supplementary Fig. 1). Moreover, we did not find notable
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Fig. 1 Sweat from the fingertips enables individualised metabolic biomonitoring. A straight-forward workflow for sweat sampling and processing was
established and successfully applied to proof-of-principle studies to investigate caffeine metabolism in an individualised fashion. a Graphical summary of
the workflow including consumption of a cup of coffee or a caffeine capsule, sampling sweat from fingertips, the extraction of analytes and subsequent
LC-MS/MS analysis as well as data analysis with respective durations in minutes. Panel a was modified from Servier Medical Art, licensed under a Creative
Common Attribution 3.0 Generic License (http://smart.servier.com/) and BioRender (https://biorender.com/). Tf Tracefinder Software, Cd Compound
Discoverer Software (both Thermo Fisher Scientific). b Extracted ion chromatograms of exemplary sweat components are shown. Based on their retention
time, analytes were assigned to three groups as listed in ¢. ¢ Identities of sweat constituents according to order of elution. CA chlorogenic acid, MX
methylxanhine, PX paraxanthine, TB theobromine, TP theophylline, Progest. progesterone. d Principal component analysis (PCA) of finger sweat samples
derived from the left (square) and right (circle) hand of three participants is depicted before and after coffee consumption at two different days (light and
dark colour). PCA was calculated with a set of 250 metabolites (Supplementary Data 1) and successfully clustered the finger sweat samples according to
the participants.

differences of the sweat composition between the left and right
hand from a given individual (Fig. 1d).

Sampling sweat from the fingertips is reliable and robust.
Biomolecules are characterised by LC-MS according to retention
time (RT), the accurate mass of the molecular ion derived from
the full mass spectrum (MS1) and the fragmentation pattern
determined by tandem mass spectrometry (MS2). The experi-
mentally determined mass-to-charge ratios of 15 representative
metabolites showed mass deviations below <2 ppm, which are
typical for Q Exactive HF instruments (Supplementary Table 1).
The coefficient of variation (CV) of the RT determined for the
internal standard caffeine-(trimethyl-D9) was found to be 1%
across 636 injections (Fig. 2a, see methods, study A and C).
Caffeine-(trimethyl-D9) was injected with every sample at 10 pg

on column. The CV of the areas under curve (AUCs) across the
same sample set was 11% (n=636). The CV improved slightly
when considering study A only (CV=7%, n=186), but
remained constant for study C (CV =10%, n = 450). This indi-
cated that the performance of the LC-MS system was robust
across each sample set. MS2 spectra were of good quality and
provided high matching factors, which supported the identifica-
tion of previously known and newly identified metabolites found
in sweat, e.g. tryptophan*2 and dopamine, respectively (Fig. 2b).
Caffeine and its three main metabolites paraxanthine, theo-
bromine and theophylline were spiked onto sampling units in the
range of 1-100 pg uL~L. These samples were processed according
to the above-mentioned procedures and linear calibration curves
were obtained with associated R?>0.997 (Fig. 2c). At con-
centrations of 100 fguL~!, these molecules were still detected
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Fig. 2 LC-MS/MS analysis of metabolites from sweat of the fingertips is precise and robust. a Coefficients of variation of the retention times (RT) and
areas under the curve (AUC) of a set of LC-MS/MS runs, as well as AUCs for the coffee (study B) and caffeine capsule (study C.1) intervention studies
were determined for the internal standard caffeine-(trimethyl-D9). The means (boxes) and standard deviations are as follows: for the retention time
3.28£0.02, for the coffee AUCs 1.80 + 0.13 x 105, for the capsule AUCs 1.56 + 0.15 x 106 and for all AUCs 1.63 + 0.18 x 10. The dashed red line was set to
10%. b Head-to-tail comparison of the recorded MS2 spectrum (blue) to the reference spectrum from mzcloud (red) of tryptophan (left) and dopamine
(right) demonstrates high spectral quality supporting reliable compound identification. ¢ Calibration curves for caffeine, theobromine, paraxanthine and
theophylline with respective correlation factors (R2) are shown. nAUC normalised area under the curve.

with signal-to-noise ratios >100 on the Q Exactive HF. Com-
parison of a spiked and processed caffeine standard (10 pgpL~1)
to a directly injected caffeine standard (10 pguL~!) yielded an
extraction efficiency of 93%. The lower limit of quantification
(LLOQ) was determined from the calibration curves as the mean
AUC plus ten times the standard deviation of caffeine and its
metabolites found in blank sampling units. This resulted in a
LOQ of 0.2pguL~! for caffeine, 0.1 pguL~! for paraxanthine
and 1.7 pguL~! for theobromine (see Source Data). The AUCs
for theophylline in filter blanks and caffeine in tap water and
paper towels were below the limit of detection (LOD), which
was calculated as the mean AUC plus three times the standard
deviation.

Coffee consumption revealed coffee-specific xenobiotics in
finger sweat. After confirming sweat from the fingertips to con-
tain endogenous metabolites, as well as xenobiotics mainly related
to coffee consumption, we designed an intervention study with 11
participants, who consumed a standardised amount of coffee after
a 12 h fasting period with regard to caffeine-containing food (see
methods, study B). Two additional volunteers were sampled, who
did not consume coffee, thus representing the control group.
Sweat samples were collected before coffee consumption and
subsequently after 15, 30, 45, 60, 90 and 120 min. Caffeine is a
widely used stimulant of the central nervous system and features
an excellent oral bioavailability*>#4. Since the ingestion of an

4

equivalent of a double espresso was already shown to have sys-
temic effects by affecting sleep behaviour*>~47, we expected to
find caffeine and related xenobiotics upon coffee consumption in
sweat from the fingertips. The metabolite levels of the participants
before coffee consumption (0 min) revealed negligible amounts of
chlorogenic acid, trigonelline and caffeine, while the primary
metabolites of caffeine showed significant background levels (e.g.
paraxanthine, theobromine and theophylline). The control group
featured stable metabolite levels over time with small variations
probably stemming from fluctuations in the rate of sweat excre-
tion (Supplementary Fig. 2). Strikingly, the sweat from the fin-
gertips 15 min post consumption revealed 35 xenobiotics of 121
metabolites (29%) contained in coffee presently identified by us
from aqueous extracts of the roasted coffee beans used for this
study, including among others caffeine, theobromine, theophyl-
line, paraxanthine, methylxanthines, chlorogenic acid, trigonel-
line, methylsuccinic acid, quinic acid and iditol (Supplementary
Data 2). The AUCs of caffeine, chlorogenic acid and trigonelline
increased significantly in all volunteers as early as 15 min after
coffee consumption (Fig. 3a). The time-dependent sampling
revealed differences in kinetic properties of the coffee-specific
xenobiotics, especially regarding absorption and clearance rates.
For example, the AUCs of caffeine and chlorogenic acid peaked
after 15 min, followed by rapid clearance, while the AUCs of
the dimethylxanthines increased steadily over time on top of a
pre-existing pool (Fig. 3b). Several coffee-specific metabolites

NATURE COMMUNICATIONS | (2021)12:5993 | https://doi.org/10.1038/541467-021-26245-4 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26245-4

ARTICLE

Caffeine Chlorogenic Acid Trigonelline
ok %
]
o
)
<
c
10
0
0 15 0 15
Sampling time point [min]
b
g Sampling time point
§ RN / 0 min
§ A ) A 15 min
< 120 min
i -~ 1440 min

2021 22 23 24 25 26 2.7 2.8 2.9 3.0 31 32 3.3 34 35 3.6 3.7 3.8 3.9 4.0
Retention time [min]

Paraxanthine
[2.47min]

Theobromine
[2.07min]

— 4E6

6E6

S 4E6

Theophylline
[2.57min]

Caffeine
[3.21min]

Chlorogenic Acid
[3.05min]

6E6 8ES 8E6 4E8
O " 6ES /’ 6E6 3E8
< 4E5 4E6 2E8
2E6 2E6 2E5 266 1E8
o ! !
15 120

0’15 120 1420 9715 120 1440 1230 %15 120 1440 %15 120 1440
c Sampling time-point [min]
A
[0] . .
e Chlorogenic Acid + Isomers
3 [EIC: m/z 355.1024 + 5 ppm]
c
3 Coffee L
< Sweat [15min] }L
]
© Sweat [0min]

10 12 14 16 1.8 20 22 24 26 2.8 3.0 3.2 34 36 3.8 40 42 44 46 48 50
Retention Time (min)

Fig. 3 Xenobiotics are detected in a time-dependent manner in sweat from the fingertips after coffee consumption. a Levels of normalised areas under
the curve (nAUCs) for caffeine, chlorogenic acid and trigonelline, before (0) and 15 min (15) after coffee consumption are shown, demonstrating a
significant increase in all participants (n =13 x 2 time-points) after 15 min. D'Agostino & Pearson test was performed to check normality of the data. Paired
two-tailed Wilcoxon signed rank tests were performed for 13 volunteer profiles, delivering a p-value = 0.0002 for caffeine, chlorogenic acid and
trigonelline. The mean nAUCs (boxes) and standard deviations are the following: for caffeine 4.8 + 4.4 at O min and 56 * 35 at 15 min, for chlorogenic acid
0.03£0.04 at O min and 0.8 £ 0.7 at 15 min, for trigonelline 1.0 £1.7 at O min and 12 £16 at 15 min. b The temporal evolution of metabolite profiles is
exemplarily shown for one participant (Volunteer 3, study A). The sampling time-point 1440 min represents the time-point before consumption on the
second sampling day. Whereas caffeine (violet) and chlorogenic acid AUCs (orange) were found to increase quickly after coffee consumption followed by
rapid clearance, the levels of theobromine, paraxanthine and theophylline (green) increased more slowly within the observation period. ¢ Similarity of
extracted ion chromatograms (EIC) of chlorogenic acid and its isomers from coffee extracts and from sweat of the fingertips 15 min after coffee
consumption. The corresponding sample collected just before coffee consumption (O min) served as negative control.

displayed a number of isomers in their extracted ion chromato-
grams. For example, chlorogenic acid (m/z 355.1024, RT = 3.05
min) showed at least five isomers (Fig. 3c) as verified on MS2
level. The ratio of the relative peak intensities of chlorogenic acid
and its isomers was conserved when comparing coffee extracts
and sweat from the fingertip. This indicated that these isomers are
equally distributed into the water-soluble body compartment and
are equally cleared from body on a rapid timescale. Chlorogenic

acids and its isomers were not observed prior to coffee con-
sumption. Such a comparative analysis strategy may be used to
discover other xenobiotics distributed to sweat glands in a sys-
temic fashion as indicated by the yet unidentified feature detected
at m/z 337.0920 (Supplementary Fig. 3). These findings provide
evidence that ingested xenobiotics may be robustly detected in the
sweat from the fingertips, and their time-dependence mirrors
their pharmacokinetic properties.
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Finger sweat enables to elucidate individual metabolic traits.
The metabolism of caffeine by different hepatic enzymes is well
known*8, and the catabolic products were successfully identified
in sweat from fingertips after coffee consumption (Fig. 4a, Sup-
plementary Table 1). However, dimethyl- and methylxanthines
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may originate from both coffee beans and from endogenous
hepatic metabolism. Additionally, we observed significant back-
ground levels of these metabolites in sweat from the fingertips
before coffee consumption. In order to monitor the physiological
conversion of caffeine into dimethylxanthines by hepatic enzyme
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Fig. 4 Consumption of a caffeine capsule enables to elucidate individualised metabolic traits from sweat of the fingertips. a Caffeine metabolism
including known metabolic routes, metabolites and related enzymes: CYP cytochromes P450, NAT2 N-acetyltransferase 2, XDH xanthine dehydrogenase,
DM demethylase. These metabolites were all detected in sweat from the fingertips. b Six individuals participated in the coffee as well as in the caffeine
capsule studies. The AUCs of caffeine and the primary metabolites are compared depending on the duration of the fasting period (12 vs 48 h, n=6).
Longer fasting significantly reduced the amounts of xenobiotics in sweat from the fingertips. It was tested with Kolmogorov-Smirnov test using
Dallal-Wilkinson-Lilliefors p-value if values came from a Gaussian distribution. A two-tailed paired t-test (6 participants x 2 time-points) was performed for
caffeine, paraxanthine, theobromine, and theophylline. ¢ Shared-control plot with data from 47 volunteer profiles for paraxanthine is shown. The mean
differences between the control group (time-point before consumption, red line) and each of the sampling time-points post ingestion is plotted on the y-
axis. Paraxanthine is significantly upregulated from the sampling time-point 1.5 h on after ingesting a caffeine capsule. The effect size is presented as a
bootstrap 95% confidence interval. Mean difference, lower and upper limits are provided in the Source data. d Exemplary metabolic profiles of two
participants, demonstrating individual differences in metabolic properties regarding caffeine metabolism as exemplified by the preferential formation of
paraxanthine in volunteer profile 1in contrast to theobromine in case of volunteer profile 2. Caffeine is displayed on the right y-axis, while theobromine,
paraxanthine and theophylline are displayed on the left y-axis. Error bars represent standard deviation of two technical replicates (n = 2) for each of the 11
time-points. Means and standard deviations can be found in the Source data. e Metabolic changes 4 h after consuming a caffeine capsule demonstrated
with a volcano plot illustrating the similarities of metabolite regulations in 47 volunteer profiles. Next to the known caffeine metabolites, adenosine is
regulated. f Boxplots for adenosine and dopamine before and 4 h/5 h after consuming a 200 mg caffeine capsule shown for 47 (study C.1 and C.2)/ 27
(study C.2) volunteer profiles. Normality of the data was checked with D'Agostino-Pearson test. A two-tailed Wilcoxon Signed Rank Test was performed
for adenosine. A tow-tailed t-test was performed for dopamine. nAUC normalised area under the curve. Boxes represent the means of each time-point. All

statistical test results as well as means and standard deviations can be found in the methods section.

activity, we designed a study in which participants refrained from
consuming caffeine-containing products for at least 48 h before
ingesting a single caffeine capsule (200 mg). The caffeine capsule
and the longer fasting time were chosen to minimise background
contributions from catabolic products of caffeine. Forty volun-
teers were enrolled in this study and sweat from the fingertips was
sampled repeatedly over 27 h with up to 20 sample collections per
volunteer (see methods, study C.1 and C.2). Six individuals par-
ticipated in both the coffee consumption study (study B) and the
caffeine capsule study (study C.1). Indeed, their prolonged fasting
featured an improved baseline and revealed a significant decrease
of dimethylxanthines to negligible levels after the 48 h fasting
period compared to the 12 h fasting period (Fig. 4b). Ingestion of
the caffeine capsule significantly increased the abundance of
caffeine in sweat from fingertips in all volunteers already after
15 min, in accordance with coffee consumption. The caffeine
abundance remained elevated for at least 480 min in all volunteers
and returned close to baseline after 24 h (Supplementary Fig. 4).
The abundance of the primary metabolite paraxanthine increased
more slowly and peaked between 360 and 480 min post ingestion
(Fig. 4c). Individual metabolic time-courses revealed rather
striking differences regarding caffeine metabolism (Fig. 4d). For
example, volunteer profile 1 displayed a sharp increase in caffeine
abundance, which remained relatively constant over 480 min,
while paraxanthine abundance increased steadily during this
time period. In contrast, volunteer profile 2 featured a similar
increase in caffeine abundance, but started with an elevated
theobromine baseline, which also represented the main metabo-
lite of caffeine. These findings suggest that sampling sweat from
the fingertips may be of particular interest for characterising
personalised metabolic traits. Cytochrome P450 enzymes are key
players in the hepatic metabolism and several isoforms are known
to process xenobiotics at different rates*$. Thus, xenobiotics like
caffeine may be subjected to variable metabolisms depending on
the individual expression of these enzymes. This may reveal
individual physiological responses to xenobiotic exposure that
may serve as proxies for hepatic metabolic activity. Therefore, the
influence of the metabolic turnover of caffeine depending on the
expression of cytochrome P450 enzymes was investigated in vitro
using HepG2 cells (Supplementary Information, Supplementary
note 1). Indeed, we found that HepG2 cells would increase the
metabolic turnover of caffeine to its primary metabolites upon
chemical induction of cytochrome P450 enzymes with benzo-[a]-
pyrene (Supplementary Fig. 6). Moreover, the induction of these

enzymes also affected the relative ratios of the primary metabo-
lites significantly. This supports the conclusion that the individual
enzymatic activity status may modulate the formation of meta-
bolites subsequently detected in sweat from the fingertips.
Statistical analysis of the metabolites reproducibly detected in all
47 (study C.1 + C.2) or 27 (study C.2) volunteer profiles revealed
the significant upregulation of caffeine, paraxanthine and theo-
phylline, as well as adenosine 4h post ingestion. Theophylline
and paraxanthine reflected the metabolic turnover of caffeine
within each volunteer profile, while adenosine was identified as an
endogenous metabolite upregulated upon caffeine ingestion
(Fig. 4e, f). Another endogenous metabolite, dopamine was sig-
nificantly induced 5h after consuming a caffeine capsule in 27
participants (study C.2, Fig. 4f, Supplementary Fig. 5). Adenosine
and dopamine are not directly related to caffeine metabolism.

Mathematical modelling quantifies individual dynamic meta-
bolic responses. Fluctuations in the rate of sweat excretion cause
significant variance in the collected sweat volumes. This repre-
sents a fundamental challenge for the time-course analysis of
sweat from the fingertips. For example, the apparent down-
regulation of all analytes at 120 min in volunteer profile 2 (Fig. 4d,
arrow) strongly suggests that at that time-point less sweat was
collected in comparison to the adjacent measurements (see
Fig. 5e, arrow). Moreover, the magnitude of this effect on the
apparent concentration is unknown. We used dynamic metabolic
network modelling to discern the effects of the sweat volume on
the measured time-series of caffeine catabolism in the body (see
methods). In brief, caffeine uptake and clearance via its major
metabolic products paraxanthine, theobromine and theophylline
can be described by first order kinetics (Fig. 5a)**°0, Due to
fasting we can set the initial caffeine concentration at time 0 min
to zero (Fig. 4b). Additionally, we consider the sweat volume to be
a function of time, but assume that at every time-point the sweat
volume is constant across all metabolites. The assumption holds if
the modelled metabolites are not reabsorbed during sweating.
The resulting mathematical model was fitted to each volunteer.
We estimated the kinetic constants, the initial concentrations of
paraxanthine, theobromine and theophylline and the sweat
volumes at each time-point, as exemplified for volunteer profiles
1 and 2 (Fig. 5b, ¢, e, f and Supplementary Table 2). In both cases
our model accurately described individual caffeine metabolisms
with good accuracy (goodness of fit Rzadjusted >0.90). Besides the
possibility to estimate the rate of sweat excretion by means of
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represent the month of sampling.

this modelling approach, the shape of the curves visualises the
dynamic metabolic patterns of each individual.

Interestingly, the kinetic constants for uptake (k;) of caffeine is
within the standard deviation, while the constants of conversion
(ky, ks, k) are approximately half of the literature values of
population averages for blood plasma (Supplementary Table 2)°1.
Whereas the fractional conversion of caffeine to the main
metabolic product paraxanthine in volunteer profile 1 is similar

to what is described as population average®!->2 we saw substantial
differences for volunteer profile 2, who displayed theobromine as
the main metabolic product of caffeine (Supplementary Table 3).
We found individual differences to be robust over time. In Fig. 5d
a two-dimensional PCA plot of the fitted conversion constants of
caffeine (k,, k3, k4, ks) is shown. Individuals who generated at
least two volunteer profiles (i.e. independent time-series) are
marked with large symbols. Their respective colour indicates the
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month of sampling. Not only do two profiles of the same
volunteer within one month cluster close to each other (e.g. star
symbols), but also the ones that were sampled more than 1.5
years apart are in close proximity (e.g. diamond symbols). The
biggest difference of volunteer profiles from one participant was
found for profiles 4 and 26 (big circles). For volunteer profile 26,
however, we observed an overall poor fit (Rzadjusted of 0.56
compared to 0.984 for profile 4). On another note, the original
axes in Fig. 5d show that the catabolism of caffeine into
paraxanthine (k) and direct elimination (ks) is negatively
correlated, whereas the catabolism of caffeine into theobromine
(k3) and theophylline (k,) is positively correlated. This correlation
is known in literature and is likely due to common hepatic
cytochrome P450 enzymes catalysing the conversion of caffeine to
theobromine and theophylline (Fig. 4a)3.

Targeted assays can be established for clinical implementation.
The described metabolic phenotyping approach represents a
powerful discovery tool for endogenous and xenobiotic com-
pounds found in sweat of the fingertips. In order to evaluate the
feasibility of clinical implementation, we established a targeted
assay for caffeine, and the primary metabolites theobromine,
theophylline and paraxanthine on a triple quadrupole MS using
multiple reaction monitoring (MRM, see Supplementary Infor-
mation, Supplementary note 2 and Supplementary Table 4). For
this purpose, five participants consumed a standardised coffee on
3 independent days after a 12 h caffeine-free fasting period and
samples were collected at different time intervals in analogy to
study B. The assay was validated and revealed linear ranges
between 0.5 and 300pguL~! of the respective metabolites
(0.25-150 pg on column, Supplementary Fig. 9). LOD values were
<0.2pguL~! per collected sweat sample. The overall process
efficiencies were generally >88% and the precision of 25 pg uL~!
spiked metabolite was <1% (Supplementary Table 5), while the
overall CV of the AUC of caffeine 5 h after coffee consumption of
all volunteers over 3 independent days was 22% (Supplementary
Fig. 10). This suggests that targeted assays based on the analysis of
sweat from the fingertips can be successfully established directly
from metabolic phenotyping.

Discussion
The present study provides evidence that sweat from the finger-
tips can be used for dynamic metabolic phenotyping. The sample
collection is non-invasive, safe and can be accomplished by
untrained personnel, supporting patience compliance?’. Other
minimally to non-invasive approaches such as microneedle pat-
ches or sweat patches, require longer collection periods of several
minutes up to days, aiming to collect sweat at a single time-
point!7>43>_ In our approach, time-course analyses with frequent
sampling can be performed due to the facile collection procedure.
Our setup allows the analysis of unstimulated sweat in contrast to
published approaches where sweat production was induced with
pilocarpine iontophoresis (coupled with the Macroduct sweat
collector) or physical exercise. Such stimuli were shown to alter
the physiological sweat composition, which may introduce bias
into the analysis!”7*°. The entire workflow can be accomplished
within 20 min per sample, and has the potential to support large
scale longitudinal metabolic studies. However, metabotyping
the small amounts of sweat requires sufficiently sensitive analy-
tical equipment. Although our approach centres on metabolic
profiling using dedicated high-resolution instrumentation, we
demonstrated the successful transfer to a targeted assay. Targeted
MS is now routinely implemented in the clinical laboratory>”.
Sweat from the fingertips represents a rich source for metabolic
phenotyping. Considering that a given metabolite may be

represented in an LC-MS experiment by several features due to
different adducts and charge states®S, it may be estimated that
several thousand distinct metabolites can potentially be identified
in sweat from the fingertips using this methodology. So far, we
have verified 250 metabolites with external standards (Supple-
mentary Data 1). The analysis is robust and sensitive with limits
of detection of metabolites found in the sub-picogram range per
sweat sample. Indeed, the detection limits found in this study
showed improved sensitivity compared to previously used
methodologies®®. As a result, numerous endogenous metabolites
were identified, which have not yet been described in sweat,
including dopamine, progesterone and melatonin (Fig. 1). This
highlights the potential of this approach to successfully identify
low-abundant metabolites, which are challenging to detect in
other biofluids due to matrix effects (e.g. melatonin in blood or
plasma)>®-61. Analysis of the area under the curve of the internal
standard revealed an overall coefficient of variation of 11% across
636 samples and indicated acceptable precision (Fig. 2).

Proof-of-principle intervention studies were successfully car-
ried out and support the applicability of the method. In two
separate studies, participants were asked to consume a standar-
dised cup of coffee or ingest a caffeine capsule after a caffeine—
and theobromine-free diet for 12-72h. After ingestion, sweat
samples were collected up to 20 times within 27 h per volunteer.
Sampling intervals of 15 min were feasible. Coffee consumption
led to a significant upregulation of caffeine, chlorogenic acid and
trigonelline within 15min in all participants (Fig. 3, study B).
This suggested a fast absorption and distribution of these xeno-
biotics, which also displayed distinct absorption and excretion
kinetics (Fig. 3c). Altogether, 35 metabolites originating from
coffee were detected in sweat from the fingertips.

The observation of significant background levels of dimethyl-
xanthines after coffee consumption in study B pointed towards a
confounding problem with respect to the origin of these caffeine
metabolites. In fact, their temporal increase may have been due to
their absorption from consumed coffee and hepatic caffeine
metabolism. In order to resolve this question, we designed
an additional study in which participants ingested a caffeine
capsule (200 mg) only and adhered to a longer caffeine- and
theobromine-free fasting regime. Of note, the longer fasting
periods (48-72h) significantly reduced the background levels of
the primary metabolites (Fig. 4b, study C) compared to 12h
fasting (study B). Interestingly, statistical analysis of the metabolic
profiling data from study C, involving the caffeine capsule,
revealed a significant upregulation of caffeine and of the meta-
bolic products theophylline and paraxanthine across all partici-
pants after 480 min (Fig. 4). Moreover, participants featured
significantly increased levels of dopamine after 5h. Being an
endogenous metabolite, it is plausible to assume that this upre-
gulation corresponded to a physiological response to caffeine
ingestion. Increased dopamine levels were already observed upon
caffeine®?, as well as coffee consumption by others®3. Adenosine
was significantly induced 4 h post ingestion of a caffeine capsule.
Caffeine exerts most of its biological actions such as countering
sleep pressure via antagonising adenosine receptors®®. It has been
demonstrated that caffeine increases plasma adenosine con-
centration potentially via receptor-mediated regulation of the
plasma adenosine concentration® and this finding seems to
extend to sweat from the fingertips. We have previously described
individual opposing responses with regard to anti-inflammatory
effects after coffee consumption®. Such studies required the
collection of blood from volunteers and this could now be
facilitated by analysing sweat from the fingertips. Adenosine is
also known to be an anti-inflammatory mediator that may
regulate neutrophils, macrophages and lymphocytes through
interacting with surface receptors of these cells®’. It is important
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Table 1 Overview of the three studies discussed in this publication.

Study Volunteers Design Fasting [hours] Sampling time-points
A 2 males, 1 female Observational 12 0, 15, 30, 45, 60, 90 and 120 min on 2 consecutive days
B 7 males, 6 females  Double espresso or 12 0, 15, 30, 45, 60, 90 and 120 min
control group
C1 8 males, 9 females  Caffeine capsule 48 0, 15, 30, 45, 60, 90, 120 min and 3, 4, 6, 8, 24, 25, 26 and 27 h
C.2 16 males, 11 females Caffeine capsule 72 0,15, 30, 45, 60,90,120minand 3,4, 5,6, 7, 8,9,10,11,12,13, 14
and 24 h
to note that sweat from the fingertips may not only reveal Methods

ingested xenobiotics, but also endogenously produced metabolic
products and physiological responses to bioactive xenobiotics.

Individual metabolic traits were then investigated by analysing
the time-dependent metabolic evolution of caffeine upon ingest-
ing a caffeine capsule (Fig. 4d). We found that sweat from the
fingertips may be successfully used for the personalised assess-
ment of such metabolic activities. Importantly, this strategy may
be extended to other xenobiotics or drugs and their causally
related metabolic products in order to obtain insight into specific
processes of human metabolism in an individualised manner.
Moreover, by inducing cytochrome P450 enzymes in HepG2 cells
in vitro (Supplementary note 1), we were able to modulate the
metabolic turnover of caffeine and the formation of specific
catabolic products. This suggests that the relative ratios of caffeine
to its primary metabolites may reflect hepatic activity, since the
physiological hepatic metabolism of caffeine relies on a similar set
of enzymes as in HepG2 cells.

Variations in the sweat volume over the course of the study
represented a major challenge for normalisation and quantifi-
cation. Mathematical modelling overcame this issue by addres-
sing molecular constraints of substrate-product relations of
enzymatically linked metabolites. Successful modelling has two
central prerequisites: firstly, the measurement of at least
two metabolites with known dynamics and, secondly, a linear
relationship of said metabolites to the sweat rate. Importantly,
this allowed us to compute a sweat volume that is proportional
to all metabolites at each time-point. This approach was capable
of delivering estimates of individual rate constants for drug
uptake, metabolism and clearance and therefore allows to model
dynamic metabolic patterns in individuals (Fig. 5). Sampling
sweat from the fingertips enables time-course studies, which are
evaluated by means of conversion rates of metabolically related
substance classes. Their observed robustness suggests that
the development of personalised tests via finger sweat mea-
surements is feasible. For example, caffeine elimination was
shown to be a proxy for liver function®, and we hypothesise
that a future study using an experimental setup identical to the
caffeine capsule study could differentiate between patients with
cirrhotic and normal livers. Additionally, we argue that the
method presented here provides a convenient solution to the
normalisation problem of finger sweat, which previously only
has been tackled by employing microcapillaries®®. However,
they require large volumes of sweat, and thus need either long
sampling times or require physical exercise. Both are detri-
mental when measuring fast pharmacokinetics, for example, for
caffeine this would circumvent the requirement of absolute
quantitative information of a single measurement.

In summary, metabolic phenotyping from sweat of the fin-
gertips in conjunction with mathematical modelling is a pro-
mising approach to obtain dynamic metabolic patterns from
individuals that may overcome the limitations of conventional
composition biomarkers. Further research is currently performed
in order to consolidate the potential of sampling sweat from the
fingertips for applications in precision medicine.

Reagents and chemicals. LC-MS grade methanol, water, acetonitrile and formic
acid used during sample preparation and LC-MS/MS analysis were purchased from
VWR chemicals (Vienna, AT). Xenobiotic and metabolite standards (caffeine,
theobromine, theophylline, paraxanthine, 1-methylxanthine, 3-methylxanthine, 7-
methylxanthine, 1-methyluric acid, 3-methyluric acid, 1,7-dimethyluric acid, 3,7-
dimethyluric acid and 1,3,7-trimethyluric acid, chlorogenic acid, xanthine, 5-
Acetylamino-6-formylamino-3-methyluracil, dopamine and proteinogenic amino
acids) were either purchased from Sigma-Aldrich (Vienna, AT) or Honeywell
Fluka (GER). Caffeine capsules were bought from Mach dich wach! GmbH (GER).
Sampling units were made from filter papers (precision wipes, number = 7552,
white, 11 x 21 cm, Kimtech Science, Kimberly-Clark Professional, USA) using a
circular puncher of 1cm?.

Standard solutions and calibration samples. Stock solutions of 1 mg mL~! of the
analytical standards and the internal deuterated standards caffeine-(trimethyl-D9)
and N-acetyl-tryptophan in methanol were prepared and stored at 4 °C. For caf-
feine, paraxanthine, theobromine and theophylline calibration curves were gener-
ated by spiking onto sampling units with the following concentrations: 0.1, 1, 5, 10,
15, 25, 50 and 100 pg uL~L. The internal deuterated standards were prepared at a
concentration of 1 pguL~! in an aqueous solution containing 0.2% formic acid,
which served as the extraction solution for all samples.

Cohort design. Altogether, 21 males and 19 females with ages between 20-55 years
and a BMI of 21 + 8 kgm~2 were enrolled in this study. Participants had different
dietary habits regarding the consumption of coffee; rare to regular consumption.
Prior sampling, participants were required to fast caffeinated food (e.g. chocolate)
and drinks (e.g. coffee, tea and energy drinks) for a period of 12-72 h. Sweat
samples from the fingertips were collected at different time intervals and in the
presence or absence of an intervention (see Table 1, studies A-C). Study B involved
the consumption of a standardised coffee (equivalent to a double espresso), while
studies C.1 and C.2 involves the ingestion of a caffeine capsule (200 mg). Seven
volunteers have participated in more than one study, which gave a total of 47
volunteer profiles for study C. It was ensured that the volunteers did not touch the
prepared coffee with their fingers.

Collection of sweat from the fingertips. Sampling units of 1 cm? circular surface
were pre-wetted with 3 puL water and provided in 0.5 mL Eppendorf tubes. For each
sweat collection, volunteers cleaned their hands using warm tap water and dried
them with disposable paper towels. Volunteers kept their hands open in the air at
room temperature for 1 min. Then, the sampling unit was placed between thumb
and index finger using a clean tweezer and held for 1 min. Sweat formation was not
forced. Filters were transferred back to labelled 0.5 mL Eppendorf tubes using a
clean tweezer and stored at 4 °C until sample preparation.

Sample preparation. Coffee extracts were prepared taking an aliquot of 1 mL of a
250 mL coffee cup used for study A and B, which was centrifuged for 10 min at
15000 x g. The supernatant was diluted 1:100, 1:1000 and 1:10000 with the
extraction solution consisting of an aqueous solution of caffeine-(trimethyl-D9)
(1 pguL~1) with 0.2% formic acid. The dilutions were again centrifuged before
analysis by LC-MS/MS.

For the extraction of metabolites from the sampling units, 120 uL of the
extraction solution consisting of an aqueous solution of caffeine-(trimethyl-D9)
(1 pgpL~!) with 0.2% formic acid was added into the 0.5 mL Eppendorf tube
containing the sampling unit. The metabolites were extracted by pipetting up and
down 15 times. The sampling unit was pelleted on the bottom of the tube and the
supernatant was transferred into HPLC vials equipped with a 200 uL V-shape glass
insert (both Macherey-Nagel GmbH & Co0.KG) and analysed by LC-MS/MS.
Additionally, 10 unused filter, 10 paper towels and 10 tap water blanks were
extracted similarly to determine potential contaminants and metabolite
background levels.

LC-MS/MS analysis. A Q Exactive HF (Thermo Fisher Scientific) mass spectro-
meter coupled to a Vanquish UHPLC System (Thermo Fisher Scientific) was
employed for this study. Chromatography was performed using a Kinetex XB-C18
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column (100 A, 2.6 um, 100 x 2.1 mm, Phenomenex Inc.). Mobile phase A con-
sisted of water with 0.2% formic acid, mobile phase B of methanol with 0.2%
formic acid and the following gradient program was run: 1-5% B in 0.3 min and
then 5-40% B from 0.3-4.5 min, followed by a column washing phase of 1.4 min at
80% B and a re-equilibration phase of 1.6 min at 1% B resulting in a total runtime
of 7.5 min. Flow rate was set to 500 uL min~!, the column temperature to 40 °C, the
injection volume was 10 uL and the injection peak was found at RT = 0.3 min. All
samples were analysed in technical duplicates. An untargeted mass spectrometric
approach was applied for compound identification. Electrospray ionisation was
performed in positive and negative ionisation mode. MS scan range was m/z
100-1000 and the resolution was set to 60000 (at 7/z 200). The four most
abundant ions of the full scan were selected for HCD fragmentation applying 30 eV
collision energy. Fragments were analysed at a resolution of 15000 (at m/z 200).
Dynamic exclusion was applied for 6s. The instrument was controlled using
Xcalibur software (Thermo Fisher Scientific).

Data analysis. Raw files generated by the Q Exactive HF instrument were analysed
using the Compound Discoverer Software 3.1 (Thermo Fisher Scientific). Identified
compounds were manually reviewed using Xcalibur 4.0 Qual browser and Freestyle
(version 1.3.115.19) (both Thermo Fisher Scientific) and the obtained MS2 spectra
were compared to reference spectra, which were retrieved from mzcloud (Copy-
right © 2013-2020 HighChem LLC, Slovakia). The match factor cut-off from
mzcould was 80, while the mass tolerances were 5 and 10 ppm on MS1 and MS2
levels, respectively. Moreover, the identity of compounds suggested by Compound
Discoverer was verified by analysing purchased standards using the same LC-MS
method. The Tracefinder Software 4.1 (Thermo Fisher Scientific) was used for peak
integration and calculation of peak areas. The generated batch table was exported
and further processed with Microsoft Excel (version 1808), GraphPad Prism
(version 6.07) and the Perseus software (version 1.6.12.0)7, the letter being used
for the principal component analysis. Untargeted metabolic profiling by mass
spectrometry delivered more than 50000 reproducible sweat-specific features per
analysis. Microsoft PowerPoint (version 1808) was used for creating figures.

Statistical analysis. D’Agostino-Pearson tests as well as Kolmogorov-Smirnov tests
with Dallal-Wilkinson-Lilliefors p-value were performed to test if values came from a
gaussian distribution. Two-tailed, paired t-tests or Wilcoxon Signed Rank Tests were
performed for mass spectrometry data using GraphPad Prism (Version 6.07) to
evaluate the significance of the abundance increase/decrease of compounds and their
metabolites. For Fig. 4b it was tested with Kolmogorov-Smirnov test using
Dallal-Wilkinson-Lilliefors p-value if values came from a Gaussian distribution. A
two-tailed paired t-test (6 participants x 2 time-points) for caffeine (p-value = 0.1033,
t=51.990, df=>5), paraxanthine (p-value = 0.0297, t = 3.012, df=>5), theobromine
(p-value = 0.0203, t = 3.353, df=5) and theophylline (p-value = 0.0118, t = 3.866,
df=5). Means and standard deviations are for caffeine 25 + 25 for 12 h fasting and
4.8+2.7 for 48 h fasting, for paraxanthine 6.6 +5.5 for 12 h fasting and 2.2 +2.1 for
48 h fasting, for theobromine 4.2 + 2.0 for 12 h fasting and 1.5 + 1.0 for 48 h fasting,
for theophylline 1.1+ 0.8 for 12 h fasting and 0.5+ 0.5 for 48 h fasting. For Fig. 4f
normality of the data was checked with D’Agostino-Pearson test. A two-tailed Wil-
coxon Signed Rank Test was performed for adenosine (n =47, sum of positive
ranks = 1020, sum of negative ranks = —17,00, sum of signed ranks = 1003, p-
value < 0.0001). A tow-tailed ¢-test was performed for dopamine (p-value <0.0001,

t = 5.416, df = 26). The means and standard deviations are the following: for ade-
nosine 0.1+0.2 at 0h and 0.7+ 1.2 at 4 h, for dopamine 0.1+0.1 at 0h and 0.2+0.1
at 5 h. Volcano plots were obtained using Perseus Software”’, setting the false dis-
covery rate (FDR) to 0.05 and the minimal fold change (s0) to 0.1. For Fig. 4e the
—log p-value for caffeine is 19.02, for paraxanthine 14.48, for theophylline 9.16 and
for adenosine 1.14. Shared-control plots were generated with an R script’1.

Mathematical modelling. The model describes the concentration time-series of
the ingested free caffeine and four sweat metabolites (caffeine, paraxanthine,
theobromine, theophylline) within the constraints of following assumptions
(Fig. 5a):

® caffeine metabolism can be described by mass-action kinetics in a one-
compartment body model*>>,

® the uptake of external caffeine is instantaneous (i.e. no lag time between
ingestion and absorption into the body),

® the steady-state volume of distribution of caffeine, paraxanthine,
theobromine and theophylline is instantaneously reached and time
independent>0>1,

®  concentration enrichment due to an increase in the water fraction from
blood to sweat and dilution through the inability of bound caffeine to
diffuse cancel each other out’?,

®  apparent metabolite concentrations are proportional to the sweat volume
(see Supplementary Fig. 8, Eq. (1)), and finally,

®  sweat volumes are time dependent, but the same for all metabolites at one
time-point.

A mathematical formulation of the problem of fluctuating sweat volumes is given
in Eq. (1), where M(t) is the measured mass vector of the internal metabolites and

C(#) is the underlying concentration vector. Vyeu(t) is a time-dependent volume that
represents the sampled sweat volume. The resulting mathematical model is explained
in detail in the Supplementary Note 3: Mathematical Model. Briefly, we describe the
kinetics of caffeine metabolism with a system of ordinary differential equations
(Supplementary Information, Supplementary Note 3: Mathematical Model, Eq. (2)).
Subsequently we connect the solution of this equation over the sweat volume to the
concentrations measured in the caffeine capsule study. Our model only contains
variables that are either known and are thus fixed (volume of distribution,
bioavailability, and ingested dose of caffeine) or have a concrete physical meaning but
are unknown and need to be fitted (kinetic parameters, initial concentrations of
paraxanthine, theobromine, and theophylline, sweat volumes). It allows to estimate
absolute concentrations of tri- and dimethylxanthines in the finger sweat. Note that
Viweat(t) is not constant over time and unknown and thus a unique fitting parameter
at each sampled time-point. Therefore, the number of parameters that need to be
fitted for the model is equal to the number of time-points (one Vyye, value per time-
point) plus the number of parameters of the kinetic model. This requires the
simultaneous fitting of the kinetics of multiple metabolites upon assuming that at each
time-point Vyex(t) is constant for similar metabolites (Eq. (2)). By doing so the
amount of data points that can be used for fitting is multiplied by the number of
metabolites while the number of parameters for Vy..(f) stays constant. Thus (as long
as the kinetic model is not overly complex) the system is sufficiently determined and
data fitting is feasible.

M(t) = Ve (£) C(8) 1)
ffei araxanthine theobromi theophylline
szeal = V(s:are;e)‘tne = ngeal = szeg“mmme = Viweat (2)

Caffeine and its major catabolic products paraxanthine, theobromine and
theophylline were modelled subject to the following constraints: first order kinetics for
all reactions (k; to kg) with 0 <k, <10h~! and 0 < k, ¢ < 0.2 h~1; initial concentration
of 0 for caffeine and 0 < Cg <1pgL~! for dimethylxanthines; and variability of Viyeat
between 0.05 < Vyear(t) < 4 uL. Generally, literature values of kinetic constants and
sweat rates (without exercise) are well within the bounds of the model40-51:73.74,
Finally, Supplementary Eq. (15) was used to fit the experimental data of all volunteers
of the caffeine capsule study normalised by the machine standard individually. Fitting
was performed in Python 3.7 with the SciPy package (version 1.6.1) using the
curve_fit function and the integrated trust region reflective algorithm with default
numerical tolerances (1078)7°, To find optimal settings for the fitting procedure we
performed a systematic investigation of the hyperparameters in the Supplementary
Note 4: Sensitivity Analysis. There, our implementation of the generalised, adaptive
robust-loss function’® in combination with Monte Carlo sampling of initial
parameters for 100 times and selecting the solution with the lowest overall loss
resulted in the smallest errors. Therefore, the same settings were adopted for this
study. Moreover, with the estimated CVs associated to the fitting procedure from the
Sensitivity Analysis we calculated confidence intervals (n = 120, df = 93), which are
shown as error bars in Fig. 5b, ¢, e, and f (and Supplementary Table 2). Finally, we
performed a PCA of the standard scaled kinetic constants of caffeine degradation (k,
k3, k4, ks) of all volunteer profiles (Fig. 5d).

Programs for mathematical modelling. PCA of kinetic parameters (Fig. 5d) was
performed with Python 3.7 and scikit-learn (version 0.23.2). Levene-test in sensitivity
analysis was performed with Python 3.7 and scipy (version 1.6.1). The mathematical
modelling and sensitivity analysis was performed with Python 3.7 heavily relying on
packages scipy (version 1.6.1) and robust-loss-pytorch (version 0.0.2).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data supporting the findings from this this study are available within the manuscript
and its supplementary information. The metabolomics datasets have been deposited in
the MetaboLights repository with the accession numbers MTBLS2772 and
MTBLS277677. Any remaining raw data will be available from the corresponding author
upon reasonable request. Source data are provided with this paper.

Code availability
The code for mathematical model fitting and sensitivity analysis is available on GitHub
(https://github.com/gotsmy/finger_sweat and https://doi.org/10.5281/zenodo.5222967)78.
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