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Abstract
The severe acute respiratory syndrome (SARS-CoV-2), a newly emerging of coronavirus, continues to infect humans in the 
absence of a viable treatment. Neutralizing antibodies that disrupt the interaction of RBD and ACE2 has been under the 
spotlight as a way of developing the COVID-19 treatment. Some animals, such as llamas, manufacture heavy-chain antibod-
ies that have a single variable domain (VHH) instead of two variable domains (VH/VL) as opposed to typical antibodies. 
Nanobodies are antigen-specific, single-domain, changeable segments of camelid heavy chain-only antibodies that are 
recombinantly produced. These types of antibodies exhibit a wide range of strong physical and chemical properties, like high 
solubility, and stability. The VHH's high-affinity attachment to the receptor-binding domain (RBD) allowed the neutraliza-
tion of SARS-CoV-2. To tackle COVID-19, some nanobodies are being developed against SARS-CoV-2, some of which 
have been recently included in clinical trials. Nanobody therapy may be useful in managing the COVID-19 pandemic as a 
potent and low-cost treatment. This paper describes the application of nanobodies as a new class of recombinant antibodies 
in COVID-19 treatment.

Keywords  Single-domain antibodies · Nanobody · COVID-19 · SARS-CoV-2

Introduction

From December 2019, the new coronavirus disease 2019 
(COVID-19) has spread quickly around the world. Being 
reported in over 200 countries, it has claimed a large number 
of lives [1, 2]. As there is no effective medication for the 
severe acute respiratory syndrome (SARS-CoV-2), treating 
COVID-19 patients, particularly those with severe pneumo-
nia, is challenging [3]. Neutralizing antibodies are critical 
for SARS-CoV-2 immunity as well as COVID-19 prevention 

and treatment [4]. Although monoclonal antibody-based 
therapy can be useful for those with mild COVID-19 symp-
toms, it requires exceedingly large doses, typically a few 
grams intravenously [5, 6]. Moreover, they cannot be pro-
duced fast or economically, and are unable to target several 
epitopes at the same time [7]. Camelid antibodies with a 
single variable domain (also known as nanobodies/VHH) 
are a practical alternative, as they are tiny in size (13 to 
15 kDa), and have excellent solubility, and stability. They 
are particularly well suited for pulmonary administration [8, 
9]. VHH's high-affinity compete with the receptor-binding 
domain (RBD) of viral spike, enabling SARS-CoV-2 neu-
tralization. Therefore, the S1 RBD has become a prominent 
target for vaccine research [10, 11]. The first stage of a viral 
life cycle is entering a host cell [12, 13]. The interaction of 
the RBD of the viral spike with the cellular receptor, known 
as angiotensin-converting enzyme 2 (ACE2), is required 
for SARS-CoV-2 cell entry [14, 15]. Besides, Nbs that tar-
get chemokines and cytokines can be customized to mod-
ify inflammation responses, which could be conducive to 
COVID-19 patients' recovery [16]. In this review, we elabo-
rate on the use of nanobodies, a new type of recombinant 
antibody, as a treatment for COVID-19.
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SARS‑CoV‑2 characteristics

An unknown respiratory tract infection began in Wuhan, 
China, in the autumn of 2019. Based on the patients’ 
symptoms, clinicians diagnosed virus-induced pneumonia 
[17]. According to genomic sequencing, this pneumonia 
was caused by a novel coronavirus [18]. The international 
committee on taxonomy of viruses (ICTV) named this 
unexpected coronavirus SARS-CoV-2 [19]. As the sev-
enth coronavirus, SARS-CoV-2 is able to infect humans 
[20]. The SARS-CoV-2 is an enveloped, non-segmented, 
positive-sense single-stranded RNA virus with a genomic 
size of about 30 kb (22), which encodes both structural and 
non-structural proteins. The non-structural proteins such 
as Papain-like protease, 3C‑like serine protease (3CL-
protease), RNA-dependent RNA polymerase, Helicase, 
Endoribonuclease, and the structural proteins are spike 
glycoprotein (S), an envelope protein (E), membrane pro-
tein (M), and nucleocapsid protein (N). The coronavirus 
spiral nucleocapsid is covered by phospholipid bilayers 
with M/E proteins, and the trimmers of S protein are found 
on the virus particle’s surface [21].

The S protein of coronaviruses is a trimeric class I 
viral fusion protein. It consists of two subunits: S1 (in 
the amino-terminal) that contains RBD, and S2 (in the 
carboxy-terminal) that induces membrane fusion (Fig. 1) 
[22]. The RBD of the SARS-CoV-2 S protein mediates 
cell entry by attaching to human angiotensin-converting 
enzyme 2 (ACE2). The ACE2 is a transmembrane pro-
tein placed on the epithelial cells of the nasal mucosa, 
lungs, heart, kidneys, stomach, bladder, and intestine [23]. 
The dissociation of S1 from ACE2 is induced by recep-
tor contact, causing the transition of S2 from a metasta-
ble pre-fusion mode to a stable post-fusion mode, which 
is essential for membrane fusion [24]. The S protein can 
be a target of antibody-mediated neutralization due to its 

crucial function, and the characterization of the pre-fusion 
S structure can provide useful information for vaccine for-
mulation and development [24, 25].

Virus mutations and variants are major impediments to 
the control of the SARS-CoV-2 pandemic and the develop-
ment of an effective vaccine. The coronavirus will prob-
ably mutate during the replication phase, which will alter 
the virus's behavior as the genomes of RNA viruses are 
intrinsically unstable [26]. The mutation E484K, called an 
escape mutation, takes place in diverse variants identified 
in Brazilian (B.1.1.28), South African (B.1.351), and UK 
(B.1.1.7). The E484K mutation identified in the RBD is 
associated with the ability to evade neutralizing antibod-
ies and the body's immunological responses. This muta-
tion can influence vaccine efficacy. The E484K mutation 
increases the number of serum antibodies needed to protect 
cells from infection [27, 28]. Another mutation in the spike 
is the N501Y, which in the case of SARS-CoV-2, appeared 
in Brazilian, South African, and United Kingdom variants 
[29]. The SARS-CoV-2 RBD, with the N501Y mutation, is 
linked to the improved receptor binding specificity and the 
virus growth speed. The SARS-CoV-2 with N501Y muta-
tion was tested in the mouse model and increased infectivity 
and virulence were reported [29]. Several mutations in the 
Spike's S subunits have been reported in India, including 
the D614G. In addition, G1124V in the Spike (S2 subunit) 
protein has been recognized as a nonsynonymous mutation 
[30]. SARS-CoV-2 features can be altered by any of these 
spike mutations.

What are nanobodies

Nanobodies represent a relatively new type of recombinant 
antibody The Camelidae members, which include ancient 
species like dromedaries and camels as well as more 
recent species such as llamas and alpacas, can produce 

Fig. 1   The SARS-CoV-2 spike 
structure. S spike, E envelope, 
M membrane, RBD receptor-
binding domain, CTD C-termi-
nal domain, NTD N-terminal 
domain. The SARS-CoV-2 sur-
face protein Spike (S) is a struc-
tural glycoprotein. It comprises 
S1 and S2 subunits. The RBD 
region is located in the CTD 
part of the S1 and mediates 
ACE2 binding. The S protein 
is a possible therapeutic target 
since it promotes virus entry 
into target cells in response to 
ACE2 receptor interaction



649Molecular Biology Reports (2022) 49:647–656	

1 3

non-conventional antibodies besides conventional antibodies 
[31, 32]. The conventional (classical) antibodies produced 
by all mammals have a heterotetrameric structure with two 
heavy and two light chains, but non-conventional antibodies 
are only composed of two heavy chains and have a single 
variable domain (VHH, k15kDa), which is the antigen-
binding region (Fig. 2a and b) [33]. Heavy-chain antibodies 
(HcAbs) are the third generation of antibodies that provided 
a new approach to the creation of therapeutic antibodies [32, 
34]. Even though the lack of a light chain variable domain 
(VL) may seem disadvantageous in terms of antigen bind-
ing, nanobodies have evolved to compensate, generating 
characteristics that improve stability [33]. These antibodies' 
variable parts contain intriguing features compared to other 
antibodies including higher solubility, small size, greater 
resistance to denaturation, stability in high temperatures, and 
high/low pH, cost-effective production, high specificity, low 
immunogenicity, ease of manipulation, and identification of 
variable epitopes [35, 36]. Furthermore, tissue penetration 

and extravasation are better in nanobodies than in classical 
monoclonal antibodies, which is of great therapeutic value 
[37].

The overall-architecture framework regions (FR1/2/3/4) 
and complementarity determining regions (CDR1/2/3) 
of nanobodies are the same as VHs. The CDR3 is a key 
factor in antigen recognition and specificity and its length 
are significantly greater in nanobodies than in human VH 
domains. The CDR1 and CDR2 are proteins that contrib-
ute to the binding strength [38]. However, human immuno-
genic reactions could be triggered by nanobodies in humans. 
Thus, for therapeutic purposes, humanization protocols 
have been developed to identify the aminoacid sequences 
in the framework regions that correspond to their human 
heavy-chain variable domain counterparts [39, 40]. The 
first adult medication developed based on the single-domain 
antibody (sdAb) was approved in November 2018 by the 
European Medicines Agency (EMA) and the US Food and 
Drug Administration (FDA) [38, 41]. The antiviral effects 

Fig. 2   Nanobodies neutralize the SARS-CoV-2. FC Fragment 
crystallizable, Fab fragment antigen-binding, VH Heavy chain 
variable domain, VL Light chain variable domain, CH heavy 
chain constant  region, CL Light chain constant region, ACE2 angio-

tensin-converting enzyme 2. SARS-CoV-2 neutralization was made 
possible by inhibiting the target cell entrance. VHHs bind to the spike 
RBD and prevent the ACE2 engagement with RBD
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of nanobodies against respiratory viruses such as coronavi-
rus have been demonstrated in a host of investigations [42]. 
The SARS-CoV-2 spike protein has been used to immunize 
some animals and discover nanobodies that interact with the 
virus's receptor-binding region [43].

Nanobodies against SARS‑CoV‑2

There are some effective diagnostic procedures for the 
diagnosis of SARS-CoV-2 infection, but no therapy that 
can interfere with SARS-CoV-2 replication has been iden-
tified so far [44]. Antibody treatment is one of the differ-
ent methods for controlling COVID-19 infection [35]. The 
therapeutic potential of nanobodies against coronaviruses 
has been established in recent studies [45–47]. A primary 
target for anti-SARS-CoV-2 neutralizing antibodies involves 
blocking the interaction of the SARS-CoV-2 S1 protein with 
ACE2 [46–48]. The S1 RBD has been the main target of 
vaccine development, as SARS-CoV-2 can be neutralized 
by VHH's high-affinity competition with the spike RBD 
(Fig. 2c) [10, 11]. Several techniques are currently used to 
identify nanobodies that neutralize SARS-CoV-2, includ-
ing llama immunization, the phage display of a naive llama 
nanobody library or humanized synthetic nanobody library, 
as well as the yeast surface display of synthetic nanobodies 
[23, 39, 40, 43, 49–54]. The developed nanobodies effec-
tively neutralized both SARS-CoV-2 pseudovirus and live 
virus [55]. Recently, researchers in the United States have 
isolated nanobodies that bind to the receptor-binding domain 
of the SARS-CoV-2 spike protein and prevent the interaction 
of spike protein with ACE2 [50]. Furthermore, the results 
of an in vitro analysis suggest two nanobodies (H11-D4 and 
H11-H4) with high affinity to spike RBD protein that can 
prevent the spike's attachment to ACE2 [40]. In another 
study, Hanke et al. discovered Ty1, a SARS-CoV-2 RBD-
specific nanobody that effectively neutralizes the virus. The 
Ty1 nanobody has several practical advantages, including 
high-yield production in bacteria, low cost, and scalabil-
ity. As suggested in the literature, future research needs to 
explore a range of techniques to improve Ty1's potency and 
efficacy [54]. Three VHHs, H11-D4, H11-H4, and Ty1, have 
been identified to target the SARS-CoV-2 spike RBD and 
disrupt its interaction with ACE2 [56, 57].

Nanobodies have special biophysical characteristics, 
such as thermostability and tiny size, which enable their 
aerosolized administration. They can be readily nebulized 
and inhaled straight into the lungs by an inhaler [8, 58]. 
One of the advantages of inhalable nanobodies is anti-
bodies like PiN-21 and Nb11-59, which can successfully 
target deep and local lung tissues such as terminal alve-
oli that share a border with alveolar cells rich in ACE2 
receptors [34, 59]. Thus, inhalation therapy can be used 

to administer nanobody therapeutics [8], aside from other 
routes of delivery such as intravenous, intramuscular, or 
subcutaneous treatment [50].

Synthetic nanobodies (or sybodies)

Traditional nanobodies are extracted from immunized 
camelids, but creating libraries of synthetic nanobodies 
(sybodies) is a new technique for fast drug development 
that produces highly selective binders with neutralizing 
potentials in a short time [60]. In this context, another 
option is the chimeric nanobodies-Fc (in which the vari-
able area of nanobody is bonded to Fc of human immuno-
globulin). The synthetic nanobodies are tiny, aerosolizable 
and heat stable, which makes them a feasible option for 
COVID-19 prevention and therapy [60].

Stefan et  al. designed a huge synthetic VHH library 
(3.18 × 1010), finding over 50 VHH candidates that can bind 
to SARS-2 [61]. Schoof et al. (2020) identified a panel of 
Nbs that can bind to various epitopes on Spike from a syn-
thetic Nbs library. These Nbs are divided into two groups. 
Class I binds directly to the RBD and competes with the 
ACE2 receptor on human cell surfaces. Class II, identified 
as a different binding site, contributes to the alteration of 
the RBD's structural conformation, preventing it from the 
recognition of the ACE2 receptor [52]. Researchers have 
identified a new synthetic Nb called SR31. Stronger binding 
affinities and neutralizing activities of this synthetic nano-
body have been reported in fusion with additional sybod-
ies. Additionally, to reinforce affinity and efficacy, it can be 
coupled with monoclonal antibodies or other antibody frag-
ments [62]. In the context of synthetic nanobodies, a recent 
study has used a mix of ribosome display and phage dis-
play. Accordingly, it managed to develop 99 distinct sybod-
ies against the SARS-CoV-2 S-RBD from three libraries, 
which neutralized SARS-CoV-2 pseudo-viruses efficiently 
and selectively [63]. Synthetic or naive llama nanobodies 
including IE2, 2F2, 3F11, 4D8, 5F8, H11-D4, and H11-H4 
can block RBD–ACE2 binding, and neutralize the pseudo-
typed and live SARS-CoV-2 infections under in vitro con-
ditions through SARS-CoV-2 RBD-targeting [39, 40]. 
Custodio et al. reported that sybody 23 (Sb23) neutralized 
SARS-CoV-2 spike pseudovirus by competing with ACE2 
binding. This type of synthetic nanobody, displaying a high 
affinity for the recombinant RBD and the prefusion spike 
glycoprotein, has strong neutralizing activities [64]. How-
ever, synthetic nanobodies have several limitations. As mon-
omers, they often lack the high binding affinity required for 
therapeutic use. In this way, multivalent or multi-paratopic 
nanobodies might offer a faster way to exploit avidity in 
order to improve affinity and effectiveness [65, 66].
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Multivalent nanobodies

In certain cases, SARS-CoV-2 undergoes rapid mutations, 
which seem to have avoided the antibody response [67–69]. 
The developing variations, B.1.1.7, B.1.351, and P.1 (first 
reported in the UK, South Africa, and Brazil, respectively) 
have undermined the effectiveness of serum in COVID-19 
patients and immunotherapies approved for emergency use 
[70–72]. Multivalent nanobodies or variable domains of 
heavy-chain Abs have been developed by investigating the 
precise architectures of SARS-CoV-2 epitopes and binding 
modalities to the S protein of the virus, as well as fusing 
virus to the cell membrane through the S protein [43]. An 
in-silico technique that leads to the fusion of VHHs to Fc 
domains is currently utilized to create multi-specific anti-
bodies with elevated avidity and affinity as well as enhanced 
S/ACE2 blocking [49]. The mutations of SARS-CoV-2 vari-
ant are countered by multivalent nanobodies via two mecha-
nisms: amplified avidity for the binding domain of ACE2 
and detection of preserved epitopes, which are chiefly not 
accessible to human antibodies [69]. Moreover, the serum 
half-life could be improved by the oligomerization of nano-
bodies [73]. In the S1 RBD and S/ACE2 inhibition of SARS-
CoV-2, the bi-specific VHH-Fc antibodies are significantly 
more effective than monoclonal VHH-Fcs [49]. Ma et al. 
reported the isolation of seven anti-RBD Nbs from alpacas 
immunized with SARS-CoV-2 RBD. In their analysis, com-
bining two Nbs with different epitopes led to the creation of 
two hetero-bivalent Nbs with high affinity, producing anti-
bodies with significant SARS-CoV-2 neutralizing efficacy 
[11]. In line with these findings, the heterodimer nanobody 
Nb91-Nb3-hFc with an IC50 of 1.54 nM displayed the high-
est RBD-binding affinity and neutralizing activity against 
SARS-CoV-2 pseudo-viruses. By limiting the interaction of 
spike protein with ACE2 through RBD targeting, the neu-
tralizing nanobodies were able to drastically reduce SARS-
CoV-2 pseudo-virus infection in the host HEK293T-ACE2 
cells [47]. Pymm et al. used four bivalent nanobodies to neu-
tralized SARS-CoV-2 (WNbFc 2, WNbFc7, WNbFc 15, and 
WNbFc 36). They discovered that nanobody cocktails con-
taining two noncompeting nanobodies could prevent ACE2 
engagement with RBD variations commonly found in human 
populations and neutralize both wild-types of SARS-CoV-2 
and the N501Y D614G RBD variant at low quantities [4]. 
Another study suggested that tri-specific VHH-Fc antibodies 
as promising therapeutics for COVID-19 treatment and pre-
vention. These tri-specific VHH-Fcs were found to be par-
ticularly effective in binding to SARS-CoV-2 S1 RBD and 
blocking S/ACE2, while inhibiting the infection of human 
target cells by a SARS-CoV-2 pseudo-virus [44].

Researchers developed a VH-phage library and targeted 
the binding interface of the SARS-CoV-2 Spike receptor-
binding domain's angiotensin-converting enzyme 2 (ACE2) 

(Spike-RBD). They discovered VH binders for two non-
overlapping epitopes, which were combined into multiva-
lent and biparatopic forms. Compared to stand-alone VH 
domains, they demonstrated an increased affinity for spike 
(up to 600-fold) and neutralization efficacy (up to 1400-fold) 
on pseudo-typed SARS-CoV-2 virus [66]. Koenig et al. engi-
neered multivalent nanobodies using more than 100 neutral-
izing activities of monovalent nanobodies, which targeted 
the receptor-binding domain of the SARS-CoV-2 spike pro-
tein. The biparatopic nanobody fusions inhibited the scape 
of viral mutants. By targeting two distinct epitopes, these 
multivalent nanobodies prevented SARS-CoV-2 infection 
and inhibited mutational escape [43].

A recent study by Zupancic et al. has suggested that a 
hexavalent VHH-72 nanobody with excellent stability, solu-
bility, and non-specific binding was successfully attached 
to spike proteins in SARS-CoV-2 variants with high trans-
mission (B.1.1.7 and B.1.351) and neutralizes them effec-
tively [74]. Another study discovered three new bispecific 
nanobodies (Nb15-Fc, Nb22-Fc, and Nb31-Fc) that could 
significantly inhibit the wild-type and variations of SARS-
CoV-2, such as circulating forms, as was the case in mutant 
viruses found in the UK and South Africa with the N501Y 
mutation [75]. Sun et al. reported that SARS-CoV-2 neutral-
izing Nbs can be grouped into three epitope classes. Class I 
includes some of the most effective SARS-CoV-2 neutraliz-
ing Nbs discovered so far. However, a single point mutation 
(E484K/Q) found in Gamma (P.1), Beta (B.1.351), or Kappa 
(B.1.617.1) variations can prevent class I Nbs from bind-
ing to RBD. Class II Nbs are designed to target conserved 
epitopes resistant to existing variants of concern (VOCs) 
and are expected to resist mutation. Class III Nbs can bind 
to formerly unidentified high-affinity epitopes with strong 
affinities, such as the Nb17 epitope, which is likely inac-
cessible to conventional antibodies [76]. Thus, nanobodies 
can be a potential tool to neutralize SARS-CoV-2 variants, 
even if new mutations continue to develop. Table 1 out-
lines a summary of similarities and differences in published 
nanobodies.

Nanobodies modulate inflammation

COVID-19 hyper-inflammation, one of the uncontrolled 
systemic inflammations and a key process in acute res-
piratory distress syndrome (ARDS), is also known as a 
cytokine storm. It takes place when copious numbers of 
pro-inflammatory cytokines (e.g. TNF, IL-1, and IL-6) and 
chemokines (e.g. CXCL-10) are released [77–79]. SARS-
CoV-2 S-interacting proteins expressed in myeloid cells can 
operate as signaling receptors to activate particular hyperin-
flammatory responses. Also, they play a key role in COVID-
19 immunopathogenesis and immunological dysregulation. 
Researchers manufactured a bispecific anti-spike nanobody, 
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A8-G11-Fc, which inhibited both ACE2-mediated infection 
and myeloid receptor-mediated proinflammatory responses 
[80].

The use of monoclonal antibodies to target and neutral-
ize proinflammatory cytokines provides a potential thera-
peutic approach for inflammatory disorders. Nanobodies 
offer novel tools to modulate inflammatory responses in 
COVID-19 patients [81]. By targeting chemokines and 
cytokines, they can be adjusted to control inflammation 
responses, which contributes to COVID-19 patients' 
recovery [16]. For example, the isolation of anti-CXCL10 
polyclonal HcAbs has been conducted to create specific 
Nbs, which can selectively target CXCL10 for in vivo 
therapies [82]. TNF-alpha is a critical cytokine and TNF-
blocking sdAbs have been reported in a llama immunized 
with human and mouse antigens. It has been shown to 
be more effective than TNF-blocking antibodies like Inf-
liximab and Adalimumab in TNF neutralization [83]. 
Furthermore, antigen presenting through antigen presen-
tation cells (APCs) enhances antibody formation, CD4+ T 
cell activation, and CD8+ T cell responses, all of which 
help boost immunological responses. APCs contain high 

levels of MHC-II products, integrins (CD11b), and scav-
enger receptors (CD36). VHHs targeting these molecules 
improved immune responses in dendritic cells (DCs), 
induced humoral immunity, and detected inflammation in 
order to cure or prevent SARS-CoV-2 infection [16, 84].

According to the evidence, nanobodies can act as an ion-
channel blocking agent. P2X7 is a ligand-gated ion chan-
nel expressed by lymphocytes and monocytes. This channel 
triggers a pro-inflammatory signaling cascade when detect-
ing adenosine 5′-triphosphate produced by injured cells. It 
involves the production of pro-inflammatory cytokines like 
interleukin-1beta (IL-1β), IL-18, and IL-33 [85–87]. This 
ion channel is a potential therapeutic target in inflammatory 
diseases [88]. A variety of nanobodies capable of regulating 
the function of human and mouse P2X7 have been identi-
fied [87]. For example, the nanobody Dano1 has exhibited 
complete effectiveness in blocking human P2X7 [89]. This 
nanobody was found to be 1000 times more effective than 
small molecule inhibitors of P2X7 at blocking ATP-induced 
IL-1b release from monocytes [87]. In this way, nanobodies 
pave the way for novel experimental and therapeutic immu-
nomodulation approaches.

Table 1   Summary of similarities and differences in published nanobodies

Nanobody Method Neutralizing 
pseudovirus 
(IC50)

Affinity to RBD Function References

VHH-E Immunized phage display library 60 nM 1.86 nM Blocking RBD-ACE2 interaction/pre-
vent the emergence of viral escape 
mutants

[90]

Nb11-59 Immunized phage display library 36.7 nM 21 nM Blocking RBD-ACE2 interaction/
high binding activity to the RBD

[34]

Sybody (n3021) Ribosome and phage display – 0.63 nM Blocking RBD-ACE2 interaction/
binding to the full-length SARS-
CoV-2 spike protein

[91]

Sybody (MR3) Ribosome and phage display 40 nM 24.22 nM Blocking RBD-ACE2 interaction [92]
Nb6 yeast surface-displayed library 2 uM 210 nM Blocking RBD-ACE2 interaction/

Binding Spike in a fully inactive 
conformation with its receptor bind-
ing domains

[93]

H11-D4 naive llama single-domain antibody 
library

– 39 nM Blocking RBD-ACE2 interaction/
Binding to all three RBDs in the 
spike trimer

[94]

H11-H4 naive llama single-domain antibody 
library

– 12 nM Blocking RBD-ACE2 interaction/
Binding to all three RBDs in the 
spike trimer

[94]

Ty1 Immunized phage display library 54 nM 5–10 nM Blocking RBD-ACE2 interaction/
Binding to the RBD with high 
affinity

[95]

Nbs 89 Immune library and MS proteomic 0.133 nM 108 pM Blocking RBD-ACE2 interaction/
inhibit viral infection

[96]

WNb Immunized phage display library –  ≤ 80 nM Blocking RBD-ACE2 interaction/
neutralize both wildtype SARS-
CoV-2 and the N501Y D614G 
variant

[4]
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Conclusion

Tiny, stable, and easy to make, the Nbs show great poten-
tials as COVID-19 therapeutic proteins. To develop suitable 
nanobodies against SARS-CoV-2, the bulk of studies have 
employed the spike protein, especially RBD domains. Given 
that nanobodies can be utilized as an inhaler, it seems that 
the produced nanobodies can be applied to inhibit the infec-
tion of the lungs by the virus. Developing methods with 
effective nanobodies, high-expression yield and reasonable 
costs is crucial to control the COVID-19 pandemic.
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