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Double-stranded RNA (dsRNA) accumulates in virus-infected mammalian cells and signals the activation of
host defense pathways of the interferon system. We describe here a novel form of dsRNA-triggered signaling
that leads to the stimulation of the p38 mitogen-activated protein kinase (p38 MAPK) and the c-Jun NH2-
terminal kinase (JNK) and of their respective activators MKK3/6 and SEK1/MKK4. The dsRNA-dependent
signaling to p38 MAPK was largely intact in cells lacking both RNase L and the dsRNA-activated protein
kinase (PKR), i.e., the two best-characterized mediators of dsRNA-triggered antiviral responses. In contrast,
activation of both MKK4 and JNK by dsRNA was greatly reduced in cells lacking RNase L (or lacking both
RNase L and PKR) but was restored in these cells when introduction of dsRNA was followed by inhibition of
ongoing protein synthesis or transcription. These results are consistent with the notion that the role of RNase
L and PKR in the activation of MKK4 and JNK is the elimination, via inhibition of protein synthesis, of a labile
negative regulator(s) of the signaling to JNK acting upstream of SEK1/MKK4. In the course of these studies,
we identified a long-sought site of RNase L-mediated cleavage in the 28S rRNA, which could cause inhibition
of translation, thus allowing the activation of JNK by dsRNA. We propose that p38 MAPK is a general
participant in dsRNA-triggered cellular responses, whereas the activation of JNK might be restricted to cells
with reduced rates of protein synthesis. Our studies demonstrate the existence of alternative (RNase L- and
PKR-independent) dsRNA-triggered signaling pathways that lead to the stimulation of stress-activated
MAPKs. Activation of p38 MAPK (but not of JNK) was demonstrated in mouse fibroblasts in response to
infection with encephalomyocarditis virus (ECMV), a picornavirus that replicates through a dsRNA interme-
diate. Fibroblasts infected with EMCV (or treated with dsRNA) produced interleukin-6, an inflammatory and
pyrogenic cytokine, in a p38 MAPK-dependent fashion. These findings suggest that stress-activated MAPKs
participate in mediating inflammatory and febrile responses to viral infections.

Double-stranded RNA (dsRNA) produced during viral in-
fections triggers stress response pathways that lead to elimina-
tion of infected cells by apoptosis. Two complementary but
independent cellular dsRNA-detecting systems have been im-
plicated in the translational inhibition in response to viral
infection: the 2-5A system and the dsRNA-activated protein
kinase (PKR) (for a recent review, see reference 55). The 2-5A
system is composed of a family of dsRNA-dependent enzymes
known as 29-59 oligoadenylate synthetases (OAS) (5) and the
dormant cytosolic RNase L (64) (for recent reviews on the
2-5A system and RNase L, see references 45 and 52, respec-
tively). Upon dsRNA binding, OAS produce unusual second
messengers, short 29-59-linked oligoadenylates (2-5A) (32),
which, in turn, specifically bind to and activate RNase L (64).
Activated RNase L cleaves diverse RNA substrates, including
18S and 28S rRNAs, thus inhibiting cellular protein synthesis

(53, 61). PKR (41) is also a dormant enzyme directly activated
by binding of dsRNA (for recent reviews, see references 8, 10,
11, 16, 30, 46, 55, and 60). A major substrate of PKR is the a
subunit of the eukaryotic translation initiation factor 2 (eIF-
2a) (38). Phosphorylation of eIF-2a greatly reduces the rate of
initiation of translation (9). While certain viruses (e.g., en-
cephalomyocarditis virus [EMCV]) trigger activation of RNase
L and PKR, other viruses (e.g., vaccinia virus) are able to
evade the antiviral action of these enzymes (55).

The p38 mitogen-activated protein kinases (p38 MAPKs)
and the c-Jun NH2-terminal kinases (JNKs) define the stress-
responsive family of the MAPK superfamily of protein kinases
(for recent reviews, see references 12, 18, 27, and 49). These
kinases are strongly activated in cells subjected to osmotic
stress (15, 20), UV radiation (22, 23, 26, 44), disregulated K1

currents (24), RNA-damaging agents (25), and a multitude of
other stresses, as well as inflammatory cytokines (47, 59), en-
dotoxin (19, 20), and withdrawal of a trophic factor (37, 63).
The stress-responsive MAPKs mediate a plethora of cellular
responses to such stressful stimuli, including apoptosis (7, 31,
37, 43, 50, 63) and production of inflammatory and immuno-
regulatory cytokines (1, 6, 29, 34, 36, 42, 48, 56, 62) in diverse
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cell systems. All MAPKs are regulated via phosphorylation at
both threonine and tyrosine residues by dual-specificity up-
stream kinases, designated MAPK kinases (MKK) (for a re-
view, see reference 49). MKK3 and MKK6 are specific p38
MKK (13, 21), whereas MKK4 and MKK7 are specific JNK
kinases (13, 58). MKK4 has the ability to activate p38 MAPK
as well (13). A major specific downstream effector of activated
p38 MAPK is another protein kinase, MAPKAP kinase 2 (2).
The activity of p38 MAPK and JNK kinases is potently stim-
ulated by some agents that inhibit protein synthesis but is
unaffected by others (24–26). In this study, we have addressed
for the first time the possibility of a cross talk between the
dsRNA-induced signal transduction pathways that lead to in-
hibition of protein synthesis and the stress-responsive signal
transduction pathways leading to activation of p38 MAPK and
JNK. Our results provide evidence for the existence of such a
cross talk, in which RNase L, PKR, and a novel, alternative,
dsRNA-dependent effector system play different roles to me-
diate synergistically the activation of p38 MAPK and JNK by
dsRNA.

MATERIALS AND METHODS

Chemicals. Lipofectin reagent was from Gibco Bethesda Research Laborato-
ries/Life Technologies. Polyinosinic z polycytidylic acid (pI z pC), polyinosinic
acid (pI), and polycytidylic acid (pC) were from Midland Certified Reagent Co.
pI z pC, pI, and pC were stored at 220°C as 10-mg/ml stock solutions in double-
distilled deionized water. SB203580 (Calbiochem) was stored as a 10 mM stock
solution in dimethyl sulfoxide at 220°C. Hybrid recombinant human alpha in-
terferon (IFN-a) BBDB was a gift from H. K. Hochkeppel (17). All commonly
used chemicals, emetine, and actinomycin D were from Sigma Chemical Com-
pany. Both emetine and actinomycin D were stored at 270°C in lightproof
containers as 1,0003 stock solutions in dimethyl sulfoxide. All radiochemicals
were from DuPont NEN Research Products.

Cell culture. All cells were maintained in Dulbecco modified Eagle’s medium
(DMEM) supplemented with 10% calf serum (HyClone, Logan, Utah). The
3T3(neo) and 3T3(RNaseL) cell lines have been described previously (66). The
RNase L1/1 PKR1/1, RNase L2/2 PKR1/1, and RNase L2/2 PKR2/2 fibroblasts
have been described previously (65).

Lipofectin-mediated delivery of pI z pC. The procedure for treatment of cells
with pI z pC outlined below applies for all experiments presented in Fig. 1 to 5
and 7. Per milliliter of the final volume (4/4) of Lipofectin mixture, an initial
concentrated mixture (containing Lipofectin and pI z pC) was prepared in 1/4 of
the final volume (250 ml). To this end, 10 ml of Lipofectin (1 mg/ml) was added
to serum- and antibiotic-free DMEM and mixed, and the desired amount of pI z
pC was added (in a volume of 250 ml). This mixture was left for 10 min at room
temperature. Finally, the remaining 3/4 of the final volume (750 ml) was added.
Before the application of the Lipofectin-pI z pC mixtures, the cells were washed
once with serum-free DMEM.

Counting of cells. Whenever two or more cell lines were compared in immu-
noblot procedures or immunocomplex kinase assays (see Fig. 2A and B, 4, and
5), cells from parallel 10-cm-diameter plates representing each cell line were
trypsinized and counted in a cell counter. The averaged cell numbers (from
triplicate determinations) were used to calculate the volumes of cell lysates to be
processed in each assay in such a way that each assay was performed with a
volume of cell lysate representing the same number of cells. Typically, 1 3 105 to
5 3 105 cells were used per assay (immunoblot analyses or immunocomplex
kinase assays).

Antibodies and immunoblot analyses. The antibodies against the phosphory-
lated forms of p38 MAPK, JNK, MKK3/6, and SEK1/MKK4 were from New
England BioLabs. The immunoprecipitating anti-JNK1 antibody (C-17) used for
the immunocomplex kinase assays shown in Fig. 1B and 2B was from Santa Cruz
Biotechnology. The antibodies against total (phosphorylated and nonphospho-
rylated) SEK1/MKK4 (K-18), p55 JNK and p46 JNK (JNK-FL), and p38 MAPK
(C-20 and N-20) were from Santa Cruz Biotechnology. Separation of proteins by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (13%
gel) and electrotransfer onto polyvinylidene difluoride membranes (Millipore)
were performed by standard procedures. Immunodetections with phospho-
epitope-specific antibodies were performed as instructed by the manufacturer.

Immunocomplex kinase assays. Immunoprecipitations and immunocomplex
kinase assays to determine JNK1 activity were performed as described previously
(25).

Measurement of protein synthesis via incorporation of [3H]leucine. Incorpo-
ration of [3H]leucine was performed as described previously (25).

Preparation of RNA and Northern blot procedures. Total RNA was prepared
by using an RNeasy kit from Qiagen as directed by the manufacturer. Two
micrograms of total RNA was resolved in 1% denaturing agarose gels and

transferred onto a Hybond-N membrane (Amersham-Pharmacia). The hybrid-
izations with 28S rRNA-specific oligonucleotide probes were performed by using
ExpressHyb hybridization solution (Clontech) as directed by the manufacturer.
All probes used have been listed elsewhere (26). The following probes were used
for the Northern blot presented in Fig. 8A: 59-CAGAAGGATCGTGAGG-39
(panel b) and 59-TAGGTTGACATCGTTTC-39 (panel c).

Reverse transcription of rRNA by primer extension. The reverse transcription
method used has been described in detail previously (25, 26). The primer used in
the primer extensions shown in Fig. 8B and C was 59-GAGTAGTGGTATTTC
AC-39.

Infection of cells with EMCV. 3T3(neo) and 3T3(RNaseL) cells were grown in
10-cm-diameter dishes and incubated with IFN-a BBDB (2,000 U/ml) for 20 h.
The medium was replaced twice with serum-free, antibiotic-free DMEM, and
cells were infected with EMCV at a multiplicity of infection (MOI) of 10 and
incubated at 37°C. Cells were harvested at different times by scraping, washed in
phosphate-buffered saline, and pelleted by centrifugation at 4°C. Cell pellets
were stored at 270°C.

Determination of IL-6 production. 3T3(neo) and 3T3(RNaseL) cells were
grown in 12-well plates until confluent (;2.5 3 105 cells/well). The medium was
replaced twice with serum-free DMEM, and cells were left uninfected or were
infected with EMCV at an MOI of 40 in a volume of 1 ml per well, in the
presence or in the absence of 10 mM SB203580 given 1 h before the infection.
The cells were then incubated at 37°C for 18 h. Alternatively, cells were treated
with pI z pC as described above for 24 h, also in the presence or in the absence
of an SB203580 pretreatment. Conditioned media were collected and cleared of
cell debris by centrifugation, and the presence of interleukin-6 (IL-6) was deter-
mined quantitatively, using a Quantikine M mouse IL-6 enzyme-linked immu-
nosorbent assay (ELISA) kit (R&D Systems) as instructed by the manufacturer.

RESULTS

Activation of MKK3/6-p38 MAPK and SEK1/MKK4-JNK
kinase cascades by dsRNA. To determine whether accumula-
tion of dsRNA in cells would activate p38 MAPK and JNK, we
investigated the phosphorylation of p38 MAPK and JNK (or
measured JNK activity) in cell lysates prepared from HeLa
(Fig. 1A) or Rat-1 (Fig. 1B) cells treated with pI z pC, a
synthetic dsRNA, in the presence of the cationic lipid vehicle
Lipofectin (see Materials and Methods). One hour after treat-
ment of HeLa cells with pI z pC, p38 MAPK was dually phos-
phorylated at threonine-180 and tyrosine-182 (amino acid
numbering corresponding to the sequence of human p38a
MAPK) (Fig. 1A, panel a). Similar to p38 MAPK, there was a
clear pattern of dual phosphorylation of p46 JNK at threonine-
183 and tyrosine-185 (amino acid numbering corresponding to
the sequence of human JNK2), as detected by immunoblotting
with an antibody recognizing only the dually phosphorylated
form of JNK (Fig. 1A, panel b). The phosphorylations of p38
MAPK and JNK were persistent and well pronounced 6 h after
the pI z pC treatment (Fig. 1A, panels a and b, lanes 4 to 7).
Immunocomplex kinase activity assays (done as described pre-
viously [25]) using JNK1 immunoprecipitated from pI z pC-
treated cells revealed consistently that JNK was functionally
activated up to 100-fold over the basal activity of the kinase in
control HeLa cells (not shown) and similarly in Rat-1 cells
(Fig. 1B, lower panel, lanes 7 to 11). The following criteria
were used to conclude that the response of p38 MAPK and
JNK to pI z pC was a bona fide reaction of cells to intracellular
accumulation of dsRNA: (i) p38 MAPK and JNK were not
activated in cells treated with Lipofectin alone (Fig. 1B, 2C,
3A, and 3B), (ii) p38 MAPK and JNK were not activated in
cells treated with pI z pC without Lipofectin (not shown),
indicating thus the need for intracellular delivery of pI z pC,
and (iii) p38 MAPK and JNK were not activated in cells
treated in the presence of Lipofectin with either single-
stranded RNA (ssRNA) (pI or pC) or dsDNA {p[D(IC)]} (see
Fig. 3A for ssRNA; not shown for dsDNA). To investigate
whether dsRNA activated p38 MAPK and JNK through an
activation of their upstream kinases, we performed immuno-
blot analyses using antibodies specific for the phosphorylated
(active) forms of MKK3, MKK6, and SEK1/MKK4. The sub-
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stantial degree of amino acid identity between the phosphor-
ylated epitopes of MKK3 and MKK6 allows their simultaneous
identification with the same antibody. All three kinases dis-
played dsRNA-induced phosphorylations (Fig. 1A, panels c
and d). Although the phosphorylation of SEK1/MKK4 was not
easily detectable in HeLa cells treated with dsRNA (but also
with other strong activators of JNK [Fig. 1A, panel d, and
data not shown]), the dsRNA-induced phosphorylation of
SEK1/MKK4 in wild-type mouse fibroblasts was very potent
(see Fig. 5A, top panel, lanes 1 and 2). Identical analyses
using antibodies specific for the phosphorylated (active) forms
of ERK and MEK1/2 failed to detect dsRNA-induced phos-
phorylation of these kinases (not shown), indicating that the
stress-activated members of the MAPK superfamily are spe-
cific targets for activation by intracellular accumulation of
dsRNA.

Differential responsiveness of p38 MAPK and JNK to
dsRNA in cells overexpressing RNase L. To investigate the
possible involvement of RNase L in the dsRNA-induced signal
transduction cascades to p38 MAPK and JNK, we used an NIH
3T3 fibroblast-derived cell line [3T3(RNaseL) cells] that over-
express RNase L approximately 100-fold over the endoge-
nous levels of this RNase in the parental cells [3T3(neo)]
(66). As measured by [3H]leucine incorporation, in the paren-
tal 3T3(neo) cells, dsRNA (10 mg/ml) treatment for 3 h inhib-

ited total protein synthesis by only ;20 to 25%, whereas in the
3T3(RNaseL) cells, protein synthesis was inhibited by ;70%
after 3 h of dsRNA treatment (Fig. 2A). Interestingly, after 3 h
of dsRNA (10 mg/ml) treatment, JNK1 activity was increased
only 2-fold in the 3T3(neo) cells, whereas the activity of the
kinase in the 3T3(RNaseL) cells was increased 11-fold (Fig.
2B). The difference between the two cell lines in their dsRNA-
induced JNK activities was also clearly detected at the level of
phosphorylation of JNK (Fig. 2C, lanes 7 to 10, compare upper
and lower panels), whose levels of phosphorylation in the
3T3(RNaseL) cells were substantially greater than in the
3T3(neo) cells. Importantly, RNase L overexpression affected
specifically the response of JNK to dsRNA, as JNK was acti-
vated equally well in the two cell lines by UV radiation (Fig.
2C, lane 11, compare upper and lower panels). dsRNA, how-
ever, displayed an ability to cause a robust phosphorylation of
p38 MAPK in the parental 3T3(neo) cells; furthermore, in the
3T3(RNaseL) cells, there was only a minor potentiation of p38
MAPK response to dsRNA (Fig. 2C, lanes 1 to 4, compare
upper and lower panels). Thus, the ability of dsRNA to acti-
vate JNK appeared to be sensitive to the levels of RNase L,
whereas the levels of RNase L were not important for the
activation by dsRNA of p38 MAPK.

Differential responsiveness of p38 MAPK and JNK to
dsRNA in cells lacking RNase L. To investigate further the
requirement for RNase L in the dsRNA-induced activation
of stress-activated MAPKs, we used mouse embryonic fibro-
blasts (MEF) with the following three genotypes: RNase L1/1

PKR1/1 (wild-type MEF), RNase L2/2 PKR1/1, and RNase
L2/2 PKR2/2. As demonstrated in Fig. 3, RNase L and PKR
are solely responsible (required and sufficient) for the inhibi-
tion of protein synthesis in MEF exposed to dsRNA, each
apparently contributing about 50% of the overall inhibition of
protein synthesis by dsRNA. We investigated whether the re-
sponse of JNK to pI z pC in MEF was a bona fide dsRNA
response. Indeed, neither pI nor pC was able to cause JNK
phosphorylation in the MEF with any of the three genotypes
(Fig. 4A, all panels, lanes 3 to 8). However, when the response
of JNK to pI z pC (dsRNA) was assessed, striking differences
among the three genotypes were observed: (i) JNK was phos-
phorylated strongly (in a time-dependent manner) in the
RNase L1/1 PKR1/1 cells (Fig. 4A, top “**” panel, lanes 9 to
11), (ii) the response of JNK to dsRNA was severely reduced
in the RNase L2/2 PKR1/1 cells (Fig. 4A, middle “**” panel,
lanes 9 to 11; Fig. 5A, middle panel, lane 2; Fig. 5B, middle
panel, lane 3), and (iii) the activation of JNK by dsRNA was
undetectable in the RNase L2/2 PKR2/2 cells (Fig. 4A, lower
“**” panel, lanes 9 to 11; Fig. 5A, middle panel, lane 2; Fig. 5B,
middle panel, lane 3). These differences among the three ge-
notypes were specific for the dsRNA treatment, since the levels
of JNK expression in the three cell lines were comparable (Fig.
4A, all * panels) and the responsiveness of JNK to UV radia-
tion or to anisomycin was very similar in the three cell lines
(not shown). SEK1/MKK4 displayed behavior identical to that
of JNK in the three cell lines (Fig. 4B, left). In contrast, p38
MAPK remained generally well responsive to dsRNA in all
of the cell lines (Fig. 4C, right; Fig. 5), although a tendency
toward reduced responsiveness (RNase L1/1 PKR1/1 . RNase
L2/2 PKR1/1 . RNase L2/2 PKR2/2) was observed (Fig. 4C).
In conclusion, the results presented in Fig. 2 and 4 demon-
strated that the presence and activity of RNase L and PKR
strongly influence the ability of dsRNA to activate JNK but
that they do not appear to play a major role in the ability of
dsRNA to activate p38 MAPK.

Neither RNase L nor PKR is absolutely required for the
activation of JNK by dsRNA. We noticed that a major dif-

FIG. 1. Phosphorylation of p38 MAPK, JNK, MKK3, MKK6, and SEK1/
MKK4 and increased kinase activity of JNK in response to dsRNA. (A) Immu-
noblot analysis. HeLa cells were grown to ;80% confluence in normal growth
medium. The cells were then treated with pI z pC (3 mg/ml) in the presence of
Lipofectin (LF; 10 mg/ml). At indicated times, the cells were harvested and cell
lysates representing equal number of cells were subjected to immunoblot anal-
yses with antibodies specific for the phosphorylated forms of p38 MAPK, JNK,
MKK3, MKK6, and SEK1/MKK4 (see Materials and Methods). Panel e shows
an immunoblot analysis of the levels of total (phosphorylated and nonphospho-
rylated) SEK1/MKK4 run in a parallel gel. (B) Analogous analysis of pI z pC
action in Rat-1 fibroblasts, demonstrating also that pI z pC, and not Lipofectin,
is the kinase-activating agent. A direct determination of JNK activity (rather than
phosphorylation of JNK) after pI z pC treatment is presented. JNK1 was immu-
noprecipitated from Rat-1 cells, and the activity of the kinase was determined in
immunocomplex kinase reactions using glutathione S-transferase–c-Jun as the
substrate for phosphorylation (see Materials and Methods).
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ference among the five MEF cell lines used in Fig. 2 to 4
[3T3(neo), 3T3(RNase L), RNase L1/1 PKR1/1, RNase L2/2

PKR1/1, and RNase L2/2] was the varied degree of dsRNA-
induced inhibition of protein synthesis (Fig. 2A and 3). In each
case, a stronger inhibition of protein synthesis correlated well
with stronger activation of JNK, suggesting the possibility of an
important role for the inhibition of translation in the dsRNA-
induced activation of JNK. We undertook, therefore, to exam-
ine the responsiveness of JNK to dsRNA in the RNase L1/1

PKR1/1, RNase L2/2 PKR1/1, and RNase L2/2 PKR2/2 cells
under conditions of protein synthesis being inhibited to the
same degree in each of the three cell lines. To this end, we
treated the cells with dsRNA for 4 h (Fig. 4A, all ** panels,
lanes 11 and 13). After the dsRNA addition, the cells were
either left without further treatment (Fig. 4A, all ** panels,
lanes 11) or treated with emetine 1 h after the dsRNA treat-
ment (Fig. 4A, all ** panels, lanes 13). Emetine irreversibly
inhibits protein synthesis by more than 98% within the first
minute after addition and, importantly, it does not activate
JNK in confluent, serum-deprived rodent fibroblast cells (ref-
erence 25 and Fig. 4A, all ** panels, lanes 12). In striking

contrast to the results described above (Fig. 4A, all ** panels,
lanes 9 to 11), when dsRNA treatment was followed by a
complete inhibition of protein synthesis (emetine addition),
the cells of all three genotypes appeared able to activate JNK
equally well (Fig. 4A, all ** panels, lanes 13). Furthermore,
under conditions of emetine posttreatment, dsRNA also be-
came able to activate SEK1/MKK4 in the RNase L2/2 PKR1/1

and RNase L2/2 PKR2/2 cells (Fig. 5A, top panels, compare
lanes 2 and 4). To test whether this striking effect of emetine
was indeed attributable to its ability to block protein synthesis,
we performed identical experiments using pactamycin and T-2
toxin, two unrelated antibiotic inhibitors of translation that do
not activate JNK (25); the use of pactamycin or T-2 toxin led
to results identical to those observed in assays using emetine
(not shown). We next tested whether the inhibition of protein
synthesis required for the activation of JNK by dsRNA in the
RNase L2/2 PKR1/1 and RNase L2/2 PKR2/2 cells could be
mimicked by inhibition of transcription. To this end, we used a
posttreatment of cells with actinomycin D 15 min after treat-
ment with dsRNA. Similar to the effects of emetine, pactamy-
cin, and T-2 toxin, the effect of actinomycin D was to restore a

FIG. 2. dsRNA-induced inhibition of protein synthesis, activation of JNK, and phosphorylation of p38 MAPK and JNK in 3T3(neo) and 3T3(RNaseL) cells. (A)
The cells were grown in 12-well plates to ;70% confluence in normal growth medium and then leucine deprived for 1.5 h in leucine- and serum-free DMEM. Lipofectin
mixes were made in leucine- and serum-free DMEM to contain 0, 1, 3, or 10 mg of pI z pC per ml and were given to the cells. Between 2.5 and 3 h after the pI z pC
addition, the cells were pulse-labeled with 1 mCi of [3H]leucine per ml and processed further as described in Materials and Methods. Error bars indicate standard
deviation from experimental points in triplicate determinations. (B) Immunocomplex kinase assay. The cells were grown in 10-cm-diameter plates to ;70% confluence
in normal growth medium. The growth medium was then exchanged, where indicated, with serum-free DMEM (control) or Lipofectin (LF)-containing serum-free
DMEM, without or with 10 mg of pI z pC per ml. JNK activity was determined 3 h later in immunocomplex kinase assays as described for Fig. 1B. Error bars indicate
standard deviation from experimental points in triplicate determinations. (C) Immunoblot analyses of p38 MAPK and JNK phosphorylation, using phosphoepitope-
specific antibodies. The cells were grown and treated as for panel B with the indicated concentrations of pI z pC. For the UV-B irradiation, the cells were given a
1,200-J/m2 dose of UV-B as described previously (26) and harvested 30 min later.
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wild-type cell-like responsiveness of JNK and SEK1/MKK4 to
dsRNA in the RNase L2/2 PKR1/1 and RNase L2/2 PKR2/2

cells (Fig. 5B, top and middle panels, compare lanes 3 and 4).
In conclusion, the results shown in Fig. 4A and 5 suggest that
the roles of both RNase L and PKR in the signal transduction
pathway(s) generated by dsRNA that lead to the activation of
JNK are indirect (see Discussion).

Activation of p38 MAPK, but not of JNK, in mouse fibro-
blasts infected with EMCV. To begin to understand the bio-
logical role of this newly identified dsRNA-triggered signal
transduction pathway that leads to the activation of stress-
activated MAPKs, we investigated whether infection of cells by
EMCV, a virus known for its ability to trigger dsRNA-de-
pendent cellular reactions, would lead to activation of p38
MAPK and/or JNK. Indeed, both in the 3T3(neo) and in the
3T3(RNaseL) cells, EMCV infection caused a clear pattern of
p38 MAPK phosphorylation that was detectable as early as 2 h
postinfection and persisted at least for the next 4 h (Fig. 6,
lanes 3 and 4). In contrast, we failed to detect in these cells an
EMCV-induced phosphorylation of either SEK1/MKK4 (not
shown) or JNK (Fig. 6, lanes 3 and 4). One possible explana-
tion for the inability of EMCV to trigger JNK activation could
be that in the cell type used, the virus fails to ensure a sufficient
inhibition of protein synthesis to permit the activation of JNK
(see Discussion). In support of this hypothesis, we were con-
sistently unable to detect a decrease of [3H]leucine incorpora-

tion in EMCV-infected fibroblasts (up to 6 h after EMCV
infection at an MOI of $10 [not shown]).

Both EMCV infection and dsRNA trigger the expression of
the inflammatory and pyrogenic cytokine IL-6 through a
mechanism that involves p38 MAPK. We speculated that one
possible biological consequence of p38 MAPK activation in
EMCV-infected cells may be the production of inflammatory
and pyrogenic cytokines that, in turn, may participate in the
inflammatory and febrile responses accompanying viral infec-
tions. To test this hypothesis, we determined whether EMCV
infection of fibroblasts leads to the production of IL-6, a cyto-
kine whose expression has been previously found to depend on
the presence of a functional MKK33p38 MAPK3MAPKAP
kinase 2 signaling cascade (2, 34, 62). In noninfected 3T3(neo)
or 3T3(RNaseL) fibroblasts, the levels of IL-6 released into the
medium were below the detection ability of the method used
(#3 pg/ml). However, 18 h after infection of these fibroblasts
with EMCV (MOI of 40), there was a substantial increase in
IL-6 levels in the medium (Fig. 7A). The 3T3(RNaseL) cells
were significantly more active in producing IL-6 than the pa-
rental 3T3(neo) cells. Furthermore, whereas the secretion of
IL-6 by the 3T3(neo) cells was maximal after EMCV infection
at an MOI of 40, the peak of IL-6 secretion by the 3T3(RNaseL)
cells was achieved at a 100-fold-lower viral concentration
(MOI of 0.4 [not shown]). We are unable to determine
whether these differences result from the overexpression of
RNase L or reflect a clonal difference. Importantly, however,
SB203580 (10 mM), a specific inhibitor of p38 MAPK (36a),
was able to inhibit the EMCV-induced IL-6 production in
either cell line by more than 50% (Fig. 7A), suggesting the
involvement of p38 MAPK in virus-induced IL-6 expression.
Similarly, treatment of the same cells with pI z pC led to the
appearance of IL-6 in the cell culture medium, which was also
inhibited by the p38 MAPK inhibitor (Fig. 7B).

Identification of the major dsRNA-induced site of cleavage
in the 28S rRNA: (i) localization of the site of cleavage in the
L1 protuberance and (ii) mediation of the cleavage by RNase
L. Since the dsRNA-induced, RNase L-mediated inhibition of
protein synthesis appeared crucial for the ability of dsRNA to
activate JNK, we attempted to identify mechanisms of this
inhibition. Previously, RNase L was observed to cleave rRNA
in intact ribosomes, producing discrete and characteristic
cleavage products (54, 61). We observed that treatment of
HeLa cells with pI z pC led to a specific pattern of 28S rRNA
cleavage, as demonstrated by an electrophoretic analysis in
denaturing agarose gels and ethidium bromide-UV visualiza-
tion (Fig. 8A, compare lanes 1 and 2). Of all rRNAs and
tRNA, 28S rRNA was the preferred target for a dsRNA-
induced cleavage in HeLa cells (Fig. 8A, lane 2; not shown for
5.8S rRNA, 5S rRNA, and tRNA). Northern blot analyses
using six oligonucleotide probes specific for different parts of
the 28S rRNA revealed the presence of two major nucleolytic
fragments in dsRNA-treated HeLa cells: one fragment con-
tained the 39 end of the 28S rRNA (Fig. 8A, lane 4), and the
other contained the 59 end of the 28S rRNA (Fig. 8A, lane 6).
Some further fragmentation of the 59-end fragment was also
evident (Fig. 8A, lane 6). Since the 39 end of the 28S rRNA
contains two structural motifs directly involved in peptidyl
transfer and ribosomal translocation (the peptidyl transferase
ring and the sarcin/ricin loop [reference 25 and references
therein]), we set out to determine whether the dsRNA-induced
cleavage that leads to the formation of the 39-end fragment
occurs within any of these functionally essential motifs. Precise
mapping of the 39 end of the 28S rRNA was therefore under-
taken, using a reverse transcriptase-driven primer extension
(described previously [25, 26]). This analysis allowed the iden-

FIG. 3. dsRNA-induced inhibition of protein synthesis in RNase L1/1

PKR1/1, RNase L2/2 PKR1/1, and RNase L2/2 PKR2/2 cells. The cells were
grown in 12-well plates to ;100% confluence in normal growth medium and then
serum deprived for 24 hours in serum-free DMEM. Lipofectin (LF) mixes were
made in leucine- and serum-free DMEM to contain 10 mg of pI z pC per ml and
were given to the cells. Between 2.5 and 3 h after the pI z pC addition, the cells
were pulse-labeled with 1 mCi of [3H]leucine per ml and processed further as
described in Materials and Methods. Error bars indicate standard deviation from
experimental points in triplicate determinations.
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tification within the whole region of a single sequence 59-C3998-
U3999-G4000-C4001-G4002-39 (nucleotide numbering correspond-
ing to the human 28S rDNA sequence, GenBank accession no.
M11167) as the exact target for cleavage, with two cuts (be-
tween 59-U3999-G4000-39 and between 59-G4000-C4001-39) occur-
ring with approximately equal intensity (Fig. 8B, lanes 1 and 2).
The thus identified region of dsRNA-induced cleavage is lo-
cated neither in the peptidyltransferase ring nor in the sarcin/
ricin loop. Rather, the site of cleavage was determined to

belong to the so-called L1 protuberance of the ribosome that is
believed to be involved in the formation of the exit site (E site)
of the ribosome (3, 14).

The following criteria were used to conclude that the
dsRNA-induced 28S rRNA cleavage is mediated by RNase L:
(i) treatment of cells with 2-5A, a specific RNase L activator,
induced 28S rRNA cleavage at the same site (not shown), and
(ii) the dsRNA-induced cleavage to the 28S rRNA was de-
tected in the RNase L1/1 PKR1/1 MEF but not in the RNase

FIG. 4. dsRNA-induced phosphorylation of p38 MAPK, JNK, and SEK/MKK4 in RNase L1/1 PKR1/1, RNase L2/2 PKR1/1, and RNase L2/2 PKR2/2 cells. (A)
Immunoblot analyses of JNK phosphorylation (pp panels) and total levels of JNK (p panels). The cells were grown in 10-cm-diameter plates to ;100% confluence in
normal growth medium and then serum deprived for 24 h in serum-free DMEM. Lipofectin (LF) mixes were made in serum-free DMEM to contain no nucleic acid
or 10 mg of either pI, pC, or pI z pC per ml and were given to the cells for the indicated times. Where indicated, the cells were treated with emetine (100 mg/ml) 1 h
after the addition of Lipofectin mixes. (B) Graphic presentation of immunoblot analyses. Cells were treated as indicated in the graphs and as for panel A, and analyses
were performed with antibodies against the phosphorylated forms of SEK1/MKK4 and p38 MAPK. The membranes were stripped and rehybridized with antibodies
recognizing total (phosphorylated and nonphosphorylated) SEK1/MKK4 and p38 MAPK. For each immunoblot, appropriately nonsaturated film exposures were
selected and scanned, and the scanned images were imported into IP Lab Gel software for quantification. The maximum level of phosphorylation of each kinase (after
normalization for total amount of the kinase) was expressed as 100%.
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L2/2 PKR1/1 or RNase L2/2 PKR2/2 MEF (Fig. 8C, compare
lanes 2, 4, and 6). (Note that due to an additional C nucleotide
present in the mouse 28S rRNA but absent in the human 28S
rRNA, only a single site of cleavage appears in the region of
the mouse 28S rRNA in question [Fig. 8D]).

DISCUSSION

Cooperation of RNase L, PKR, and a novel dsRNA-sensing
effector system in the activation of stress-responsive MAPKs.
In this work, we used a cell culture-based approach to identify
and characterize novel participants in the cellular signal trans-
duction responses to dsRNA. Our study found that p38 MAPK
and JNK, representatives of the stress-activated MAPKs, are
potently activated in dsRNA-treated cells of both mesenchy-
mal (fibroblasts) and epithelial (HeLa cells) origins (Fig. 1, 2,
4, and 5). PKR and the OAS/2-5A/RNase L system are the best
characterized effectors of dsRNA known to trigger bona fide
signal transduction events in dsRNA-treated cells (reference
55 and references therein). Using cells lacking both PKR and
RNase L alleles (RNase L2/2 PKR2/2), we now demonstrate
conclusively the existence of an additional cellular dsRNA-
sensing effector system that triggers the activation of p38
MAPK and (under conditions of protein synthesis inhibition;
see below) of JNK. A hypothetical model summarizing the
findings of this study is presented in Fig. 9. According to this
model, intracellular accumulation of dsRNA occurs as a result
of a viral infection. dsRNA causes inhibition of protein syn-
thesis via PKR and the OAS/2-5A/RNase L system. A yet to be

identified dsRNA-sensing effector system (X), different from
PKR and RNase L, couples the signal (dsRNA) to signal
transduction cascades leading ultimately to the activation of
MKK3/6 and p38 MAPK, on one hand, and of SEK1/MKK4
and JNK, on the other hand. A major difference between the
mechanisms of activation of p38 MAPK and JNK by dsRNA is
the requirement for an RNase L- and PKR-mediated inhibi-
tion of protein synthesis for the successful activation of JNK by
dsRNA. dsRNA-activated stress-activated MAPK may medi-
ate the production of proinflammatory and immunoregulatory
cytokines by virally infected cells. In some cases, dsRNA-acti-
vated p38 MAPK and JNK may mediate apoptosis of virally
infected cells. Our data, however, do not allow us to rule out
the possibility that p38 MAPK and JNK are activated by
dsRNA through two completely independent dsRNA-induced
effector systems. Since we consider this possibility less likely, it
is not indicated in the model proposed in Fig. 9.

dsRNA is a genuine signaling molecule that triggers up-
stream signal transduction pathways to activate p38 MAPK
and JNK. Most cellular stressors that activate p38 MAPK and
JNK do so by engaging signal transduction cascades that act
upstream of their MKKs. In some instances, however, an ac-
tion of a cellular stressor on a MAPK has been attributed to
the stress-induced inactivation of a negative regulator of a
MAPK. For instance, the activation of JNK by sodium arsenite
has been proposed to result, in part, from inactivation of a JNK
phosphatase without a strong potentiation by arsenite of
SEK1/MKK4 activity (4, 40). A major effect of dsRNA accu-
mulation in mammalian cells is the inhibition of protein syn-

FIG. 5. Effects of emetine and actinomycin D posttreatments on the dsRNA-induced phosphorylation of SEK/MKK4, JNK, and p38 MAPK in RNase L1/1 PKR1/1,
RNase L2/2 PKR1/1, and RNase L2/2 PKR2/2 cells determined by immunoblot analyses. The cells were grown and treated with pI z pC for 4 h as for Fig. 4A. Where
indicated, emetine (E; 100 mg/ml) or actinomycin D (AD; 25 mg/ml) was added either 1 h after (emetine) or 15 min after (actinomycin D) the treatment with pI z pC.
Note the lack of effect of both emetine and actinomycin D on dsRNA-induced phosphorylation of p38 MAPK. The mechanism of actinomycin D-induced p38 MAPK
phosphorylation in RNase L2/2 PKR2/2 cells (B, bottom panel, lane 2) is unknown. LF, lipofectin.
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thesis. This creates the possibility for a dsRNA-induced acti-
vation of p38 MAPK and JNK through the disappearance of a
short-lived MAPK phosphatase (e.g., MKP-1 [57]). Such a
hypothesis, however, is not supported by the experimental ev-
idence shown here and in our previous work: (i) dsRNA trig-
gers the phosphorylation of MKK3/6 and SEK1/MKK4 (Fig.
1A and 5), (ii) inhibition of protein synthesis per se cannot
activate stress-activated MAPKs (25, 26) (Fig. 4A and 5A), and
(iii) the dsRNA-induced activation of p38 MAPK is readily
observable in the RNase L2/2 PKR2/2 cells that do not show
any inhibition of protein synthesis in response to dsRNA (Fig.
3, 4B, and 5). Thus, it seems safe to conclude that dsRNA is a
genuine signaling molecule that triggers upstream signal trans-
duction pathways to activate p38 MAPK and JNK.

Involvement of a putative labile repressor(s) in the dsRNA-
induced activation of JNK but not p38 MAPK. What role does
the dsRNA-induced, RNase L- and PKR-mediated inhibition
of translation play in the activation of p38 MAPK and JNK,
respectively? Figures 2C, 4B, and 5A demonstrate that p38
MAPK is responsive to dsRNA treatment independent of the
levels of protein synthesis in the dsRNA-treated cells. How-
ever, JNK could be activated by dsRNA in the RNase L2/2

PKR2/2 cells only if the dsRNA treatment was followed by
inhibition of protein synthesis (Fig. 4A and 5B) or by inhibition
of ongoing transcription (actinomycin D posttreatment [Fig.
5B]). Under the conditions tested, actinomycin D did not affect
translation, as measured by [3H]leucine incorporation into ac-

tinomycin D-treated cells (not shown). Taken together, these
findings are consistent with the notion that the role of dsRNA-
induced inhibition of translation (and thus, by implication, the
role of RNase L and PKR) is to ensure, through inhibition of
protein synthesis, the disappearance of a labile negative regu-
lator(s) of the signaling to JNK. Only after the elimination of
the negative regulator(s) is the positively acting dsRNA-trig-
gered upstream signaling cascade to JNK able to potentiate
JNK activity (Fig. 9). Interestingly, our results seem to elimi-
nate the most obvious candidate for the role of such labile
repressor of the JNK pathway, namely, the MAPK phospha-
tase MKP-1: the putative repressor(s) in question must act
upstream of SEK1/MKK4 (Fig. 5A), whereas MKP-1 directly
regulates JNK activity and lies downstream of SEK1/MKK4
(39). Identification of the dsRNA-sensitive negative regula-
tor(s) of SEK1/MKK4-JNK cascade remains, therefore, a goal
of future experimental work.

Mechanism of dsRNA-triggered, RNase L-mediated inhibi-
tion of protein synthesis. The identification of the major site of
dsRNA-induced, RNase L-mediated cleavage of 28S rRNA
provides a possible mechanism for one of the modes of inhi-
bition of translation in response to intracellular accumulation

FIG. 6. Phosphorylation of p38 MAPK, but not JNK, in EMCV-infected
cells. 3T3(neo) and 3T3(RNaseL) cells were grown in 10-cm-diameter dishes and
incubated with IFN-a BBDB (2,000 U/ml) for 20 h. The medium was replaced
twice with serum-free, antibiotic-free DMEM; cells were infected with EMCV at
an MOI of 10 and incubated at 37°C. At indicated times, the cell were harvested
and processed for immunoblot analyses. Appropriate positive controls (not
shown) were performed for the immunoblot analysis of JNK phosphorylation to
demonstrate that, when present, phosphorylated JNK was detectable.

FIG. 7. p38 MAPK-dependent expression of IL-6 in fibroblasts in response
to EMCV infection or dsRNA. (A) IL-6 detection by ELISA. 3T3(neo) and
3T3(RNaseL) cells were grown and infected as described in Materials and
Methods, and the appearance of IL-6 in the cell culture medium was assessed by
ELISA as described in Materials and Methods. Error bars indicate standard
deviation from experimental points in triplicate determinations. (B) Identical
assessment of IL-6 expression 24 h after pI z pC treatment (0, 1, 3, or 10 mg/ml).
Error bars indicate standard deviation from experimental points in triplicate
determinations.
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of dsRNA. The target site for RNase L in the 28S rRNA is part
of the L1 protuberance, which has been proposed to partici-
pate in the formation of the E site of the ribosome (3, 14).
dsRNA-induced cleavage in the 28S rRNA is likely to com-
promise the structural and functional integrity of the E site,
thus possibly interfering with the release of deacylated tRNA
after the peptidyl transfer and ribosomal translocation.

Possible role of dsRNA in the activation of p38 MAPK (and,
under certain conditions, of JNK) by viral infections. Figure 6
demonstrates the potent ability of EMCV to trigger the acti-
vation of p38 MAPK in fibroblasts. Based on the results pre-
sented here, it is our hypothesis that one of the triggering
events for this EMCV-induced p38 MAPK activation is the
intracellular accumulation of viral dsRNA. In contrast, SEK1/
MKK4 and JNK phosphorylation was not detected in the
EMCV-infected fibroblasts (Fig. 6). In view of the previously
demonstrated requirement for a substantial reduction of the
rate of ongoing protein synthesis to activate JNK via dsRNA
accumulation, it is possible that such a robust inhibition of
translation was not achieved in the fibroblasts infected with
EMCV. Thus, the cells were able to respond to the infection by
triggering the activation of p38 MAPK but not of JNK. In

support of this notion is the observation that the virus appar-
ently efficiently replicated and lysed the cells within 18 h post-
infection (not shown). It therefore seems plausible for EMCV
to activate both p38 MAPK and JNK in cell types that have low
levels of the above-postulated negative regulator(s) of JNK
activation or in cell types in which the actions of both PKR and
RNase L can ensure sufficient levels of protein synthesis inhi-
bition. It must be noted, however, that alternative explanations
for the activation of p38 MAPK by EMCV are also possible;
the kinase may be activated, for instance, in response to a
particular viral antigen. Our data are not inconsistent with such
a scenario.

Possible role of stress-activated MAPK in the cellular re-
sponses to viral infections. Whatever the mechanisms of acti-
vation of stress-responsive kinases by EMCV, the question of
the role of this activation in the responses of mammals to viral
infections is, in our view, of importance. Based on our results
shown in Fig. 7A, we propose that a major possible role of p38
MAPK activation in EMCV-infected cells is the production of
proinflammatory and pyrogenic cytokines, such as IL-6, and
perhaps others such as tumor necrosis factor alpha, IL-1b, and
the immunoregulatory IFN-g. The role of the MKK33p38

FIG. 8. Identification of a major site of dsRNA-induced cleavage of 28S rRNA in human and mouse cells. (A) Northern blot analysis. HeLa cells were treated for
3 h with pI z pC (3 mg/ml). Total RNA was isolated, and 2-mg aliquots were used for Northern blot detection of cleavage fragments of 28S rRNA, using DNA
oligonucleotides hybridizing specifically to 28S rRNA and fragments thereof. One probe hybridized to the fragment located 39 of the site of cleavage (panel b), whereas
the other hybridized to the fragment located 59 of the site of cleavage (panel c). LF, Lipofectin. (B) The RNA preparation used for panel A was subjected to a reverse
transcriptase-driven primer extension using the primer 59-GAGTAGTGGTATTTCAC-39. Direct RNA sequencing using the same primer is shown to the right. The
sites of cleavage are represented by arrows. (C) Analysis identical to that shown in panel B was performed with RNase L1/1 PKR1/1, RNase L2/2 PKR1/1, and RNase
L2/2 PKR2/2 cells, except that 10 mg of pI z pC per ml was used. (D) Alignment of the human and mouse sequences within the region of dsRNA-induced cleavage
of the 28S rRNA. The sites of cleavage are represented by arrowheads.
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MAPK3MAPKAP kinase 2 signaling cascade in the produc-
tion of these cytokines has been well established (1, 29, 34, 42,
48, 62). Experimental observations on EMCV-induced exper-
imental myocarditis and dilated cardiomyopathy in mice have
shown increased production of these cytokines (28, 51). Indi-
rect evidence suggests a possible role of proinflammatory cy-
tokines in combating viruses. IL-6-deficient mice, for instance,
fail to control efficiently infections with vaccinia virus and
vesicular stomatitis virus (33), two viruses that also activate
dsRNA-mediated cellular responses. Tumor necrosis factor
alpha treatment of HeLa cells has been shown to inhibit ve-
sicular stomatitis virus replication by accelerating the apoptotic
response of the infected cells (35). Our findings reported here
suggest, therefore, that p38 and JNK activation by viral dsRNA
might constitute a newly recognized host defense mechanism.
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