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Abstract

To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium 

curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 

individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 

9 out of 410 genera were detected in more than 95% samples. A genome-wide association 

study (GWAS) of host genetic variation in relation to microbial taxa identified 31 loci affecting 

microbiome at a genome-wide significant (P<5×10−8) threshold. One locus, the lactase (LCT) 

gene locus, reached study-wide significance (GWAS signal P=1.28×10−20), and it showed an 

age-dependent association with Bifidobacterium abundance. Other associations were suggestive 

(1.95×10−10<P<5×10−8) but enriched for taxa showing high heritability and for genes expressed 

in the intestine and brain. A phenome-wide association study and Mendelian randomization 

identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains 

and suggested the microbiome has causal effects in ulcerative colitis and rheumatoid arthritis.
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Introduction

The gut microbiome is an integral part of the human holobiont. In recent years, many studies 

have highlighted the link between its perturbations and immune, metabolic, neurologic 

and psychiatric traits, drug metabolism and cancer1. Environmental factors, like diet and 

medication, play a significant role in shaping the gut microbiome composition2–4, although 

twin, family and population-based studies have shown that the genetic component also plays 

a role in determining gut microbiota composition, and a proportion of bacterial taxa are 

heritable5,6.

Several studies7–9 have investigated the effect of genetics on microbiome composition 

through genome-wide association studies (GWAS) and identified dozens of associated loci. 

However, little cross-replication across these studies has been observed so far10,11. This may 

be due to a number of factors. First, methodological differences in the collection, processing 

and annotation of stool microbiota are known to have significant effects on the microbiome 

profiles obtained12–14 and can generate heterogeneity and a lack of reproducibility across 

studies. Second, most association signals are rather weak, which suggests that existing 

studies of 1,000–2,000 samples7–9 are underpowered. Finally, some of the GWAS signals 

related to microbiome compositions may be population-specific, i.e. they may represent 

bona fide population differences in genetic structure and/or environment.

To address these challenges and obtain valuable insights into the relationship between host 

genetics and microbiota composition, we set up the international consortium MiBioGen11. 

In this study, we have coordinated 16S rRNA gene sequencing profiles and genotyping 

data from 18,340 participants from 24 cohorts from the USA, Canada, Israel, South 

Korea, Germany, Denmark, the Netherlands, Belgium, Sweden, Finland and the UK. 

We performed a large-scale, multi-ethnic, genome-wide meta-analysis of the associations 

between autosomal human genetic variants and the gut microbiome. We explored the 

variation of microbiome composition across different populations and investigated the 

effects of differences in methodology on the microbiome data. Through the implementation 

of a standardized pipeline, we then performed microbiome trait loci (mbTL) mapping to 

identify genetic loci that affect the relative abundance (mbQTLs) or presence (microbiome 

Binary Trait loci, or mbBTLs) of microbial taxa. Finally, we focused on the biological 

interpretation of GWAS findings through Gene Set Enrichment Analysis (GSEA), Phenome­

wide association studies (PheWAS) and Mendelian randomization (MR) approaches.

Results

Landscape of microbiome composition across cohorts

Our study included cohorts that were heterogeneous in terms of ethnic background, age, 

male/female ratio and microbiome analysis methodology. Twenty cohorts included samples 

of single ancestry, namely European (16 cohorts, N=13,266), Middle-Eastern (1 cohort, 

N=481), East Asian (1 cohort, N=811), American Hispanic/Latin (1 cohort N=1,097) and 

African American (1 cohort, N=114), whereas four cohorts were multi-ancestry (N=2,571) 

(see Supplementary Note, Supplementary Tables 1,2).
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Twenty-two cohorts comprised adult or adolescent individuals (N=16,632), and two cohorts 

consisted of children (N=1,708). The microbial composition was profiled by targeting three 

distinct variable regions of the 16S rRNA gene: V4 (10,413 samples, 13 cohorts), V3-V4 

(4,211 samples, 6 cohorts) and V1-V2 (3,716 samples, 5 cohorts) (Fig. 1a). To account 

for differences in sequencing depth, all datasets were rarefied to 10,000 reads per sample. 

Next, we performed taxonomic classification using direct taxonomic binning instead of OTU 

clustering methods (see Online Methods)11,15,16.

In general, cohorts varied in their microbiome structure at multiple taxonomic levels (Fig. 

1b–g). This variation may largely be driven by the heterogeneity between populations 

and differences in technical protocols (Supplementary Tables 1–3). Combining all samples 

(N=18,340) resulted in a total richness of 385 genus-level taxonomic groups that had a 

relative abundance higher than 0.1% in at least one cohort. This observed total richness 

appears to be below the estimated saturation level (Fig. 1b), suggesting that a further 

increase in sample size and a higher sequencing depth are needed to capture the total gut 

microbial diversity (Fig. 1d). As expected, the core microbiota (the number of bacterial 

taxa present in over 95% of individuals) decreased with the inclusion of additional cohorts 

(Fig. 1c, Online Methods). The core microbiota comprise nine genera, of which seven were 

previously identified as such3, plus the genera Ruminococcus and Lachnoclostridium (Fig. 

1e). Of these nine genera, the most abundant genus was Bacteroides (18.65% (SD:8.65)), 

followed by Faecalibacterium (6.19% (SD:2.35)), Blautia (3.36% (SD:2.84)) and Alistipes 
(3.05% (SD:1.47)). Among the European cohorts that compose the largest genetically and 

environmentally homogeneous cluster, the core microbiota also included Ruminiclostridium, 

Fusicatenibacter, Butyricicoccus and Eubacterium, genera which typically produce short­

chain fatty acids17.

The DNA extraction method was the principal contributor to heterogeneity, with a non­

redundant effect size of 29% on the microbiome variation (measured as average genus 

abundance per cohort; stepwise distance-based redundancy analysis R2adjDNAext=0.27, 

Padj=7×10−4) (Supplementary Table 4). Richness and Shannon diversity also differed 

significantly across cohorts. The cohorts with the lowest richness (HCHS/SOL) and highest 

diversity (DanFund) used specific DNA extraction kits that were not used by other studies, 

possibly contributing to their outlying alpha diversities (Fig. 1f,g, Supplementary Table 3). 

Overall, the 16S rRNA domain sequenced and the DNA extraction methods used, together 

with cohort ethnicity, accounted for 32.74% of richness variance.

Given the high heterogeneity of microbial composition across cohorts, we applied both 

per-cohort and whole study–filters for taxa inclusion in GWAS (see Online Methods).

Heritability of microbial taxa and alpha diversity

We performed estimation of heritability (H2) of gut microbiome composition based on the 

two twin cohorts included in our study (Supplementary Table 5). The TwinsUK cohort, 

composed of 1,176 samples, including 169 monozygotic (MZ) and 419 dizygotic (DZ) 

twin pairs, was used to estimate H2 using the ACE (additive genetic variance (A)/shared 

environmental factors (C)/non-shared factors plus error (E)) model. The Netherlands Twin 

Registry (NTR) cohort (only MZ twins, N=312, 156 pairs) was used to replicate the MZ 
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intraclass correlation coefficient (ICC). None of the alpha diversity metrics (Shannon, 

Simpson and inverse Simpson) showed evidence for heritability (A<0.01, P=1). Among 

the 159 bacterial taxa that were present in more than 10% of twin pairs, 19 taxa showed 

evidence for heritability (Pnominal<0.05) (Fig. 2a). The ICC shows concordance between 

TwinsUK and NTR for these 19 bacterial taxa (R=0.25, P=0.0018, Fig. 2b).

The SNP-based heritability calculated from mbQTL summary statistics using linkage 

disequilibrium (LD) score regression showed two bacterial taxa, genus Ruminiclostridium 
9 and family Peptostreptococcaeae, passing the significance threshold given the number of 

211 taxa tested (Z<3.68, Supplementary Table 5). The results of the SNP-based heritability 

and twin-based heritability showed significant correlation across the tested taxa (R=0.244, 

P=7.2×10−4).

Thirty one loci associated with gut microbes through GWAS

First, we studied the genetic background of the alpha diversity (Simpson, inverse Simpson 

and Shannon diversity indices). We identified no significant hits in the meta-GWAS 

(P>5×10−8; Supplementary Table 6, Supplementary Fig. 1), which is in line with the 

observed lack of heritability for these indices.

Next, we used two separate GWAS meta-analysis approaches18–20 to explore the effect of 

host genetics on the abundance levels (mbQTL) or presence/absence (mbBTL) of bacterial 

taxa in the gut microbiota (see Online Methods).

In total, 18,340 samples and 211 taxa were included in the mbQTL mapping analysis 

(Online Methods, Supplementary Table 3). We identified genetic variants that mapped to 20 

distinct genetic loci associated with the abundance of 27 taxa (Fig. 3; Supplementary Fig. 

2,3; Supplementary Table 7, 8). MbBTL mapping covered 177 taxa, and 10 loci were found 

to be associated with presence/absence of bacterial taxa (Fig. 3, Supplementary Table 7, 

9). For one taxon, family Peptococcaceae, two independent mbBTLs were detected (Fig. 3, 

Supplementary Table 7). Two out of 30 mbTLs showed heterogeneity in mbTL effect-sizes 

(Supplementary Note).

In both the mbQTL and mbBTL mapping, only one out of 31 loci (LCT locus – 

Bifidobacterium, P=8.63×10−21) passed the strict correction for the number of taxa tested 

(P<1.95×10−10 for 257 taxa included in the analysis). However, the remaining loci include 

functionally relevant variants (i.e. the FUT2 gene suggested by earlier studies21) and, 

overall, showed concordance with the heritability of microbial taxa. Seven out of the nine 

taxa that showed the strongest evidence for heritability in the TwinsUK cohort (P<0.01) also 

have genome-wide significant mbTLs (Fig. 2b). For the taxa with genome-wide significant 

mbTLs, the number of independent loci associated with a relaxed threshold of 1×10−5 

strongly correlated with heritability significance (R=0.62, P=1.9×10−4, Fig. 2c), suggesting 

that more mbTLs would be identified for this group of bacteria using a larger sample size.

LCT mbQTL effect shows age and ethnic heterogeneity

The strongest association signal was seen for variants located in a large block of about 

1.5Mb at 2q21.3, which includes the LCT gene and 12 other protein-coding genes. 
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This locus has previously been associated with the abundance of Bifidobacterium in 

Dutch7, UK6 and US22 cohorts. Previous studies have also shown a positive correlation 

of Bifidobacterium abundance with the intake of milk products, but only in individuals 

homozygous for the low-function LCT haplotype, thereby indicating that gene–diet 

interaction regulates Bifidobacterium abundance7. In our study, the strongest association was 

seen for rs182549 (P=1.28×10−20), which is a perfect proxy for the functional LCT variant 

rs4988235 (r2=0.996, D’=1 in European populations). This association showed evidence 

for heterogeneity across cohorts (I2=62.73%, Cochran’s Q P=1.4×10−4). A leave-one-out 

strategy showed that the COPSAC2010 cohort, which includes children 4–6 years of age 

range, contributed the most to the detected heterogeneity (Fig. 4a,b; Supplementary Table 

2). When this study was excluded from the meta-analysis, the heterogeneity was reduced 

(I2=51.9%, Cochran’s Q P=0.004). A meta-regression analysis showed that linear effects 

of age and ethnicity accounted for 11.84% of this heterogeneity. Including quadratic and 

cubic terms of age in the model explained 39.22% of the heterogeneity, and the residual 

heterogeneity was low (Cochran’s Q P=0.01) (Fig. 4c).

Following these observations, we decided to investigate the effect of age and ethnicity in the 

multi-ethnic GEM cohort, comprising 1,243 individuals with an age range between 6 and 35 

years, of which nearly half of the participants are 16 years or younger. Our analysis showed 

a significant SNP–age interaction on the level of Bifidobacterium abundance (P<0.05, 

see Online Methods). Individuals homozygous for the NC_000002.11:g.136616754CC 

(rs182549) genotype showed a higher abundance of the genus Bifidobacterium in the 

adult group, but not in the younger group (Fig. 4d). The age–genotype interaction was 

significant in the GEM_v12 and GEM_ICHIP subcohorts, both comprising mostly European 

individuals, while the GEM_v24 cohort, mainly composed of individuals of different Israeli 

subethnicities (see Online Methods) who live in Israel, showed neither an mbQTL effect 

(Beta = −0.002 [95%CI: −0.21, 0.21]) nor an interaction with age (P>0.1). The lack of 

an LCT mbQTL effect in adults was also observed in another Israel cohort in the study 

(Personalized Nutrition Project (PNP), 481 adults, Beta = −0.20 [95%CI: −0.61, 0.20]). 

Altogether, the cohorts that reported the lowest LCT effect sizes were the two cohorts of 

Israeli ethnicity volunteered in Israel (GEM_v24, PNP) and a child cohort (Copenhagen 

Prospective Studies on Asthma in Childhood (COPSAC), Beta = −0.18 [95%CI: −0.36, 

−0.01]).

mbTLs are enriched for genes related to metabolism

Several loci detected at genome-wide significance level were enriched for genes related to 

metabolism.

In the mbQTL analysis, the FUT2-FUT1 locus was associated to the abundance of 

the Ruminococcus torques genus group, a genus from the Lachnospiraceae family. 

The leading SNP (rs35866622 for R. torques group, P=2.21×10−8) is a proxy for the 

functional variant rs601338 (r2=0.8; D’=0.9 in European populations) that introduces 

a stop-codon in FUT223. Another proxy of the functional FUT2 SNP, rs281377, 

showed association to the Ruminococcus gnavus genus group in the binary analysis, 

however this signal was just above the genome-wide significance threshold (P=5.79×10−8) 
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(Supplementary Table 9). FUT2 encodes the enzyme alpha-1,2-fucosyltransferase, which 

is responsible for the secretion of fucosylated mucus glycans in the gastrointestinal 

mucosa24. Individuals homozygous for the stop-codon (rs601338*A/A, non-secretors) 

do not express ABO antigens on the intestinal mucosa. We observed that the tagging 

NC_000019.9:g.49218060C>T (rs35866622 non-secretor) allele was associated with a 

reduced abundance of the R. torques group and a decreased presence of the R. gnavus group. 

Ruminococcus sp. are specialized in the degradation of complex carbohydrates25, thereby 

supporting a link between genetic variation in the FUT2 gene, levels of mucus glycans and 

the abundance of this taxa. When assessing the link between this variant and phenotypes in 

the LifeLines-DEEP (LLD; N=875) and Flemish Gut Flora Project (FGFP, N=2,259) cohorts 

(Online Methods), the strongest correlation for the R. torques group was seen with fruit 

intake (LLD: RSp=−0.19, Padj=3.1×10−5; FGFP: RSp=−0.10, Padj=1.4×10−4, Supplementary 

Table 10, 11), in line with the association of FUT2 with food preferences, as discussed in the 

results of the PheWAS (see below).

Several other suggestive mbQTLs can be linked to genes potentially involved in host–

microbiome crosstalk. One of them includes three SNPs in 9q21 (top-SNP rs602075, 

P=3.57×10−8) associated with abundance of Allisonella. The 9q21 locus includes the 

genes PCSK5, RFK and GCNT1, of which RFK encodes the enzyme that catalyzes the 

phosphorylation of riboflavin (vitamin B2) and GCNT1 encodes a glycosyltransferase 

involved in biosynthesis of mucin. These products play major roles in the host–microbiota 

interactions within the intestine, where they are used by bacteria for their metabolism 

and involved in the regulation of the host immune defense26. Another association signal 

10p13 (rs61841503, P=9.8×10−9), which affects the abundance of the heritable family 

Peptostreptococcaceae, is located in the CUBN gene, the receptor for the complexes of 

cobalamin (vitamin B12) with gastric intrinsic factor (the complex required for absorption 

of cobalamin). CUBN is expressed in the kidneys and the intestinal epithelium and is 

associated with B12-deficient anemia and albuminuria27. Cobalamin is required for host–

microbial interactions28, and supplementation with cobalamin induced a substantial shift in 

the microbiota composition of an in vitro colon model29. These associations suggest that 

some members of the gut microbiome community might be affected by genetic variants that 

regulate the absorption and metabolism of vitamins B2 and B12.

Among mbBTLs, the strongest evidence for association was seen for a block of 10 SNPs 

(rs7574352, P=1.42×10−9) associated with the family Peptococcaceae, a taxon negatively 

associated with stool levels of the gut inflammation markers chromogranin A (LLD: 

RSp=−0.31, Padj=4.4×10−18, Table S10) and calprotectin (LLD: RSp=−0.11, Padj=0.058) and 

with ulcerative colitis (FGFP: RSp=−0.06, Padj=0.09, Table S11). The association block is 

located in the intergenic region in the proximity (220kb apart) of IRF1, which is involved in 

insulin resistance and susceptibility to type 2 diabetes30.

Other highlights of identified mbTLs are given in the Supplementary Note.

GSEA, FUMA and PheWAS analysis

To explore the potential functions of the identified mbTLs, we performed FUMA 

(Functional Mapping and Annotation of GWAS, see Online Methods)31, GSEA and 
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PheWAS, followed by Bayesian colocalization analysis and genetic correlation of 

Bifidobacterium abundance to its PheWAS-related traits. FUMA of 20 mbQTL loci returned 

139 positional and eQTL genes. GSEA on these genes suggested an enrichment for genes 

expressed in the small intestine (terminal ileum) and brain (substania nigra and putamen 

basal ganglia) (Supplementary Fig. 4). The positional candidates for mbBTLs did not show 

any enrichment in GSEA analysis.

To systematically assess the biological outcomes of the mbTLs, we looked up the 31 mbTLs 

in the summary statistics for 4,155 complex traits and diseases using the GWAS ATLAS32. 

Five out of 31 leading SNPs were associated with one or more phenotypes at P<5×10−8 

(Supplementary Table 12): rs182549 (LCT) and rs35866622 (FUT1/FUT2), followed by 

rs4428215 (FNDC3B), rs11647069 (PM FBP1) and rs9474033 (PKHD1).

The variant showing highest pleiotropy, rs182549 (LCT, Bifidobacterium), was associated 

with multiple dietary and metabolic phenotypes, and the causal involvement of the SNP 

across pairs of traits was confirmed by colocalization test (PP.H4.abf > 0.9) for 49 out of 51 

tested phenotypes. The NC_000002.11:g.136616754=(rs182549) allele, which predisposes 

individuals to lactose intolerance, was negatively associated with obesity33 and positively 

associated with Type 2 diabetes mellitus (T2DM) diagnosis (OR=1.057 [95%CI:1.031, 

1.085], P=1.74×10−5), family history of T2DM (paternal: OR=1.054 [95%CI:1.035, 1.073], 

P=1.41×10−8; maternal: OR=1.035 [95%CI:1.016, 1.053], P=0.0002, siblings: OR=1.03 

[95%CI:1.009, 1.052]), and several nutritional phenotypes in the UK Biobank cohort32. 

Moreover, the functional LCT SNP rs4988235 variant is associated with 1,5-anhydroglucitol 

(P=4.23×10−28)34, an indicator of glycemic variability35. There was a nominally significant 

correlation of Bifidobacterium with raw vegetable intake (rg=0.36, P=0.0016), but this 

correlation was not statistically significant after correction for multiple testing.

NC_000019.9:g.49218060=(rs35866622, FUT1/FUT2 locus) was positively associated with 

fish intake and height. The secretor allele was negatively associated with the risks of 

cholelithiasis and Crohn’s disease, alcohol intake frequency, high cholesterol and waist-to­

hip ratio (adjusted for body mass index (BMI), with PP.H4.abf > 0.9).

Consistent with the single SNP analysis, gene-based PheWAS also showed a strong link 

of the LCT locus with metabolic traits (e.g. P=5.7×10−9 for BMI), whereas several 

nutritional (e.g. P=1.26×10−20 for oily fish intake), immune-related (e.g. P=1.73×10−12 for 

mean platelet volume), gastrointestinal (e.g. P=8.77×10−14 for cholelithiasis) and metabolic 

signals (e.g. P=1.13×10−13, high cholesterol) mapped to the FUT1/FUT2 locus (Fig. 5, 

Supplementary Table 13).

Finally, we performed a phenotype domain enrichment analysis (Online Methods). We 

observed that top loci were enriched with signals associated with the metabolic domain 

supported by 4 mbTLs, followed by nutritional, cellular, immunological, psychiatric, 

ophthalmological, respiratory and reproductive traits, and the activities domain (Fig. 5, 

Supplementary Table 14).
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Mendelian Randomization analysis

To identify the potential causal links between gut microbial taxa and phenotypes, we 

performed bi-directional two-sample MR analyses using the TwoSampleMR package36. We 

focused on two groups of phenotypes: diseases (autoimmune, cardiovascular, metabolic and 

psychiatric) and nutritional phenotypes37–42. The complexity of the mechanisms by which 

host genetics affect microbiome composition, and the limited impact of genetic variants 

on microbial taxa variability, require caution when performing and interpreting causality 

estimation using MR analysis43. We therefore carried out several sensitivity analyses and 

excluded any results that showed evidence of being confounded by pleiotropy (Online 

Methods). Only pairs supported by three or more SNPs were considered. With these 

strict cut-offs, no evidence for causal relationships between microbiome taxa and dietary 

preferences was identified (Supplementary Tables 15, 16). However, our results suggest that 

a higher abundance of the class Actinobacteria and its genus Bifidobacterium may have a 

protective effect on ulcerative colitis (Actinobacteria: OR=0.56 [95%CI: 0.44–0.71] for each 

SD increase in bacterial abundance, PBHadj=8.8×10−4; Bifidobacterium: OR=0.51 [95%CI: 

0.39–0.71], PBHadj=9.8×10−5) (Fig. 6a,b). We also observed that higher abundance of family 

Oxalobacteraceae has a protective effect on rheumatoid arthritis (OR=0.82, [95%CI: 0.74–

0.91], PBHadj=0.028, Fig. 6c).

Discussion

We report here on the relationship between host genetics and gut microbiome composition 

in 18,340 individuals from 24 population-based cohorts of European, Hispanic, Middle 

Eastern, Asian and African ancestries. We have estimated the heritability of the human gut 

microbiome and the effect of host genetics on the presence and abundance of individual 

microbial taxa. We studied the heterogeneity of the mbTL signals and characterized the 

impact of technical and biological factors on their effect magnitude. In addition, we explored 

the relevance of the identified mbTLs to health-related traits using GSEA, PheWAS and MR 

approaches.

Our large, multi-ethnic study allowed for an informative investigation of the human gut 

microbiome. However, there was large heterogeneity in the data, which reflects biological 

differences across the cohorts and methodological differences in the processing of samples. 

Overall, seven different methods of fecal DNA extraction and three different 16S rRNA 

regions were used12,44. In addition, differences in the ethnicities, ages and BMIs of the 

participants led to a remarkable variation in microbiome richness, diversity and composition 

across cohorts. Diet, medication and lifestyle, among other factors2,3, are known to influence 

the microbiome but were not included in our analysis because this data were not available 

for all cohorts. Large variation in the microbiome composition may have reduced the power 

of our mbTL analysis (see Supplementary Note).

We did not detect a host genetic effect on bacterial diversity, in line with a lack of its 

detectable heritability. Thirty-one taxon-specific mbTLs (20 mbQTLs and 11 mbBTLs) 

were identified at P<5×10−8. Even with our large sample size, the number of mbTLs 

identified is rather modest. Only the association of LCT locus with Bifidobacterium 
(P=1.28×10−20) passed the conservative study-wide significance threshold of P>1.95×10−10. 

Kurilshikov et al. Page 8

Nat Genet. Author manuscript; available in PMC 2021 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, we observed that heritable taxa tend to have more genome-wide significant loci 

and suggestively associated loci, and twin-based heritability is significantly correlated with 

SNP-based heritability. Our results confirm that only a subset of gut bacteria is heritable, 

and that the genetic architecture affecting the abundance of heritable taxa is complex and 

polygenic.

The association between the LCT locus and the Bifidobacterium genus was the strongest 

in our study. It has been shown that the functional SNP in the LCT locus, rs4988235, 

determines not only the abundance of the Bifidobacterium genus, but also the strength of 

the association between this genus and milk/dairy product intake7. Here, we showed the 

ethnic heterogeneity and age-dependent nature of the LCT-Bifidobacterium association – the 

effect is weaker in children and adolescents – consistent with existing knowledge on lactose 

intolerance45,46. The strongest mbQTL effect was observed in the Hispanic Community 

Health Study/Study of Latinos (HCHS/SOL) cohort that comprises individuals of Hispanic/

Latin American ethnicity and shows the highest prevalence of the lactose intolerant 

NC_000002.11:g.136616754CC (rs182549) genotype (683 out of 1,097 individuals).

To explore the potential functional effects of mbTLs on health-related traits, we used GSEA, 

PheWAS and MR approaches. The GSEA indicated enrichment of mbQTLs for genes 

expressed in the small intestine and brain. These results support the existence of the gut–

brain axis mediated by microbiome and likely influencing gastrointestinal, brain and mood 

disorders47–49. In addition, the PheWAS analysis identified a significant overlap between the 

genetic variants affecting gut microbes and a broad range of host characteristics, including 

psychiatric, metabolic and immunological traits, and nutritional preferences, amongst other 

phenotype groups (Supplementary Table 14). Moreover, genetic determinants of bacterial 

abundance are involved in regulating host metabolism, particularly obesity-related traits. 

Among the interesting bacteria, earlier studies have linked the relative abundances of 

Ruminococcus50, Lachnospiraceae51 and Ruminococcaceae52 to obesity. PheWAS analysis 

also indicated that SNPs from the LCT and FUT2 loci that associated with bacterial taxa are 

also associated to dietary preference factors, including fish, cereal, bread, alcohol, vegetable 

and ground coffee intake, along with other dietary phenotypes. Interestingly, other genes 

found to be associated with mbTLs also included olfactory receptors (OR1F1) and genes 

involved in the absorption and metabolism of B2 and B12 vitamins (RFK and CUBN).

Genetic anchors to microbiome variation also allow for estimation of causal links with 

complex traits through MR approaches53–55. MR results indicate that Actinobacteria and 

Bifidobacterium might have a protective effect in ulcerative colitis. Cross-sectional studies 

have reported an increased abundance of Actinobacteria in healthy individuals as compared 

to inflammatory bowel disease patients56,57, although these results have not always been 

consistent58,59. Bifidobacterium was also previously shown to have a beneficial effect 

on ulcerative colitis in a clinical trial58,60. We also revealed that abundance of family 

Oxalobacteraceae in the gut microbiome might be protective for rheumatoid arthritis; the 

abundance of this family in lung was previously shown to be negatively associated with 

rheumatoid arthritis61. Protective effects of the bacterial taxa on these diseases support the 

potential of microbiome-based therapy.
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In summary, we report the largest study to date to investigate the genetics of human 

microbiome across multiple ethnicities. Microbiome heterogeneity and high inter-individual 

variability substantially reduces the statistical power of microbiome-wide analyses: similar 

to earlier microbiome GWAS studies, we report a limited number of associated loci. 

Nevertheless, our results point to causal relationships between specific loci, bacterial taxa 

and health-related traits. Heritability estimates suggest that these associations are likely part 

of a larger spectrum that is undetectable in the current study sample size. This warrants 

future studies that should take advantage of larger sample sizes, harmonized protocols 

and more advanced microbiome analysis methods, including metagenomics sequencing 

instead of 16S profiling and quantification of bacterial cell counts. Given the essential 

role of the gut microbiome in the metabolism of food and drugs, our results contribute 

to the development of personalized nutrition and medication strategies based on both host 

genomics and microbiome data.

Online Methods

Data collection

A total of 25 cohorts, comprising18,340 participants of different ethnicities and ages, 

participated in the microbiome GWAS analysis (Supplementary Tables 1, 2). The 

Supplementary Note provides detailed descriptions of data collection per cohort.

16S microbiome data processing

The rationale behind the selection of the 16S rRNA processing pipeline was described 

previously11. In short, the divergence in the 16S rRNA gene domains between cohorts 

makes operational taxonomic unit (OTU)-level analysis impossible, while the use of a direct 

taxonomic classification of the reads and an up-to-date reference database allowed us to 

achieve good between-domain concordance of taxonomic composition and a higher mapping 

rate.

The participating cohorts varied in their sample collection protocol, selection of DNA 

purification kits used to extract DNA from fecal samples, the 16S domain selected for PCR 

(Supplementary Table 1), read length, depth, post-sequencing quality control (QC) and the 

software used to merge tags of paired-end sequencing. After processing the QC-filtered 

merged reads, all cohorts implemented the standardized 16S processing pipeline (https://

github.com/alexa-kur/miQTL_cookbook) that uses SILVA release 12815 as a reference 

database, with truncating the taxonomic resolution of the database to genus level.

Briefly, the procedure was as follows. First, all samples were rarefied to 10,000 reads using 

a predefined random seed to allow for rarefaction reproducibility. Samples with fewer than 

10,000 reads were discarded. Second, RDP classifier v.2.1216 was used to bin the reads to 

a reference database. For each taxonomic level, the posterior probability of 0.8 was used 

as a cutoff to bin each read to the corresponding taxon. The posterior cutoff probability 

was traced for each taxonomic level separately. For example, if the posterior probability 

passed the cutoff on family level but not on genus level, the read was binned to taxonomy 

on the family level (all corresponding upper taxonomic levels) and discarded on the genus 
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level. It was also assigned to a special “NOTAX_genus” pseudo-taxon to maintain data 

compositionality.

To characterize the contribution of cohort-wise metadata (16S domain, DNA extraction 

method, cohort ethnicity, lysis temperature and type of lysis buffer) to the microbiome 

composition, we used a distance-based redundancy analysis test in which each cohort 

represented a sample and variables represented mean abundances of genera in the 

corresponding cohort (taxa with prevalence below 20% discarded). The association of 

metadata with richness was performed by multivariate linear regression analysis.

The alpha diversity indices, including Shannon, Simpson and inverse Simpson indices, 

were calculated on genus level with non-adjusted, non-transformed taxa counts. For all 

other analyses, the taxonomic counts of non-zero samples were natural log–transformed 

and adjusted for potential covariate effects using linear regression. The list of covariates 

used in the regression models varied between cohorts, but always included sex, age, genetic 

principal components (PCs) calculated on non-imputed genetic data (3 PCs for monoethnic 

cohorts, 10 PCs for multiethnic cohorts and 5 PCs for the HCHS/SOL cohort as a multi­

ethnic population of different, but closely related ethnicities; see Supplementary Note for 

Cohort descriptions) and cohort-specific potential microbiome batch effects, if applicable. 

Variables such as the length of time in non-frozen storage, the 16S sequencing batch, etc. 

were also included. The residuals of the adjustment were then scaled and centered (mean=0 

and SD=1).

In the analysis of microbiome composition heterogeneity, the cohorts SHIP/SHIP-TREND 

and GEM_HCE_v12/GEM_HCE_v24/GEM_HCE_ICHIP were merged to SHIP and GEM, 

respectively, because they were analyzed with exactly the same protocols in the same 

laboratories. In the microbiome–genetics analysis, these five cohorts were included 

individually as they differed in the genotyping arrays and/or general populations they 

represented.

For each cohort, only the taxa present in more than 10% of the samples were included in 

the quantitative microbiome trait loci (mbQTL) mapping, whereas taxa present in more than 

10% but less than 90% of the samples were included in binary trait loci (mbBTL) mapping 

(Supplementary Table 3). Study-wide cutoffs for mbQTL mapping included an effective 

sample size of at least 3,000 samples and presence in at least three cohorts. For mbBTLs, a 

mean abundance higher than 1% in the taxon-positive samples was required. This resulted 

in 211 taxa (131 genera, 35 families, 20 orders, 16 classes and 9 phyla) that passed taxon 

inclusion cutoffs for mbQTL analysis, and 177 taxa (108 genera, 34 families, 16 orders, 12 

classes and 7 phyla) for mbBTL analysis.

Genetic data processing

Despite the difference in genotyping array platforms, most cohorts used similar procedures 

for imputation and post-imputation filtering steps. Twenty-three out of 24 cohorts used 

the Michigan Imputation Server (https://imputationserver.sph.umich.edu/index.html) for 

imputation, using the HRC 1.0 or 1.1 reference panel62. Due to restrictions in manipulating 

data, the PNP study employed an in-house pipeline for imputation instead, using 
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IMPUTE263,64 software (v.2.3.2) and 1000G reference panel with addition of population­

matched genotypes of Jewish individuals65. The post-imputation cutoffs were the same for 

PNP and the other cohorts.

Post-imputation VCFs were transformed into TriTyper format and filtered using 

GenotypeHarmonizer v.1.4.20 software66. The following cutoffs were applied for inclusion: 

minor allele frequency >0.05, pointwise imputation QC >0.4 and SNP-wise call rate filtering 

>0.95.

Heritability analysis

Heritability was calculated using data collected on 169 MZ and 419 DZ pairs of twins 

from the TwinsUK cohort (total of 1,176 individuals). Twin-based heritability was calculated 

by fitting an ACE model using the OpenMx package (v.2.8.3), as previously described5. 

Prior to heritability estimation, the taxonomic abundance was normalized using inverse rank 

sum transformation. Since the NTR cohort comprised only MZ twins, the between-cohort 

heritability concordance was calculated as the correlation of intraclass correlation coefficient 

(ICC) for MZ twins. Pearson’s correlation between NTR’s and TwinsUK’s ICCs was used to 

estimate the concordance. For mbQTLs, SNP-based heritability was calculated by LD score 

regression using ‘LDSC’ tool67.

Microbiome GWAS analysis

The modified version of the eQTL mapping pipeline (https://github.com/molgenis/

systemsgenetics/tree/master/eqtl-mapping-pipeline) was used to perform mbQTL 

mapping68.

The microbiome GWAS was performed in three ways. First, we performed GWAS on 

three microbiome alpha diversity metrics (Shannon, Simpson and Inverse Simpson), using 

Spearman correlation between SNP dosages and alpha diversity metrics after adjustment for 

age, sex, technical covariates and genetic principal components.

Second, we used Spearman correlation to identify loci that affect the covariate-adjusted 

abundance of bacterial taxa, excluding samples with zero abundance (mbQTLs).

Third, we identified the loci associated with probability of presence vs absence of the 

bacterial taxon (mbBTLs). To perform mbBTL analysis, we used a two-stage approach 

composed of fast correlation screening followed by logistic regression analysis as a robust 

method for binary traits GWAS19. First, we calculated the Pearson correlation between SNP 

dosage and bacterial presence encoded as 0/1, without adjusting for any covariate effect and 

using the previously mentioned eQTL mapping pipeline, and used weighted Z-score meta­

analysis to calculate non-centrality for SNP-taxon association. Finally, all SNP-taxon pairs 

with a first stage meta P-value <1×10−4 were recalculated using multiple logistic regression 

(R base package, versions from 3.2.0 to 3.5.1 depending on the group) with bacterial 

presence as an outcome and using SNP dosage along with the list of covariates as predictors. 

All the mbBTLs that reached nominal genome-wide significance threshold (P<5×10−8) in 

logistic regression analysis had a Pearson correlation P-value (at first stage) more significant 
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than P<10−6, presuming the completeness of two-stage procedure in revealing genome-wide 

significant mbBTL using P<10−4 cutoff at the first stage of analysis.

mbTL meta-analysis

Meta-analysis was performed using a weighted Z-score method implemented in 

BinaryMetaAnalyzer (v.1.0.13B available on MiBioGen Cookbook), a part of the eQTL 

mapping pipeline that was used in large-scale eQTL meta-analyses20,68. Per-cohort, Z-scores 

were calculated from Spearman correlation p-values using inverse normal transformation, 

transforming two-tailed p-values to one-tailed p-values and tracing the effect directions 

using the following formula:

sign RSp * qnorm 1 − P /2

Where sign (RSp) denotes the sign of Spearman correlation, qnorm denotes the quantile 

function for the normal distribution and P denotes the two-tailed p-value of Spearman 

correlation. For quantitative mbQTLs, the cohorts were weighted by the square root of 

the effective sample size (the number of samples having the bacterial taxon). For binary 

mbQTLs, the square root of the reported cohort size was used as a weighting for each study. 

The summary statistics generated for mbQTLs also include meta-effect sizes and standard 

errors. These were generated using the inverse variance weighted meta-analysis method 

performed on the per-cohort effect sizes and standard errors, backtracked from association 

Z-scores and minor allele frequencies using the strategy proposed and implemented by Zhu 

et al69, where they also give the detailed derivation of the following equations:

b = zS

S = 1
2p 1 − p n + z2

Where, b is the estimated effect size, S is the estimated standard error, p is the allele 

frequency and n is the sample size.

Heterogeneity exploration analysis

Cross-study heterogeneity of the effects of genetic variants in the relative abundance of 

taxonomical units was assessed using Cochran’s Q-test for heterogeneity70, as implemented 

in METAL v2018–08-2871, for all genome-wide significant variants (P<5×10−8) found in 

our main analysis. To avoid reporting false-positive associations due to different study 

designs or data collection methods, we used a stringent threshold of P<0.05 to reject the 

null hypothesis of no heterogeneity. This threshold is conservative considering that several 

variants were tested simultaneously, and no correction for multiple testing was applied. 

When there was evidence of heterogeneity, a random effect model was also implemented 

at the meta-analysis level to confirm the association results, using the metaphor R package 

v.2.0–0 (https://cran.r-project.org/web/packages/metafor/metafor.pdf).
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Additionally, when there was evidence for heterogeneity of a SNP-effect across cohorts, 

we implemented a meta-regression approach using the same package to assess whether 

variables such as age, ethnicity or sequenced region could explain the observed effect-size 

heterogeneity.

Analysis of SNP–age interaction analysis in the LCT locus

To discover whether the association of functional SNPs in the LCT locus to the abundance 

of the Bifidobacterium genus varied between groups of adults and infants, we performed 

age–SNP interaction analysis in the GEM cohort, which comprises three sub-cohorts that 

each have a comparable number of individuals above and below puberty age. The age of 

17 years was selected to split the cohort into the age groups: adolescents or adults. Since 

the GEM cohort was composed of three sub-cohorts of different ethnic composition, we 

evaluated the interaction in both joint analysis and in each subcohort separately, using the 

following formula:

Bac = Sex + PC[1–3] + Agegroup + Coℎort + SNPdos + SNPHZ + SNPGT:Agegroup

where Bac is the log-transformed count of genus Bifidobacterium, PC[1–3] are three floats 

with the first 3 genetic PCs, Cohort is a batch variable that determines the cohort the sample 

belongs to, SNPdos is a float-encoded dosage of alternative allele, SNPHZ is a Boolean 

variable describing heterozygosity, SNPGT is a genotype encoded as an unordered factor and 

Agegroup is a two-level factor (above or below split level). The inclusion of a numeric dosage 

variable and a Boolean SNPHZ variable allowed us to properly adjust for the recessive effect 

of the SNP on Bifidobacterium abundance without neglecting SNP imputation uncertainty as 

embedded in SNP dosage.

The analysis was then repeated for each GEM subcohort separately, using the same model.

Association of mbTL-associated taxa with host phenotypes

Bacterial taxa found to be significantly associated with genetic determinants were correlated 

with 207 host phenotypes, including the intrinsic host properties, diet, disease and 

medication information, in the LLD and FGFP cohorts. We used Spearman correlation with 

Benjamini-Hochberg (BH)-adjustment for multiple testing to assess the correlation between 

phenotypes and bacteria that had mbQTLs. For the taxa with mbQTLs, samples with zero 

abundance were truncated. For the taxa with mbBTLs, the abundance was transformed to a 

binary trait encoding presence/absence.

FUMA analyses of meta-analysis results

Functional mapping and annotation of 30 meta-analysis results were performed with FUMA 

(v1.3.5), an integrated web-based platform31. Summary statistics from the mbQTL analyses 

for each of the 20 independent association signals were used in the analysis. Genome-wide 

significant loci and their boundaries were defined as non-overlapping genomic regions that 

extend across an LD window of r2≥0.4 (based on the 1000G EUR reference panel)72 from 

the association signals with P<5.0×10−8. Independent (r2<0.1) lead SNPs from each locus 

were defined as those most strongly associated with a microbial trait (i.e. with the lowest P 
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value) at the specific region. Multiple risk loci were merged into a single genomic locus if 

the distance between their LD blocks was <250 kb.

Functional annotation of all candidate risk SNPs was obtained from different repositories 

integrated in FUMA. Furthermore, these functionally annotated SNPs were mapped to 

protein-coding genes using the following two strategies: (1) positional mapping, with 

the maximum distance of 10 kb to protein-coding genes, and (2) eQTL mapping, using 

information from data repositories such as GTEx v7 and Blood eQTL browser (http://

genenetwork.nl/bloodeqtlbrowser/)20.

As the mbBTL mapping procedure provides accurate statistics for only the subset of SNPs 

(see Microbiome GWAS analyses paragraph), and we thus lack full summary statistics, we 

only performed positional mapping for mbBTLs, taking in the protein-coding genes within 

10 kb distance of the 10 leading SNPs per trait.

All mapped protein-coding genes were combined into one list for either mbQTL or 

mbBTL analysis prior to performing GSEA integrated in FUMA. In further investigations, 

hypergeometric tests of enrichment of all mapped genes were performed not only in tissue­

specific (differentially expressed) gene sets, but also in gene sets curated from various 

sources, e.g. MsigDB. We reported all enriched gene sets (≥2) with an FDR adjusted P-value 

<0.05.

PheWAS, genetic correlation and colocalization analysis

We performed the PheWAS look-ups in the summary statistics results of 4,155 traits 

collected by the GWASATLAS32 (http://atlas.ctglab.nl/, accessed on: 25–09-2019) database 

for the top SNPs per mbQTL locus that were revealed by either mbQTL or mbBTL 

mapping. GWASATLAS includes 600 traits from the UK Biobank and is enriched with 

extensive phenotypes on proteomics (n=1124 proteins), hematology (n=36), metabolomics 

(n=1145 metabolic features) and immune markers (n=241), studied across variable sample 

sizes. It also contains 1,009 GWASs performed prior to the UK Biobank effort, all 

categorized under 27 phenotype domains. Next, we tested if any of these 27 domains 

were enriched by the phenotypes associated to one of the SNPs of interest (using a liberal 

P-value threshold of 0.05 for the SNP–phenotype association) as compared to the expected 

distributions under the null hypothesis. In order to obtain the distributions under the null 

hypothesis, we selected matching 1000 SNPs for each top SNP using SNPSNAP73 matched 

by allele frequency, gene density, number of LD pairs and distance from the closest gene.

We then extracted corresponding results from the GWASATLAS for the matched 30,000 

SNPs (1000 matching SNPs per each top mbTL SNP). The enrichment of each domain was 

tested by comparing the proportions of observed and expected significant results for the 

SNPs of interest using the prop.test function in R. This resulted in one-sided P-values and 

odds ratios. Seven domains (Aging, Body structures, Connective tissue, Ear-Nose-Throat, 

Infection, Muscular and Social Interactions) that included fewer than 20 GWAS tables 

were excluded from the enrichment tests, resulting in 20 domains. We used a conservative 

Bonferroni-based P-value threshold of 8.06×10−5 for the enrichment testing, accounting for 

20 domains and a total of 30 mbTL top SNPs coming from both the mbQTL and mbBTL 
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mapping. In addition, we performed gene-based PheWAS look-ups in the GWASATLAS for 

candidate genes of interest within 250 kb around the association peaks, as defined by the 

FUMA algorithms.

The genetic correlation between Bifidobacterium and its PheWAS-related traits (from Table 

S12) was estimated following a LD-score regression approach67 using the ‘ldsc’ tool. 

For testing colocalization of the PheWAS signals, we used the approximate Bayes factor 

approach as implemented by the “coloc.abf” function from the “coloc” library in R74, using 

genetic variants within ±250 kb around the top signals.

Mendelian Randomization analysis

MR analyses were performed in R using TwoSampleMR package (v.0.5.5)36. Causality 

direction was tested between the microbiome and two data types: (1) autoimmune, 

cardiovascular, metabolic (including weight-related phenotypes) and psychological diseases 

(GWAS summary statistics from MRBase36) known to be associated with microbiome 

composition2,3,37–42,47 and (2) 42 nutritional phenotypes and alcohol intake frequency from 

the UK Biobank round 2 (http://www.nealelab.is/uk-biobank/).

For MR analyses, the combined meta-effects and standard errors from inverse variance 

meta-analysis were used.

To test if a complex trait affected microbiome composition, we selected independent genetic 

variants associated with complex traits at the genome-wide significant level (P<5×10−8) 

and used these as instruments in our MR analyses. For complex diseases, we transformed 

Odd Ratios (ORs) and C.I. to effect sizes and standard errors using the built-in function 

of the TwoSampleMR package. To test if microbiome changes were causally linked to 

complex traits, we first confined ourselves to bacteria with genome-wide significant QTLs. 

For these, we selected all SNPs with a less stringent cut-off of P<1×10−5 in our MR 

analyses as instruments. This strategy was used to increase the number of SNPs available 

in order to perform sensitivity analyses, as shown previously53. Independent SNPs were 

selected as instrumental variables based on r2 < 0.001 in 1000G EUR data, within the 

TwoSampleMR package. When no shared SNPs were available between exposure and 

outcome, proxies from the 1000G EUR data (r2 > 0.8) were added. We kept only the 

results based on at least three shared SNPs. MR causality tests were performed using the 

Wald ratio, and Wald ratios were meta-analyzed using the inverse-variance weighted (IVW) 

method75. We also estimated the causality using additional methods: the weighted mode 

method76, which provides an alternative approach to IVW; MR-Egger77, which estimates 

the degree of horizontal pleiotropy in the data; and MR PRESSO78, which estimates the 

pleiotropy and corrects for it by removing outliers from the IVW model. We also assessed 

the heterogeneity of the results using Cochran’s Q statistics75 and using leave-one-out 

analyses36. We estimated instrument variable (IV) strengths using F statistics: the amount 

of variance explained by IVs was calculated for each exposure using the TwoSampleMR 

package (get_r_from_lor function) for binary traits and VPE as defined in Shi et al79. F 

statistics were then calculated as r2 *  N  –  1  –  k
1  –  r2 * k

, where r2 is the variance explained, N is the 
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sample size and k is the number of IVs. We kept the results for the conventional threshold of 

F statistics >1080.

After performing the MR tests, we excluded duplicated GWAS traits, as the same phenotype 

is often studied in multiple GWAS. To remove the duplicates, we kept the study with the 

largest sample size among all the tested GWAS studies for each trait.

After excluding duplicates and tests performed with weak instruments (F statistics <10), 

we applied a BH correction for multiple testing to the results obtained from the IVW 

MR test, and subsequently used a stringent filtering procedure on the significant results to 

avoid false-positives. Specifically, we removed the MR results that were based on fewer 

than three SNPs and thus could not be further investigated with sensitivity analyses. We 

also removed the MR results that were not supported by other MR tests (weighted mode 

method P >0.05, MR PRESSO P>0.05) and those that showed substantial pleiotropy or 

heterogeneity as estimated by MR-Egger (MR-Egger intercept P<0.05) or MR PRESSO 

outliers-adjusted test (P>0.05), as well as those where leave-one-out analysis identified one 

SNP driving the signal (all but one leave-one-out configurations had P<0.05). Of note, 

MR-Egger slope, which represents the causal estimate, was not used as a filtering step 

given the reduced power to detect causal effects. It is also worth noting that for all but one 

of the reported MR results that passed all the filters above, the MR-Egger slope p-value 

was greater than 0.05, therefore an MR-Egger intercept P<0.05 cannot be used to exclude 

presence of pleiotropy. Even though many of our MR-Egger intercept results provided 

little evidence of directional pleiotropy, it is worth noting that a P<0.05 cannot exclude 

the presence of pleiotropy and requires further understanding of the biological mechanisms 

underpinning the relationship between genetic variation, the gut microbiome and health 

outcomes. To exclude more complex causality scenarios, we also removed those results for 

which the reverse MR P-value was below 0.05. Of note, the causal relationship identified for 

the microbiome feature class Actinobacteria (as exposure) and ulcerative colitis (outcome) 

showed a consistent effect direction when using only the only genome-wide significant SNP, 

but with wider confidence interval (OR=0.40 [95% CI: 0.22–0.71] Pnominal=0.002).
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Data availability statement

Full GWAS summary statistics for mbQTLs are available at www.mibiogen.org website built 

using the MOLGENIS framework81.

16S data availability:

BSPSPC and FOCUS data is available from Sequence Read Archive (SRA), 

PRJNA673102

All CARDIA data, including 16S rRNA sequencing, cannot be made available on 

publicly available databases due to the confidentiality restrictions. The data can 

be requested from CARDIA Study Data Coordinating Center at the University 

of Alabama at Birmingham, following CARDIA Confidentiality Certification 

rules. The process for obtaining data through CARDIA is outlined at: https://

www.cardia.dopm.uab.edu/publications-2/publications-documents.

COPSAC data is available on SRA (PRJNA683912).

DanFunD is not deposited on the public databases due to the legal and 

ethical restrictions. Access to the data and biological material can be granted 

by the DanFunD steering committee (https://www.frederiksberghospital.dk/ckff/

sektioner/SBE/danfund/Sider/How-to-collaborate.aspx).

FGFP data is available on European Genome-Phenome Archive (EGA), 

EGAS00001004420

GEM data is available on SRA (PRJEB14839).

Generation R and Rotterdam Study data cannot be made publicly available due 

to ethical and legal restrictions; these data are available upon request to the data 

manager of the Rotterdam Study Frank van Rooij (f.vanrooij@erasmusmc.nl) or of 

the Generation R Study Claudia Kruithof (c.kruithof@erasmusmc.nl) and subject to 

local rules and regulations.

HCHS/SOL data is available from ENA (European Nucleotide Archive), ERP117287.

KSCS data is available at the public repository, Clinical and Omics 

data archives (CODA) in the Korea National Institute of Health by 

accession number R000635 (http://coda.nih.go.kr/coda/coda/search/omics/genome/

selectSearchOmicsGenomePop/R000635.do).

LLD and MIBS data are available from EGA, EGAS00001001704, 

EGAS0000100924).

METSIM data is available on SRA (SRP097785).

NGRC data is available on ENA (ERP016332).

NTR has a data access committee that reviews data requests and will make data 

available to interested researchers. The data come from extended twin families and 
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pedigree structures with twins, which create privacy concerns and thus cannot be 

shared on publicly available databases. Researchers may contact prof Eco de Geus 

(eco.de.geus@vu.nl) for data request..

PNP is available on ENA (PRJEB11532).

POPCOL is available on EGA (EGAS00001004869).

SHIP and SHIP-TREND data can be obtained from the SHIP data management 

unit and can be applied for online through a data access application form (https://

www.fvcm.med.uni-greifswald.de/dd_service/data_use_intro.php)

TwinsUK data is available on the European Nucleotide Archive (ENA, accession 

ERP015317).
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Figure 1. Diversity of microbiome composition across the MiBioGen cohorts.
(a) Sample size, ethnicity, genotyping array and 16S rRNA gene profiling method. 

The SHIP/SHIP-TREND and GEM_v12/GEM_v24/GEM_ICHIP subcohorts are combined 

in SHIP and GEM, respectively (Online Methods; see Supplementary Note for cohort 

abbreviations). This merge resulted in the total of 21 cohorts depicted in the figure. (b)* 
Total richness (number of genera with mean abundance over 0.1%, i.e. 10 reads out of 

10,000 rarefied reads) by number of cohorts investigated. (c)* Number of core genera 

(genera present in >95% of samples from each cohort) by number of cohorts investigated. 

(d) Pearson correlation of cohort sample size with total number of genera. Confidence 

band represents the standard error of the regression line. (e)* Unweighted mean relative 

abundance of core genera across the entire MiBioGen dataset. (f)* Per-sample richness 

across the 21 cohorts. Asterisks indicate cohorts that differ significantly from all the others 

(pairwise Wilcoxon rank-sum test; FDR<0.05). (g) Diversity (Shannon index) across the 21 

cohorts, with the DanFund and PNP cohorts presenting higher and lower diversity in relation 

to the other cohorts (pairwise Wilcoxon rank sum test; FDR<0.05). (*) For all boxplots, the 

central line, box and whiskers represent the median, IQR and 1.5 times the IQR.
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Figure 2. Heritability of microbiome taxa and its concordance with mbQTL mapping.
(a) Microbial taxa that showed significant heritability in the TwinsUK cohort (ACE model, 

nominal P<0.05, no adjustment for multiple comparison). Taxa with at least one genome­

wide significant (GWS) mbQTL hit are marked red. Only taxa present in more than 10% of 

pairs (>17 MZ pairs, >41 DZ pairs) are shown. Circles and diamonds represent heritability 

value. Error bars represent 95% CI. (b) Correlation of monozygotic ICC between TwinsUK 

and NTR cohort. Only taxa with significant heritability (ACE model P<0.05) that are 

present in both TwinsUK and NTR are shown. Red and blue dots indicate bacterial taxa 

with/without GWS mbQTLs (P<5×10−8), respectively. Segments represent 95% CI. (c) 
Correlation between heritability significance (−log10PH2 TwinsUK) and the number of loci 

associated with microbial taxon at relaxed threshold (PmbQTL<1×10−5). Taxa with at least 

one GWS-associated locus are marked red. Error bars represent 95% confidence intervals.
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Figure 3. Manhattan plot of the mbTL mapping meta-analysis results.
MbQTLs are indicated by letters. MbBTLs are indicated by numbers. For mbQTLs, the 

Spearman correlation test (two-sided) was used to identify loci that affect the covariate­

adjusted abundance of bacterial taxa, excluding samples with zero abundance. For mbQTLs, 

p-values (two-sided) were calculated by logistic regression. Horizontal lines define nominal 

genome-wide significance (P=5×10−8, red) and suggestive genome-wide (P=1×10−5, blue) 

thresholds.
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Figure 4. Association of the LCT locus (rs182549) with the genus Bifidobacterium.
(a) Forest plot of effect sizes of rs182549 and abundance of Bifidobacterium. Effect sizes 

and 95% CI are defined as circles and error bars. Effect sizes were calculated from 

Spearman correlation p-values (Online Methods). (b) Meta-regression of the association 

of mean cohort age and mbQTL effect size. Confidence bands represent the standard 

error of the meta-regression line. (c) Meta-regression analysis of the effect of linear, 

squared and cubic terms of age on mbQTL effect size. Confidence bands represent the 

standard error of the meta-regression line. (d) Age-dependence of mbQTL effect size in 

the GEM cohort. Blue boxes include samples in the age range 6–16 years old. Red boxes 

include samples with age ≥17 years. The C/C (rs182549) genotype is a proxy of the 

NC_000002.11:g.136608646=(rs4988235) allele, which is associated to functional recessive 

hypolactasia. The central line, box and whiskers represent the median, IQR and 1.5 times the 

IQR, respectively. See Supplementary Note for cohort abbreviations.
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Figure 5. Phenome-wide association study (PheWAS) domain enrichment analysis.
The analysis covered top-SNPs from 30 mbTLs and 20 phenotype domains. Three 

thresholds for multiple testing were used: 0.05, 8.3×10−5 (Bonferroni adjustment for number 

of phenotypes and genotypes studied) and 5×10−8 (an arbitrary genome-wide significance 

threshold). Only categories with at least one significant enrichment signal are shown.
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Figure 6. Mendelian randomization (MR) analysis.
The X-axes show the SNP-exposure effect and the Y-axes show the SNP-outcome effect 

(SEs denoted as segments). (a) MR analysis of class Actinobacteria (exposure) and 

ulcerative colitis (outcome). (b) MR analysis of genus Bifidobacterium (exposure) and 

ulcerative colitis (outcome). (c) MR analysis of family Oxalobacteraceae (exposure) and 

rheumatoid arthritis (outcome).
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