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Abstract

Purpose of review: Acute myeloid leukemia (AML) is an aggressive malignancy of the bone 

marrow that has a poor prognosis with traditional cytotoxic chemotherapy, especially in elderly 

patients. In recent years, small molecule inhibitors targeting AML associated IDH1, IDH2 and 

FLT3 mutations have been FDA approved. However, the majority of AML cases do not have a 

targetable mutation. A variety of novel agents targeting both previously untargetable mutations 

and general pathways in AML are currently being investigated. Herein, we review selected new 

targeted therapies currently in early phase clinical investigation in AML.

Recent Findings: The DOT1L inhibitor pinometostat in KMT2A rearranged AML, the menin 

inhibitors KO-539 and SYNDX-5613 in KMT2Ar and NPM1 mutated AML and the mutant TP53 

inhibitor APR-246 are examples of novel agents targeting specific mutations in AML. In addition, 

BET inhibitors, polo-like kinase inhibitors and MDM2 inhibitors are promising new drug classes 

for AML which do not depend on the presence of a particular mutation.

Summary: AML remains in incurable disease for many patients but advances in genomics, 

epigenetics and drug discovery have led to the development of many potential novel therapeutic 

agents, many of which are being investigated in on-going clinical trials. Additional studies will be 

necessary to determine how best to incorporate these novel agents into routine clinical treatment of 

AML.
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Introduction

Acute myeloid leukemia (AML) is a heterogeneous malignancy of hematopoietic stem 

and progenitor cells that has a poor prognosis with standard cytotoxic chemotherapy 

(1). In the last decade, significant progress has been made in defining the cytogenetic, 

molecular and epigenetic alterations underlying leukemogenesis (2–4). Response to 

cytotoxic chemotherapy and therefore prognosis is highly dependent upon cytogenetic 

and mutational aberrations present. The identification of AML associated mutations has 

led to the development of new classes of targeted inhibitors including the mutant IDH 

inhibitors enasidenib (5, 6) and ivosidenib (7, 8) and the FLT3 inhibitors midostaurin (9) 

and gilteritinib (10). However, only a minority of AML patients have targetable mutations. 

Targeted inhibitors that block pathways broadly involved in AML and that are not dependent 

upon specific mutations are another strategy; two such drugs have recently been approved. 

The BCL2 inhibitor venetoclax has been approved in combination with hypomethylating 

agents or low dose cytarabine (LDAC) for older (≥75 years) and/or unfit AML patients.(11, 

12). The smoothened inhibitor glasdegib is similarly approved to be given in combination 

with LDAC (13). While these new agents have improved outcomes in AML, none are 

considered curative. There remains an unmet need for additional novel targeted therapeutics, 

particularly in patients with adverse risk disease. In this article, we will review selected 

targeted inhibitor classes currently under development for the treatment of AML.

BET Inhibitors

The epigenetic reader bromodomain and extraterminal domain (BET) protein BRD4 was 

initially identified as an essential gene for the survival of MLL-AF9 / NRAS driven murine 

AML cells (14) and has been shown to have a crucial role in maintaining survival in human 

AML leukemia stem cells (LSC) (15). BRD4, especially the short isoform, is over-expressed 

in human AML and high risk myelodysplastic syndrome (MDS) (16, 17). Collectively, 

evidence suggests that BRD4 serves to maintain core transcriptional programs in LSCs (18). 

It should be noted that little is known about the role of the other ubiquitously expressed BET 

family members BRD2 and BRD3 in leukemogenesis.

Pharmacologic inhibitors of BRD4 have been developed which function via displacing 

BRD4 as well as BRD2 and BRD3 from acetylated lysines on histones and transcription 

factors (19, 20). BET inhibitor treatment of AML cells results in differentiation and loss 

of LSC associated gene expression signatures (14, 19, 21). In addition to their initially 

reported activity in mixed-lineage leukemia 1 / lysine-specific methyltransferase 2A (MLL1/
KMT2A) rearranged (KMT2Ar) AML, these drugs have been shown to have pre-clinical 

activity against multiple sub-types of AML, including NPM1 mutated (21), IDH2 mutated 

(22), ASXL1 mutated (23), t(8;21) positive core binding factor (CBF) AML (24) and JAK2 
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mutated secondary AML (25). These pre-clinical data suggest that BET inhibitors may have 

broad activity in AML that is not limited specific mutations or cytogenetic abnormalities.

Multiple BET inhibitors are currently in pre-clinical and early clinical development, with 

significant differences in selectivity, half-life and other pharmacologic properties. Early BET 

inhibitors were panselective, with relatively indiscriminant binding between both different 

BET proteins and BD1/BD2 domains within a given BET protein (26). Subsequent work 

has shown that BD1 may be more critical for continued chromatin binding, while the role 

of BD2 may be limited to initiating binding and interactions with transcription factors 

(27). Additionally, BD2 seems to have more relevance for inflammatory responses while 

transcriptional networks in AML may be BD1 dependent (28). There still is much to be 

learned regarding the relative roles of different BET proteins and specific bromodomains in 

AML, and it remains unclear which bromodomain should be pharmacologically targeted for 

optimal responses.

To date, the final results of only one clinical trial of BET inhibitors in AML has been 

fully reported (29). In this study OTX015 / MK-8628 was given in phase 1 dose escalation 

study in relapsed and refractory (r/r) acute leukemia patients. On the basis of dose 

limiting toxicities (DLTs), including gastrointestinal (GI) and thrombocytopenia, when given 

continuously in a separate study in lymphoma and multiple myeloma (MM) patients (30), 

OTX015 was given for 14 days followed by 7 days off drug. Dose escalation was hampered 

by poor tolerability secondary to GI toxicities, fatigue and cytopenias, particularly at doses 

higher than 80 mg daily. Responses included 2 complete remissions (CR) and 1 CR with 

incomplete count recovery (CRi) with no apparent relationship between dose level and 

responses. Duration of response was short, with all 3 responding patients relapsing within 5 

months or less. OTX015 is no longer being clinically developed; however multiple trials of 

second and third generation BET inhibitors, both as single agents and in combination with 

hypomethylating agents or venetoclax are currently on-going as summarized in Table 1.

DOT1L inhibitors

Approximately 5–10% of AML cases harbor 11q23 chromosomal rearrangements involving 

the MLL1/KMT2A histone methyltransferase (2, 3). KMT2Ar are disproportionately 

common in pediatric and young adult patients (31) and in patients with prior exposure 

to topoisomerase II inhibitors (32). These patients have an aggressive course with inferior 

responses to chemotherapy (33). KMT2A fusion proteins inappropriately recruit disruptor 

of telomeric signaling −1 (DOT1L), a H3K79 methyltransferase, to KMT2A target genes, 

in particular the HOXA cluster and MEIS1, resulting in deposition of activating histone 

methylation marks at these promoters and ultimately overexpression (34). Genetic screens 

demonstrated that KMT2A fusions require DOT1L activity for leukemic transformation 

(35), making DOT1L an attractive pharmacologic target. Subsequently, EPZ004777, a 

potent and selective inhibitor of DOT1L, was developed (36). EPZ004777 has little effect 

on leukemia cells without KMT2Ar, but decreases proliferation and induces apoptosis 

and differentiation in KMT2Ar cells. Importantly, given that greater than 60 types of 

11q23 translocation partners have been described to date (37), EPZ004777 has activity 

against multiple KMT2A fusion proteins (33, 36). However, EPZ004777 has unsuitable 
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pharmacokinetic (PK) properties for in vivo use, prompting the development of an optimized 

compound, pinometostat (EPZ-5676), for clinical development (38). Pinometostat is highly 

potent DOT1L inhibitor with >37,000 fold selectivity over other protein methyltransferases. 

In subcutaneous (SQ) MV4–11 xenograft models, pinometostat treatment resulted in tumor 

regression (38). In pre-clinical models, continuous drug exposure was required for efficacy, 

with decreased responses seen with intermittent dosing. Therefore, pinometostat was given 

as a continuous IV infusion for 21 days of a 28 day cycle in the initial early phase 

clinical studies. In a multi-center dose escalation study in 51 r/r acute leukemia patients, 

of which 37 were KMT2Ar, pinometostat was well tolerated, with the most common 

adverse events being fatigue, nausea, febrile neutropenia and electrolyte abnormalities (39). 

Serious (>grade 3) treatment related adverse events (AEs) included leukocytosis possibly 

related to differentiation, anemia, prolonged QTc, cardiac failure and liver abnormalities. 

Two patients had objective CRs and two patients had clearance of leukemia cutis lesions 

without regression of bone marrow disease. Additionally, seven patients had leukocytosis 

with morphologic changes on bone marrow examination consistent with differentiation. 

A similar safety profile was seen in a dose escalation study in pediatric KMT2Ar acute 

leukemia patients (40), with the exception of cardiac toxicity, which was only observed 

in adult patients. In contrast to the initial study in adult patients, pinometostat was 

dosed continuously until progression or unacceptable toxicity. No objective responses were 

obtained, but 7/18 patients had transient decreases in blood or bone marrow blast percentage.

On the basis of these results in heavily pre-treated r/r patients, pinometostat is currently 

being investigated in two phase 1b/2 studies in newly diagnosed KMT2Ar AML patients. 

In NCT03724084, pinometostat is given in combination with daunorubicin and cytarabine­

based induction chemotherapy in patients ages 14 or older who are candidates for intensive 

chemotherapy. In NCT03701295, either 54 mg or 90 mg/m2/day pinometostat is given 

continuously in combination with azacitidine either in newly diagnosed KMT2Ar AML 

patients ineligible for induction chemotherapy or in r/r KMT2Ar AML. Recruitment for 

these trials is on-going and results have not yet been reported.

Polo-like kinase inhibitors

Polo-like kinases are a family of serine/threonine kinases with roles in cell cycle regulation 

and characterized by the presence of a conserved C-terminal polo-box domain that mediates 

protein-protein interactions with substrates (41). The best studied family member, polo-like 

kinase 1 (PLK1) is required for cells to progress from G2 to M phase in the cell cycle and 

is characteristically overexpressed in rapidly dividing cells including during fetal growth and 

in various malignancies (42) including AML (43). Additionally, PLK1 interacts with the 

PI3K/AKT/MTOR pathway, particularly in leukemia cells (44). There is little to no PLK1 

expression in normal, adult tissues (43) including CD34+ progenitors and PBMCs (43, 45). 

Genetic or pharmacologic inhibition of PLK1 in leukemia cells results in cell cycle arrest 

in pro-metaphase leading to apoptosis and decreased colony formation (43, 46), with little 

effect on normal CD34+ cells. Importantly, the effects of PLK1 depletion or inhibition do 

not appear dependent upon the presence of TP53 (42). Recent pre-clinical data suggests 

that complex karyotype AML (47), aneuploid AML (48) and secondary AML (49) may be 

particularly dependent upon PLK1 and therefore especially sensitive to PLK1 inhibition.
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The first PLK1 inhibitor studied clinically, BI-2536, (46) was investigated in elderly r/r 

AML patients in a multi-center phase 1 dose escalation study (50). The toxicity profile 

was typical of AML patients, with the majority of adverse events being hematologic and 

infectious in nature. Encouragingly, 2 CRs and 3 partial responses (PRs) were observed in 

a heavily pretreated population. Of patients whose response was initially classified as a PR, 

all three eventually achieved a CR with additional cycles of treatment. One of these patients 

maintained a CR for 21 months. Similar to pre-clinical data, bone marrow cells 24 hours 

after BI-2536 infusion exhibited mitotic arrest and apoptosis. Despite these encouraging 

results, development of BI-2536 was discontinued due to a multi-compartmental PK 

behavior thought to be unfavorable for clinical use.

Several PLK1 inhibitors are currently being studied in early phase clinical trials (Table 

2). Of these, volasertib, a derivative of BI-2536, has the most data. Volasertib is potent 

competitive inhibitor of PLK1 with a sub-nanomolar IC50, little activity on unrelated 

kinases (51) and improved pharmacologic properties compared to pre-clinical PLK1 

inhibitors (52). It has additional inhibitor activity on BRD4 (53) though the relevance of 

this in vivo is unclear. In the first-in-human phase 1 dose escalation study of volasertib given 

as a 1 hour IV infusion every 3 weeks in advanced or metastatic solid tumors, volasertib 

was well tolerated, with the main AEs being cytopenias and nausea (54). Neutropenia 

and thrombocytopenia were dose limiting but reversible. The maximum tolerated dose 

(MTD) was found to be 400 mg. PRs were seen in 3 of 65 patients and stable disease 

(SD) was observed in an additional 26 subjects. A similar toxicity profile was seen in 

two additional phase 1 studies in advanced solid tumors (55, 56) and in r/r AML patients 

receiving either volasertib monotherapy or volasertib in combination with LDAC (57). The 

MTD in combination with LDAC was determined to be 350 mg. Subsequently, volasertib 

was investigated in a phase 2 study that randomized 89 older AML patients unsuitable for 

induction chemotherapy to LDAC (20 mg SQ twice daily on days 1–10) with or without 

volasertib (350 mg on days 1 and 15) (58). The composite CR/CRi rate was significantly 

higher in patients receiving LDAC + volasertib (12/42, 31%) compared to LDAC alone 

(6/45, 13.3%). Combination arm patients also had longer event-free survival (EFS) (median 

5.6 vs 2.3 months) and overall survival (OS) (median 8.0 vs 5.2 months). Responses were 

not correlated with cytogenetic risk classification. Unfortunately, the POLO-AML2 phase 

3 study of LDAC + volasertib versus LDAC + placebo did not meet its primary endpoint 

of improved CR/CRi (59). The combination arm did have a higher CR/CRi rate (25.2 vs 

16.8%) which was not statistically significant. The initial analysis showed an increased 

incidence of fatal infections in the volasertib arm, which was related to total dose density. 

Subsequently, a phase 1 study of volasertib in combination with decitabine was conducted 

in 13 elderly AML patients (60). The MTD of volasertib when given in combination with 

decitabine was 400 mg on days 1 and 5. Two patients had DLTs, including grade 3 asthenia 

and grade 3 mucositis, at the 400 mg dose level. Additionally, treatment related grade 5 

anemia occurred in one patient; this was not considered a DLT due to the study protocol 

defining only non-hematologic toxicities as DLTs. Three objective responses, 2 CRi and 

1 PR, were reported. An additional study of volasertib in combination with azacitidine in 

MDS (NCT02721875) has been terminated but final results have not yet been reported.
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At this time, further development of volasertib in AML has been discontinued. The toxicities 

and limited clinical efficacy of volasertib was thought to be potentially related to off­

target effects on other polo-like kinase family members PLK2 and PLK3. Less is known 

about the physiologic role of PLK2 and PLK3 in hematopoiesis. Some studies suggest 

that PLK2 may have tumor suppressor activity in hematologic malignancies including 

AML (61) and its suppression may increase senescence and apoptosis in normal marrow 

progenitors (62). Onvansertib/NMS-P37/PCM-075 is a potent reversible, competitive orally 

bioavailable selective PLK1 inhibitor that has limited off target activity on PLK2 and PLK3 

at concentrations up to 10 μM (63, 64). Additionally, onvansertib has a shorter half-life than 

volasertib, which may also contribute to decreased toxicity.

In a phase 1 dose escalation study of onvansertib given days 1–5 of 21 day cycles to 

advanced/metastatic solid tumor patients, no DLTs were observed up to 24 mg/m2/day (65). 

Drug-related grade 4 neutropenia and thrombocytopenia were seen at higher doses. SD 

was the best response and was achieved in 5 of 16 evaluable patients. KRAS mutations 

appeared to be a biomarker of response in metastatic colon cancer and onvansertib has been 

granted Fast Track designation by the United States Food and Drug Administration (FDA) 

for further development in this patient population. In AML, onvansertib was investigated in 

a phase 1b dose escalation study in r/r patients in combination with LDAC or decitabine, 

with a starting dose of 12 mg/m2 on days 1–5 of a 28 cycle (66). Overall, ovanasertib was 

well tolerated, with the most common adverse events being hematologic toxicities. Two 

DLTs, grade 3 mucositis and grade 4 rash, occurred at 90 mg/m2 in the decitabine arm. 

The MTD for onvansertib was therefore established as 60 mg/m2. CR or CRi was reported 

in 5 patients (5/23, 24%) on the decitabine arm and 1 patient (1/15, 7%) on the LDAC 

arm, with a median remission duration of 5.5 months. Notably, while the study was not 

powered to detect associations between different mutational subgroups, 4 of the 6 patients 

who attained CR or CRi had spliceosome mutations. An update of the phase 2 expansion 

study of 60 mg/m2onvansertib in combination with decitabine was recently reported at the 

2020 American Society of Hematology meeting (67). The toxicities were similar to those 

seen in the phase 1b study. The combined CR/CRi rate was 17%, with half of responders 

having a spliceosome mutation.

Rigosertib is a small molecule with inhibitory activity on polo-like kinases, RAF and 

PI3K (68) that has been investigated in AML and MDS. It is not yet clear to what extent 

its activity its activity depends upon PLK versus RAS pathway inhibition. Due to space 

constraints, we will not discuss rigosertib further in this review.

Mutant TP53 inhibitors

TP53 is a tumor suppressor protein with roles in DNA damage response, cell cycle arrest, 

apoptosis and senescence (69). Approximately 5–10 percent of AML cases have TP53 
mutations (2, 3), with an increased prevalence in therapy related-AML (70), secondary AML 

(71) and complex-karyotype AML (72). TP53 mutated AML has a poor prognosis, with 

inferior responses to traditional cytotoxic chemotherapy (73–75). Interestingly, AML with 

subclonalTP53 mutations has a similarly poor prognosis compared to cases in which the 

dominant clone is TP53 mutated (76). Responses may be more favorable with decitabine­
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based therapy (77), though this may be altered by the effect of concurrent karyotype 

abnormalities on responses in this patient population (78, 79).

A novel therapeutic strategy is to target mutated TP53, a protein which had previously 

been considered undruggable. APR-246, a PRIMA-1 analog, binds covalently to TP53 and 

induces a conformational shift in mutated TP53 to a wildtype-like structure which is able 

to bind specific DNA sequences and activate target gene transcription, thereby ultimately 

inducing apoptosis (80, 81). In addition, APR-246 has TP53-independent activity that 

leads to increased oxidative stress and cell death (82), providing a plausible mechanism 

for activity in TP53 wildtype cells and in cells without detectable TP53 expression. In 

preclinical models of AML, APR-246 has synergistic effects with azacitidine (83).

In a first-in-human phase 1/2 dose escalation study in patients with refractory hematologic 

malignancies and advanced prostate cancer, APR-246 was given as a 2 hour IV infusion for 

4 consecutive days, followed by a 17 day safety monitoring period (84). Retreatment was 

only allowed if disease burden was judged to have decreased by 25% or greater after initial 

treatment. APR-246 was well tolerated, with the most common AEs being fatigue, dizziness, 

headache, confusion and sensory disturbances. Neurologic side effects were infusion-related 

and resolved after the end of infusion. The MTD was determined to be 60 mg/kg. One 

AML patient had a reduction in bone marrow blasts from 46% to 26% and one non-Hodgkin 

Lymphoma patient had a minor response on computed tomography; both of these individuals 

had TP53 mutated disease. An extension of this study in 8 AML and 2 chronic lymphocytic 

leukemia (CLL) patients sought to improve safety by extending the infusion time to 6 hours 

and additionally allowed for retreatment in 21 day cycles (85). Using this strategy, the 

MTD was increased to 105 mg/kg. Two AML patients met response criteria. One patient 

achieved a CR, though interpretation of this observation is complicated by use of hydrea and 

sorafenib within 4 weeks of treatment. TP53 mutational status was not determined for this 

patient. A second TP53 mutated AML patient had a reduction in peripheral blood blast count 

>25% at 21 days but was taken off study and did not have additional response assessment or 

treatment due to AEs thought unrelated to the study drug. A third patient with TP53 mutated 

CLL had a transient >25% decrease in total lymphocyte count and lymph node size after 1 

cycle of treatment but progressed during cycle 2. Notably in both of these studies, clinical 

activity in hematologic malignancies was concentrated in TP53 mutated patients

Based on these results, APR-246, now known as eprenetapopt, was then studied in 

combination with azacitidine in two early phase studies in TP53 mutated AML and MDS 

patients. Sallman et al reported the results of a phase 1b/2 of APR-246 alone or in 

combination with azacitidine in TP53 mutated myeloid malignancies including 40 MDS, 

11 AML and 4 chronic myelomonocytic leukemia patients (86). In the phase 1b study, 

dose escalation up to 100 mg/kg eprenetapopt given IV on days 1–4 was well tolerated 

without DLTs either as monotherapy or in combination with azacitidine given on days 

4–10. The RP2D of 100 mg/kg was determined to be equivalent to a fixed dose of 4500 

mg daily on the basis of PK data; this dosing was used in the phase 2 expansion. The 

AEs were similar to those associated with each drug as a single agent and included 

cytopenias, febrile neutropenia, nausea/vomiting, diarrhea and transient neurologic toxicities 

during eprenetapopt infusion. Grade 3/4 toxicities were limited to cytopenias; there were no 
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reported serious neurologic toxicities. Of 45 evaluable patients, 36 achieved CR or marrow 

CR, including 6 of 8 evaluable AML patients. The median duration of CR was 7.3 months; 

this was not significantly different between MDS and AML patients. Notably, 19 patients 

discontinued study treatment in order to undergo allogeneic stem cell transplant.

A Groupe Francophone des Myélodysplasies phase 2 study of APR-246 4500 mg IV days 

1–4 followed by azacitidine given days 4–10 of a 28 day cycle was published concurrently 

(87). Fifty-two patients, including 34 MDS and 18 AML patients, were evaluable for 

response. The overall response rate (ORR) was 52% including 37% CR. The reported CR 

rate in MDS patients was 53%. AML patients had lower CR/CRirates, with a trend towards 

decreased efficacy in patients with >30% marrow blasts (14% vs 45% for patients with 20–

30% marrow blasts). Adverse events were similar to those reported in the phase 1b/2 study 

(86). Two reversible grade 3 neurologic toxicities were observed in patients with baseline 

lower renal function. In both of these studies, TP53 mutations VAF clearance was associated 

with CR. There was no clear relationship between co-occurring mutations and response.

On the basis of these results, the FDA granted APR-246 and azacitidine breakthrough 

designation for TP53 mutated MDS in April 2020. However, the randomized phase 3 

study of APR-246 and azacitidine compared to azacitidine (NCT03745716) was recently 

reported to not meet the primary endpoint of CR. However, further analysis and full report 

of the study is still pending at the publication of this manuscript. APR-246 is also being 

investigated as maintenance therapy in combination with azacitidine following alloSCT 

in TP53 mutated AML or MDS (NCT03931291) and in combination with azacitidine/

venetoclax for newly diagnosed TP53 mutated myeloid malignancies (NCT04214860). 

In addition, Aprea Therapeutics is currently developing an orally bioavailable APR-246 

derivative, APR-548. A phase 1 study of APR-548 in combination with azacitidine in TP53 

mutated MDS is planned but not yet recruiting (NCT04638309).

MDM2 Inhibitors

TP53 activity is inhibited by binding its negative regulators MDM2 and MDM4, which 

target it for degradation via ubiquitination. MDM2 is overexpressed in AML so even cells 

without TP53 mutation or deletion may have low functional TP53 activity. Small molecule 

inhibitors of the MDM2/p53 interaction reduce p53 destruction leading to increased cellular 

p53 levels and ultimately apoptosis (88). The first inhibitor of this class, nutlin-3a, 

was not studied clinically due to poor bioavailability and toxicity in preclinical models. 

Subsequently, two nutlin-3a analogues, RG7112 and RG7388, were developed. RG7112 was 

studied in a phase 1 trial in r/r acute and chronic leukemia patients, with modest efficacy 

(89) including 3 CR/CRi out of 30 AML patients. However, its further development was also 

limited by GI toxicity (90) and unfavorable PK findings.

RG7388/idasanutlin is an orally bioavailable MDM2 inhibitor with increased potency and 

selectivity compared to both RG7112 and nutlin-3a (91). In a phase 1 dose escalation study 

of r/r AML, idasanutlin was given either as a single agent on days 1–5 of a 28 cycle or 

in combination with cytarabine 1 g/m2 IV on days 1–6 of a 28 day cycle (92). Enrollment 

was not limited to TP53 wild-type AML. Myelosuppression and diarrhea were identified as 

DLTs, with both occurring at the 800 mg twice daily dose level. Two different formulations 
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of idasanutlin were studied, with different recommended phase 2 dosing determined for 

each: 600 mg twice daily for the initial formation and 300 mg twice daily (BID) for the 

optimized formulation used in an expansion study. Seven of 37 evaluable patients (19%) 

receiving monotherapy achieved a CR or CRi, while 21 of 59 (36%) evaluable combination 

treatment patients obtained a CR or CRi. The median duration of response was 7.7 months 

with monotherapy and 8.5 months with combination therapy. Six patients proceeded to 

alloSCT. Notably, only 1 of 25 patients with TP53 mutations attained CR, compared to 

22 of 71 TP53 wild-type patients. Responses were additionally correlated with MDM2 

expression in AML blasts (92, 93). Idasanutlin was additionally studied at a lower dose 

in polycythemia vera and essential thombocythemia patients refractory to standard of care 

treatments (94), where it was well tolerated. GI toxicities including nausea, vomiting and 

diarrhea were the most common AEs but these were generally low grade. Of 16 enrolled 

patients, responses were observed in 9, including 5 CRs and 4 PRs. Unfortunately, despite 

these promising results, the phase III MIRROS study of idasanutlin in combination with 

cytarabine (NCT02545283) in r/r AML (95) was terminated early when it failed to meet 

its primary endpoint of improved overall survival compared to cytarabine alone. It is 

important to note that the bioavailability and PKs of idasanutlin are heavily influenced by 

formulation (96–98). It is therefore difficult to directly compare results from initial studies 

to later trials using an optimized formulation. Currently idasanutlin is being investigated 

in combination with venetoclax in r/r AML (NCT02670044 and NCT04029688) and in 

combination with cytarabine and daunorubicin based induction chemotherapy in newly 

diagnosed AML (NCT03850535). Preliminary results of the phase 1 study investigated 

idasanutlin and venetoclax in elderly r/r AML and secondary AML were reported at the 

2019 American Society of Hematology annual meeting (99). Adverse events were consistent 

with known toxicities of both drugs as single agent therapy. The RP2D was determined to 

be 600 mg venetoclax given continuously in combination with either 150 mg or 200 mg of 

idasanutlin on days 1–5 of 28 day cycles. Across all dose levels, CR or CRi were recorded in 

11 of 49 patients.

The MDM2 inhibitor AMG-232 is structurally distinct and interacts with the glycine shelf 

region of the TP53 binding pocket on the surface MDM2 (100), a property not found in 

nutlin derivatives. Like idasanutlin, it is orally bioavailable. In a phase 1 dose-escalation 

study in advanced solid malignancies and MM, AMG-232 was well tolerated, with the most 

common adverse events being GI toxicities and anemia (101). No objective response were 

reported. In a second study, AMG-232 was given alone or in combination with the mitogen­

activated protein kinase (MEK) inhibitor trametinib in r/r AML (102). Of note compared 

to the first-in-man study in solid tumor patients, this study had increased dose frequency 

with AMG-232 being given for 7 days every 2 weeks rather than 7 days every 3 weeks. 

Despite the increased dosing, the toxicity profile was similar. As expected, AML patients 

had a higher incidence of grade 3 and 4 cytopenias. Dose escalation in the monotherapy 

arm was halted due to GI toxicities. However, the protocol did not allow prophylactic 

medications to manage nausea or diarrhea and the authors note that tolerability may be 

improved with prophylactic anti-emetics. Responses included 4 morphological leukemia 

free states (MLFS) in the monotherapy arm and 1 CR and 1 PR in the combination 

arm out of a total 30 evaluable patients. As expected based on the mechanism of action, 
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no responses were seen in patients with TP53 mutations. Most responses were short 

lived. However, the patient who attained a CR maintained this response for over 550 

days. Trametinib was discontinued after cycle 2 due to trametinib-related ocular toxicity 

and AMG-232 was continued as a single agent until disease progression 650 days after 

initiating study treatment. AMG-232 is currently being investigated in combination with 

decitabine (NCT03041688 and NCT04113616), LDAC (NCT04113616) and with induction 

chemotherapy (NCT04190550) in AML

One limitation of MDM2 inhibitors is that most compounds have limited effects on other 

MDM family members such as MDMX, which may be a source of resistance. AML cells 

have high MDMX expression (102); this may present difficulties for the development of 

MDM2 inhibitors. ALRN-6924 is a stapled peptide with dual inhibition of both MDM2 and 

MDM4 (103). Notably it is the first stapled peptide to be given in man. In a first-in-human 

phase 1 study in advanced solid tumorand lymphoma patients, ALRN-6924 was generally 

well tolerated with the most common AEs being cytopenias, GI toxicity, liver function 

test abnormalities and infusion reactions, all of which were reversible. ALRN-6924 has 

been investigated in a phase 1 study in r/r AML and MDS, both as a single agent and in 

combination with cytarabine. Final results have not yet been reported but in preliminary 

results presented in abstract form (104), no DLTs had been observed and the MTD had not 

yet been reached. Marrow CR was reported in 2 MDS patients.

Menin Inhibitors

Several genetic subgroups of AML are characterized by overexpression of the homeobox 

(HOX) A family of transcription factors, including KMT2Ar (105), KMT2A partial tandem 

duplication (PTD) mutated (106) and NPM1 mutated AMLs (107–109). As discussed above, 

KMT2Ar AML is a particularly aggressive subtype of AML. KMT2A-PTD occurs in 10% 

of adult AML cases (110) and is also associated with poor prognosis (111). Mutations in 

the nuclear chaperone protein nucleophosmin (NPM1), which result in mis-localization of 

NPM1 to the cytoplasm (112), occur in 25–30% percent of adult AML cases (2–4) and up to 

10% of pediatric and young adult AML (113).

HOX genes serve as master regulators of hematopoiesis, controlling both self-renewal in 

normal hematopoietic stem cells and differentiation to committed myeloid progenitors (114, 

115). The understanding of how KMT2A fusions and KMT2A-PTD proteins deregulate 

HOX gene expression has been elegantly investigated by multiple groups over the last 

twenty years. In normal hematopoiesis, KMT2A is a crucial transcriptional regulator 

of HOX genes (116). Similarly, KMT2A fusion and KMT2A-PTD proteins bind to the 

promoters of HOXA genes and activate transcription (105, 117, 118) via recruitment of a 

complex of chromatin remodeling proteins comprising the adaptor protein menin (119–121) 

in addition to DOT1L (34, 35) and BET proteins (14) as discussed above. The interaction 

of menin with both wild type KMT2A (119) and KMT2A fusion proteins (120) is necessary 

for HOX gene expression (121, 122). The mechanism by which cytoplasmic NPM1 induces 

HOX expression is less clear, but it seems to be a direct consequence of the NPM1 mutation 

since expression of a mutated NPM1 allele in mice also results in increased expression of 

HOXA genes (123–125). In addition, genetic or pharmacologic abrogation of cytoplasmic 
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NPM1 reduced HOX gene expression and produced cell cycle arrest and differentiation 

in NPM1 mutated cell lines, patient derived xenografts and genetically engineered human 

HSCs (126, 127). Like KMT2Ar and KMT2A-PTD, AML NPM1 mutated leukemia cell 

lines require wildtype KMT2A and menin to maintain HOX expression (128).

The role of menin in maintaining self-renewal in multiple subtypes of AML made it 

an attractive pharmacologic target. However, disrupting large protein-protein interactions 

pharmacologically was technically challenging and for many years, this was thought to be 

undruggable. Recent developments have challenged those assumptions. Detailed structural 

studies that accurately modeled the interaction between menin and KMT2A, especially the 

KMT2A binding pocket on menin were a pre-requisite to successful drug development 

(129). The first pre-clinical small molecule inhibitor of menin / KMT2A1 interaction was 

MI2–2, a thienopyrimidine compound developed at the University of Michigan (130). 

Unlike DOT1L inhibitors, which inhibit the H3K79 methyltransferase enzymatic activity 

of the KMT2A fusion protein complex, menin inhibitors disrupt formation of the complex 

(131). MI2–2 and related compounds had encouraging pre-clinical in vitro activity, inducing 

cell cycle arrest, apoptosis, differentiation and reduction in KMT2A fusion protein target 

gene expression, including HOX genes (130, 132). Importantly, activity was independent 

of the KMT2A fusion partner (132). However, poor pharmacokinetic properties limited 

in vivo studies. Therefore, a series of optimized derivative compounds with improved 

potency, reduced off-target effects and oral bioavailability was developed (133). MI-3454, 

the most recently reported of this family of compounds, induced complete remissions in 

both KMT2Ar and NPM1 mutated patient derived xenograft (PDX) mice with little effect 

on normal hematopoiesis (134). Similarly, KO-539, a structurally related analog of MI-3454, 

induced in vivo differentiation, complete remissions and long lasting survival in KMT2Ar 

cell line xenografts (135, 136) and NPM1 mutated PDX models (137).

KO-539 is currently being investigated in phase 1/2a study in r/r AML (NCT04067336) and 

has been granted orphan drug designation by the FDA. Notably, the phase 1 study does not 

include a requirement for NPM1 mutations or KMT2Ar. In preliminary results reported at 

the 2020 ASH annual meeting (138), 12 patients had been enrolled at doses ranging from 

50–400 mg once daily dosed continuously. Importantly, no dose limiting toxicities have been 

identified and no patients discontinued treatment due to adverse events. The most common 

toxicities included nausea, diarrhea and rash, all of which were grade 1 or 2. KO-539 

pharmacokinetics were not altered by co-administration of CYP3A4 inhibitors, such as azole 

antifungals. Of 8 evaluated patients, 6 had evidence of clinical activity. These included a 

NPM1, DNMT3A mutated AML that attained MRD negative complete remission, a MRD 

positive CR in a SETD, RUNX1 mutated AML and a MLFS in a NPM1 mutated, FLT3-ITD 

AML. Additionally a patient with KMT2Ar AML had a decrease in hydrea requirements 

when treated with the lowest dose, 50 mg daily. Other reported responses were decreasing 

peripheral blasts and SD in one patient each. A CR occurring in a patient without NPM1 
mutations or KMT2A rearrangement raises the possibility that KO-539 may have broader 

applications in the treatment of AML. This is in line with pre-clinical data showing menin’s 

role in maintenance of transcriptional programs in other subtypes of AML, including MN1­
ETV6 translocations (139), FLT3 mutated (140), and CEBPA mutated (141). Currently, 

enrollment in the phase 1 dose escalation study is on-going; a phase 2 expansion study 
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in r/r NPM1 mutated and KMT2Ar AML is planned following the determination of the 

recommended phase 2 dose.

A second structurally unrelated menin inhibitor, VTP50469, was discovered via iterative 

structure based design (142). Similar to the MI series of compounds, VTP50469 binds to the 

KMT2A binding pocket of menin but with a distinct binding mode that engages somewhat 

different amino acids. VTP50469 inhibits the growth of KMT2Ar leukemia cells, reduces 

KMT2A fusion protein target gene expression, improved survival in a murine MLL-AF9 

leukemia model and in KMT2Ar PDX, with some PDX mice surviving over 1 year (142). 

Subsequently, VTP50469 was also shown to reduce HOX gene expression and inhibit in 

vivo growth in NPM1 mutated murine cells as well as NPM1 mutated AML PDX mice 

(125). An analog of VTP50469, SYNDX-5613, is currently being investigated in a phase 

1/2 study in r/r AML (NCT04065399). The phase 1 dose escalation study does not require 

any specific mutation or chromosome re-arrangement, while the planned phase 2 expansion 

will include KMT2Ar AML, KMT2Ar acute lymphoblastic leukemia (ALL) and NPM1 
mutated AML. Preliminary results were reported at the 2020 AACR meeting (143). Of 6 

evaluable patients, two had objective responses, including a CRi in a t(10;11), FLT3-ITD 

AMl patient and a partial response after 28 days of therapy in a t(9;11) AML patient. 

Of note, this patient continues on study. No DLTs have been identified but two patients 

had grade 1–2 QTc prolongation that resolved with dose reductions. In addition, unlike 

KO-539, the pharmacokinetics of SYNDX-5613 appeared affected by CYP3A4 inhibitors, 

with patients taking concurrent CYP3A4 inhibitors more likely to reach target plasma 

concentrations greater than the predicted IC95 for the menin-KMT2A interaction. Based on 

these preliminary results, SYNDX-5613 was granted orphan drug designation by the FDA in 

April 2020.

Conclusions and Future Directions

Since 2017, eight new drugs have been approved for the treatment of AML. Our 

understanding of the altered signaling pathways and epigenetic perturbations underlying 

leukemia cell survival and proliferation continues to grow. With this new knowledge, 

additional potential pharmacologic targets are identified and novel targeted inhibitors 

developed, including drugs designed to inhibit pathways previously considering un­

druggable. However, our excitement is tempered by the knowledge that AML remains 

an incurable disease for the majority of patients, especially older patients and those with 

medical co-morbidities limiting treatment. We now have an “embarrassment of riches” 

when it comes to potential novel therapeutics for AML. As of February 2021, 497 actively 

recruiting clinical trials for adult AML are currently registered with clinicaltrials.gov. 

The challenge for the field will be to identify the most promising new drugs, impact for 

particular genomic subgroups and determine the most optimal combinations or sequences of 

novel therapeutics.
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